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Mykhaylo Melnyk 5 and Wojciech Zabierowski 6

����������
�������

Citation: Iwaniec, J.; Litak, G.;

Iwaniec, M.; Margielewicz, J.;
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Abstract: In this paper, the frequency broadband effect in vibration energy harvesting was stud-
ied numerically using a quasi-zero stiffness resonator with two potential wells and piezoelectric
transducers. Corresponding solutions were investigated for system excitation harmonics at vari-
ous frequencies. Solutions for the higher voltage output were collected in specific branches of the
power output diagram. Both the resonant solution synchronized with excitation and the frequency
responses of the subharmonic spectra were found. The selected cases were illustrated and classified
using a phase portrait, a Poincaré section, and recurrence plot (RP) approaches. Select recurrence
quantification analysis (RQA) measures were used to characterize the discussed solutions.

Keywords: energy harvesting; nonlinear dynamics; multiple solutions; subharmonic solutions

1. Introduction

The area of piezoelectric energy harvesting from sources of vibration has experienced
intensive development in the recent years [1]. Many researchers have discussed various
configurations of energy-harvesting systems that provide nonlinear effects on energy
conversion [2–6]. The concept of ambient vibration energy harvesting is very useful in the
case of power autonomous sensors, portable devices, or recharging corresponding batteries.
Piezoelectric vibration energy-harvesters were proposed due to the fairly high density of
energy used in the process of mechanical-to-electrical energy conversion [4]. Such devices
consist of a mechanical resonator (most frequently a cantilever beam), an energy transducer
(based on a piezoelectric layer), and an electrical circuit with the load resistor [7,8]. At
the start of piezoelectric harvester development, linear resonators were proposed [7].
Unfortunately, such simple structures proved to be too sensitive to resonance conditions,
which was very important in the context of ambient vibration source applications. Certain
progress was made by including multiple-degree-of-freedom systems [9] to resonators,
but major improvement resulted from the replacement of linear resonators with nonlinear
resonators [10,11].

In contrast to linear harvesters, nonlinear harvesters are not fixed to a single resonant
frequency. Due to the additional solutions, they can work efficiently in some frequency
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ranges with a fairly high-power output response. Nonlinear resonators modify the reso-
nance characteristics and introduce additional coexisting solutions with changing frequen-
cies. The main disadvantage rests in the fact that the optimal solution (leading to higher
output) may not be the most probable one. Such nonlinear energy-harvesting systems can
be modelled by various interactions including impacts and magnetic or pre-stressed me-
chanical systems with multiple stable equilibria [10–15]. Starting with small, non-resonant
solutions around the stable equilibria, the resonator system can reach a higher response
level for a number of resonance frequencies and finally overcome the potential barriers
of having a larger orbit. Such orbits can appear for different frequencies including those
belonging to subharmonic solutions [16–20].

In this paper, we continue the discussion on nonlinear energy-harvesting systems by
analyzing the system with quasi-zero stiffness and two additional potential wells. Along-
side the graphical recurrence plot (RP) representation [21], we propose an identification
schema using recurrence quantification analysis (RQA).

2. The Model

The system for energy harvesting from vibrating mechanical sources is presented in
Figure 1a. The system consists of a mechanical resonator with a cantilever beam, a piezo-
electric transducer, and an electrical circuit. As a result of the piezoelectric deformation
caused by the inertial force, the electromotive force is created inside the electrodes. It is
worth noting that the electrodes are placed along the piezoelectric patches. Consequently,
the electrical charge is moving through the electrical circuit, resulting in the voltage and
power outputs on the load resistor. The special configuration of permanent magnets models
the shape of the potential, forming a quasi-zero stiffness of the cantilever and restoring
force characteristics with additional symmetric potential wells in the specific bent positions
of the cantilever (Figure 1b).

Following the standard analysis, we focus on the single deflection mode of the can-
tilever beam (see Reference [6]). The mathematical model in the dimensionless form can be
expressed by the following set of equations:{ ..

x + 2ζ
.
x− 1

2 x3(1− x2)− χu = pω2cos(ωt),
.
u + λu + κ

.
x = 0

(1)

In the above equations, x and u denote the tip point of beam displacement (dimen-
sionless) and the corresponding voltage output, respectively. Note that the corresponding
dimensional form of the energy-harvesting device prototype can be revealed from the
size of the resonator, which is related to h (Figure 1a) of the physical model. t denotes the
dimensionless time defined as t = Ωnt′, where t′ is the original time in seconds, while Ωn
is the natural free frequency of small oscillations around both of the stable equilibrium
positions (x = ±1). By obtaining the excitation frequency (Ω), we define the dimensionless
excitation frequency (ω), scaled by the natural frequency (Ωn as ω= Ω/Ωn). The remaining
dimensionless parameters (Equation (1)) denote the mechanical damping (ζ), the amplitude
of kinematic excitation (p), and the piezoelectric couplings (κ and χ), while λ denotes the
reciprocal of the time constant of the electrical circuit.

The formulated mathematical model constitutes a formal basis for conducting studies
in the area of energy harvesting. The model-testing results presented in this paper were
obtained under the assumption of the mathematical model (Equation (1)) coefficients—ζ
= 0.01, λ = 0.01, κ = 0.5, and χ = 0.05—and the harmonic excitation parameters—kinematic
(dimensionless) forcing amplitude (p = 0.183) and forcing frequency (ω) swept in the
interval [0, 4].
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Figure 1. (a) Scheme of the energy-harvesting model: the cantilever beam (I), the rigid frame (III)
with the bolts (IV) mounted to the kinematic forcing, and the piezoelectric transducer (II). x and
y denote the directions of the frame motion and the tip magnet motion in reference to this frame,
respectively. The configuration of permanent magnets makes it possible to model the potential
presented in the non-dimensional form (b). d and h are used in the system to characterize and scale
the units of displacement. R and i correspond to the load resistor and current in the electrical circuit
attached to the piezoelectric electrodes.

3. Results of Simulations and Recurrence Analysis

Using the set of dynamic equations of Equation (1) with the application of the Runge–
Kutta fourth-order method (usually used in the dimensionless models) implemented in the
MATLAB environment, a number of solutions were obtained. In particular, the frequency
broadband effect was studied. Namely, the investigation into the dependence between the
dimensionless excitation frequency (ω) and the nature of the dynamic system response
was our main goal at this stage of the research. For the purpose of simplicity and to discuss
various types of potentially coexisting solutions, the nodal initial condition was assumed
for the voltage and minimal for the displacement of the tip point of the cantilever (x0 = 1,
see Figure 1b), while tip point velocity was changed randomly in the interval [−1.5, 1.5] to
test the various levels of kinetic energy. In Figure 2, the bifurcation diagram determined for
the voltage output is presented. On this diagram, a number of branches that formed above
and below 0.2 can be observed. These branches make it possible to roughly distinguish
between the intra and inter-well solutions (small and large orbits). This result is in contrast
to the linear system in which only one resonant solution at ω = 1 is present. In the case
of a nonlinear system, the additional transformation of the frequencies is a side effect
of dynamic evolution. Consequently, we may expect not only the periodical solutions
(related to a small amplitude of vibrations) but also an appearance of sub-harmonic and
super-harmonic leading components in the solutions and non-periodic (chaotic) solutions
with a higher amplitude of vibrations. Furthermore, as the amplitude of the solution is
larger for the inter-well solutions, the most complex solutions have such a character. In
the limited cases, such solutions can appear just below the amount of energy sufficient to
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overcome the potential barrier. This effect can be seen as an additional structure in the
lower branches of a bifurcation diagram (Figure 2).
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Figure 2. Bifurcation diagram for voltage output. Note that, in the simulations, the initial position
was fixed inside one of the potential wells (x0 = 1) while the initial velocity was set as a random
number selected from the interval [−1.5, 1.5], different for eachω.

3.1. Analyses Using Phase Space Trajectories and Poincaré Maps

To clarify the nature of the solutions, 16 cases were selected for detailed study (see
the points marked by letters A–P in Figure 2). The results of the further investigations are
collected in Figure 3. In the left, center, and right panels of Figure 3, time series, phase
portrait with Poincaré points, and corresponding voltage recurrence plots are presented.

The recurrence plots, which are presented in the right column of Figure 3, were es-
timated for the output voltage time histories (cases A–P). It should be stressed that the
considered voltage time histories (Figure 3, left column) were determined for the dimen-
sionless time (t), defined as t = Ωnt’, where t’ is the original time in seconds. Therefore, the
estimated recurrence plots indicate the system recurrent properties for consecutive samples
(i) of the output voltage dimensionless time histories.

The points A and B noticeably represent single-well solutions. Case A is characterized
by a small orbit of the resonator (period one solution represented by one Poincaré point
per one loop in the corresponding phase portrait). The small vibration amplitude indicates
the non-resonance vibrations. Case B is a little more complicated and contains the super-
harmonic component with a larger amplitude close to a 1/2 period resonance (one Poincaré
point for two loops in the corresponding phase portrait). In a similar way to case A, the
solution of case B is an intra-well solution.
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Figure 3. The detailed analysis results (points A–P) of the cases are marked in Figure 2. In the left, center, and right
panels, time series (displacement and voltage outputs), phase portrait with Poincaré points, and corresponding voltage RPs
are presented. FAN in the recurrence plots indicates the fixed amount of nearest neighbors [22], which is the method of
calibration of RPs with the same recurrence density.

The solution for case C has a fairly large amplitude. Case C is an inter-well solution of
the period one (represented by one Poincaré point for one loop in the corresponding phase
portrait). The large amplitude results in deformation of the phase portrait. Conversely,
solution D is non-periodic (chaotic, as indicated by the wide distribution of the Poincaré
points). Case D is a large orbit inter-well solution but the hopping between the potential
wells is irregular in time. The solution for case E is similar to the case C solution. In
fact, they are placed on the same branch in the bifurcation diagram (Figure 2). While
increasing the frequency above ω = 2, we observed that the chaotic branch is still present.
Consequently, the case F solution is chaotic again. Interestingly, case G corresponds to the
intra-well solution represented by three Poincaré points per four loops in the phase portrait.
Presumably, this is a resonant solution of a 3

4 period. Case H is a larger orbit solution
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represented by six Poincaré points per two loops. This is effectively a dominating sub-
harmonic component solution similar to the period three solution with a small deformation
in each second loop due to a period doubling bifurcation.

Case I belongs to the chaotic branch of solutions. It is similar to the case D and F
solutions. Interestingly, case J is a large orbit sub-harmonic-like solution with four Poincaré
points per two loops in the phase portrait. This solution breaks the symmetry through the
central vertical axis. Note that this solution effectively coincides with two Poincaré points
per one orbit (with a period doubling bifurcation). Case K is again an intra-well solution,
although it is characterized by four Poincaré points per four loops in the phase portrait.
Note that the loops are of various sizes. Conversely, cases L and M, representing the large
orbits, are similar to previously discussed cases H and J, respectively. They are related by
the period doubling bifurcation.

Evidently, cases H and L and, separately, cases J and M, lie along the corresponding
branches for sub-harmonic (period two and period three solutions, respectively) larger
orbit solutions (see Figure 2). The branch family of period three (with cases H and L) is
completed by case 0 represented by nine Poincaré points per three loops in the phase
portrait. Case N is the simple, small orbit harmonic non-resonant solution, while case P
is represented by nine Poincaré points per three loops. The case P solution differs from
the case J and M solutions by the attractor represented by the specific distribution of the
Poincaré points, and the voltage output is visible in Figure 2 (see an additional branch).
Classification of the analyzed cases A–P is gathered in Table 1.

Table 1. Classification of cases A–P. Large orbits consistently have an inter-well oscillation character,
while small and medium orbits are located in one of the potential wells (intra-well oscillations) and
differ by the amplitude of oscillations.

Case Annotation Classification

A small orbit intra-well solution

B medium orbit intra-well solution

C large orbit inter-well solution

D large orbit non-periodic (chaotic solution)

E large orbit inter-well solution

F large orbit non-periodic (chaotic solution)

G medium orbit intra-well solution

H large orbit sub-harmonic solution

I large orbit non-periodic (chaotic solution)

J large orbit sub-harmonic solution

K medium orbit intra-well solution

L large orbit sub-harmonic solution

M large orbit sub-harmonic solution

N small orbit harmonic non-resonant solution

O large orbit sub-harmonic solution

P large orbit sub-harmonic solution

3.2. Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA)

In order to identify the dynamic system properties, the RP method was used for
analyzing the simulated time series. This approach was introduced by Eckmann et al. [22]
for qualitative studies of recurring patterns, non-stationarities, and bifurcations of the
dynamic attractor (represented also by the Poincaré section). Significant development of
the RP method was provided by Webber et al. [23] and Marwan et al. [24] by introducing
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statistics of diagonal and vertical lines from the RP diagrams. In their studies, this method
is known as recurrence quantification analysis (RQA) [24–26]. The recurrence quantifiers
illustrate the quantitative information contained in the recurrence plots. As the signal
is represented by the states defined in the previously reconstructed embedded phase
space, the RP-based methods reveal all instances (recurrences) when the phase space
trajectory of the dynamic system coincides at various times. Consequently, two points on
the system trajectory are considered as neighbors if they are close enough to each other. The
corresponding distance matrix (R) includes phase states for all sampling times represented
by the matrix element, Rε

ij:

Rε
i,j = H

(
ε−

∣∣∣∣ui − uj
∣∣∣∣), i, j = 1, . . . , N. (2)

where N denotes the number of sampled time events (voltage, ui) while ε communicates the
threshold distance. The above measures are used in a so-called embedding space obtained
with the help of delayed coordinates using a time delay (τ) obtained from a reduction in
the mutual information and dimension (m) estimated from the disappearance of the false
nearest neighbors.

In reference to the results in Figure 3 (on the left panel), we observe that the RPs are
sensitive to changes in the system dynamic response. Cases A and N are characterized
by the strait diagonal lines that correspond to the harmonic responses represented by a
circular shape of the phase portraits. The period of response vibrations coincides with
the space between the lines, and this period is constant. Note that the information about
the character of lines, including its continuity, straightness (or their corrugations), and
distance between the local diagonal lines (shorter and longer), are key to identifying the
solution. The extreme examples are the cases with chaotic responses (cases D, F, and I).
These cases demonstrate fluctuations in the line lengths and properties such as thickness
and straightness. In addition, some of the lines change in direction from diagonal to
vertical or horizontal. Apart from the chaos, this could be also the effect of modulation and
non-stationarities. The cases presented above are stationary, but some features are visible
in chaotic motion, which breaks the linear superposition rule of solution combinations,
favoring intermittency with a local switch between solutions of characteristic periodicities
together with their short transients. Conversely, the local corrugations (deviations from the
straitens) can be identified in the solution with orbits (defined by portraits in the phase
plane) far from the circular solutions. This feature can be noticed in all large orbit solutions,
especially in those with dominating sub-harmonic components (see cases H, J, L, M, O,
and P).

The leading frequency coincides with the distance between the corresponding diagonal
lines. Note that such lines are not always continuous (see cases C, E, and P). This effect is
strongly dependent on the value of ε but could still be included into the statistics. Another
class of solutions are resonant intra-well solutions wherein the continuous lines coexist
with the dashed lines (see cases B, G, and K). Note that, in cases G and K, the tendencies of
perpendicular diagonal lines are present as well. Such features can signal super-harmonic
components in the solutions.

As mentioned previously, more information can be obtained from the statistical
approaches using the recurrence points, namely RQA [24–27]. In the following analysis, we
focused on select parameters including the average length of the diagonal lines excluding
central diagonal and singular points in RP (La), the average and maximum lengths of the
vertical lines (TT and Vmax), the average period (T2) and the corresponding entropy of the
period distributions, clustering (informing about the coordination number of the black
points with respect to their neighbors, Clust), and transitivity (informing about the average
number of the paths based on the black points across the RP, Trans). The last two parameters
are topological ones. They have meanings closely related to the dimensions of the dynamic
attractor. Obtained results of the RQA analysis are gathered in the Table 2.
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Table 2. The recurrence statistics (RQA) for ε = 0.1. For comparison, in the first two columns, we included information
about the number of loops and the main periodicity obtained from the phase portraits and Poincaré points of the mechanical
resonator response (see the central panel in Figure 3). Pn denotes the period of the solution as the multiple (n) of the
excitation period, and Ln and sLn denote the number (n) of large or small loops respectively. The calculations of the RQA
parameters were performed in the CRP toolbox for MATLAB [28].

Point Number of Loops Periodicity La TT Vmax T2 RTE Clust Trans

A sL1 P1 38.56 9.68 11 96.91 0.127 0.749 0.747

B sL2 P1 15.97 6.53 11 63.01 0.655 0.665 0.663

C L1 P1 107.20 9.69 11 96.93 0.100 0.740 0.737

D L > 10 P > 10 28.53 29.57 206 295.80 0.850 0.625 0.624

E L1 P1 106.55 9.68 11 96.93 0.100 0.740 0.738

F L > 10 P > 10 35.28 27.20 115 272.07 0.777 0.647 0.645

G sL3 P3 60.22 17.58 32 172.63 0.673 0.682 0.680

H L2 P6 164.01 27.25 34 273.13 0.434 0.730 0.728

I L > 10 P > 10 30.05 24.21 177 242.29 0.712 0.637 0.635

J L2 P4 137.43 18.68 25 187.27 0.431 0.740 0.738

K L4 P1 56.97 19.87 39 197.75 0.741 0.667 0.665

L L1 P3 287.12 27.22 31 272.84 0.243 0.739 0.737

M L1 P2 152.85 18.66 21 187.17 0.220 0.741 0.739

N sL1 P1 186.87 9.67 11 96.90 0.126 0.737 0.735

O L6 P2 40.72 17.72 35 176.35 0.747 0.701 0.699

P L9 P3 104.23 27.31 51 273.65 0.480 0.647 0.645

Based on the statistical results for ε = 0.1, chaos (cases D, F, and I) is indicated by the
relatively small value of La and fairly large values of TT and Vmax (see also the small values
of Clust and Trans and the large values of RTE and T2). There are some changes between
cases but the values of several RQA measures have to be checked to identify such solutions
correctly. In contrast, in the case of small orbits, the values of La, TT, and Vmax are small.

For better clarity, we also studied the RQA parameters estimated for a smaller ε. In
Table 3, we present the corresponding results. Note that Vmax worked very well regarding
the detection of chaotic solutions for its large values. T2 also indicated chaos for large values
but not as precisely as Vmax. It is also suitable to distinguish small orbits in most cases.

Table 3. The recurrence statistics. The same RQA parameters as in Table 2 but for ε = 0.01.

Point La TT Vmax T2 RTE Clust Trans

A 1687.31 0 0 103.76 0.025 0.993 0.962

B 870.25 2.00 2 102.87 0.029 0.990 0.961

C 694.40 2.00 2 102.89 0.030 0.986 0.957

D 8.82 6.52 31 660.66 0.707 0.600 0.582

E 694.80 2.00 2 102.89 0.030 0.986 0.957

F 10.35 5.68 28 573.32 0.659 0.580 0.563

G 120.38 3.02 4 274.39 0.124 0.735 0.713

H 43.77 3.29 7 297.80 0.409 0.675 0.654

I 9.54 5.57 31 562.57 0.671 0.594 0.576

J 52.90 3.78 5 355.33 0.140 0.655 0.635

K 38.65 3.71 5 339.36 0.210 0.652 0.633

L 518.36 2.96 3 275.73 0.077 0.750 0.726

M 41.27 2.05 3 199.35 0.101 0.339 0.328

N 430.37 2.00 2 102.89 0.034 0.971 0.942

O 20.20 3.65 7 330.62 0.527 0.667 0.647

P 94.61 6.63 11 685.11 0.223 0.716 0.693
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Conversely, entropy in RTE indicated more complex solutions with sub- and super-
harmonic components apart from the excitation frequency. Clust and Trans worked fairly
well, demonstrating small values for more complex solutions of multiple loops including
chaotic solutions. La also worked properly, indicating chaotic and multiple-loops solutions
for its smaller values in most cases.

4. Summary and Conclusions

In this study, we reported the frequency broadband effect on nonlinearity of vibration
energy harvesting. We used a model with two potential wells and quasi-zero stiffness
appearing as a flattening effect in the potential with respect to the central position of the
resonator beam. The quasi-zero stiffness effect enables the resonator to produce a larger
amplitude and a higher voltage output due to the broader distribution of the potential well
and to reduce the potential barrier in comparison to the classical Duffing model [20].

Namely, in our treatment, the potential wells are separated by the region of almost zero
potential force interaction (Figure 1b) that favors acceleration in the kinematic mechanism
of excitation. Note that the polynomial approximation is the simplest possible one.

The simulation results are based on the polynomial expansion of the potential. We
used the lower-order approximation to the potential consistent with the quasi-zero stiffness
at the center of the displacement axis coinciding with the unbent beam and two symmetric
potential wells located on the sides. The proposed system can be made with the help of
magnets distributed in the structure. Similar structures of the potential could be observed
in the levitating magnets approach with combined magnetic and mechanical springs [29].

The linear energy-harvesting systems are ruled by the impedance matching prin-
ciple [30,31]. According to this principle, optimal conditions for energy harvesting are
reached when the amount of electrical dissipation energy (dissipation through the elec-
trical load coinciding with transduced energy) is equal to the mechanical dissipation
energy. In nonlinear systems where multiple solutions are present, this principle does not
operate properly.

The bifurcation diagram (Figure 2), which indicates many branches of different solu-
tions, is presented as our main contribution. We proposed to identify solutions using the
phase portraits and Poincaré points of the resonator motion. To complete the investigation,
we adopted the approach of recurrence plots and RQA. The advantage of the recurrence
analysis rests in the fact that knowledge about the resonator motion is not required as the
investigation is based on the voltage output time history only. In our study, RQA was used
in order to support the interpretation of the informative content (patterns) of the estimated
RPs. In practical applications, if the system is not expected to exhibit chaotic or transient
behavior, the use of five basic, so-called “classical”, RQA measures is sufficient [32]. In the
case of nonlinear systems, the RQA measures based on the vertical and horizontal elements
of the RPs are also used [33]. Interestingly, the complete identification is not possible
based on a single parameter [34–36]. However, we offer the argument that multi-parameter
identification is possible.

In the course of the RQA performed for varying threshold ε values, the multiscale
system properties [37] were revealed. During our analysis, two different thresholds of ε
were used (0.1 and 0.01). On the basis of the obtained results, it can be stated that the RQA
method works similarly for both thresholds. It should be stressed that a low threshold
value would be necessary if the embedding is fixed for all cases; this is unlike our study as
we estimated the individual embedding for each case separately.
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