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Abstract: Large-scale weather patterns and their variability can influence both the amount of wind
power production and its temporal variation, i.e., wind power ramps. In this study, we use a self-
organizing map to cluster hourly sea level pressure into a discrete number of weather patterns. The
dependency of wind power production and wind power ramps on these weather patterns is studied
for the Belgian offshore wind farm fleet. A newly developed wavelet-surrogate ramp-detection
algorithm is used for the identification of wind power ramps. It was observed that low-pressure
systems, southwesterly and northeasterly wind flows are often associated with high levels of wind
power production. Regarding wind power ramps, the type of transition between weather patterns
was shown to determine whether ramp up or ramp down events would occur. Ramp up events tend
to occur due to the transition from a high-pressure to a low-pressure system, or the weakening of the
intensity of a deep low-pressure system. The reverse is associated with ramp down events.

Keywords: Belgian wind power; frequency of ramps; self-organizing maps; weather regimes

1. Introduction

The total European wind power capacity reached 220 GW in 2020 [1]. During the
same period, offshore wind power capacity also increased significantly from 4 GW to
25 GW. Furthermore, according to WindEurope’s ’high scenario’, up to 100 GW of wind
power capacity could be installed offshore by 2030 [2]. This capacity of wind power will
present new challenges for network operators seeking to balance supply and demand
where a significant fraction of that supply comes from a non-dispatchable form of energy
generation over a large area some distance from the load in many cases.

Wind speed and associated wind power ramps are influenced by both mesoscale
and large-scale meteorological phenomena which cover a range of spatial and temporal
scales [3–7]. Mesoscale systems develop over a time scale of hours which correspond to a
spatial coverage of tens of kilometers (km) and include phenomena such as thunderstorms,
land-sea breezes and cumulus convection. By contrast, large-scale synoptic systems com-
prise extra-tropical cyclones, troughs, ridges and frontal systems, cover hundreds of km
and persist over timescales of several days.

It is well known that weather patterns influence the generation of wind power [8,9].
For instance, European wind power production shows a significant regional variation
as a result of the prevailing weather patterns [10]. The occurrence of cyclonic regimes
corresponds to an increase of wind power production across Northern Europe. Blocked
(high-pressure) regimes lead to an increase of wind power production over southeastern
Europe. By contrast, wind power production in the Mediterranean does not show a clear
correlation with either cyclonic or blocked regimes. We believe that understanding the
relationship between weather patterns and wind power generation helps in power system
planning, energy trading and dispatch.
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Studies have also demonstrated that the demand for electricity shows an association
with weather patterns. For example, over the UK, low electricity demand days and
high wind power capacity generation are associated with Icelandic low-pressure systems.
However, high-electricity-demand days and low wind power capacity are related to high-
pressure systems over Scandinavia and Great Britain [11]. Additionally, during prolonged
cold spells, the Irish wind power capacity factors are low while the demand for electricity
is relatively high [12]. These examples suggest that there are further benefits in classifying
and quantifying the prevalence of different weather systems when balancing supply and
demand where there is a large penetration of wind power.

Furthermore, weather patterns influence the magnitude and direction of large and
rapid changes in wind power production known as wind power ramps. A study which
looked at UK wind farms showed that the passage of cyclonic systems could cause wind
power ramps over time scales of around four hours. However, the passage of frontal
systems tends to produce short-duration power ramps of timescales in the range of
30–60 min [13]. Over Eastern Japan, the frequency of ramp up and ramp down events
shows a strong association with particular weather patterns [14]. It was observed that
ramp up events are mostly related to extra-tropical cyclones while ramp down events are
primarily associated with reduced zonal (or meridional) gradients of the surface pressure.

The occurrence of power ramps tends to be associated with particular atmospheric
circulations. Attempts have been made to group these circulations into a discrete num-
ber of weather patterns. The Lamb classification scheme is one of the earliest and most
well-known approaches to classify large-scale European weather patterns focused over the
British Isles [15]. The scheme initially consisted of only 10 weather patterns but was later
extended to 26 [16]. A related classification scheme known as the GWL (Grosswetterlagen)
scheme was developed using 29 weather patterns over Europe [17]. Recently, k-means
clustering [18] and principal component analysis (PCA) [10] have been used to cluster Euro-
pean weather patterns into 30 and seven classes, respectively. The use of machine learning
to classify weather patterns has increased in popularity in recent times. For example, a
study showed the use of three different machine-learning techniques to identify extreme
weather events in Taiwan [19] where they were shown to outperform more traditional
objective weather classifiers. An alternative machine-learning approach to classify weather
patterns is to use a self-organizing map (SOM). A SOM has advantages over other well-
known clustering techniques. First, SOMs capture nonlinear patterns within the data that
cannot be clustered using linear recognition tools such as PCA or Empirical Orthogonal
Function (EOF) analysis. Furthermore, SOMs preserve the topological order of the weather
patterns [20,21] leading to a smooth spatial transition from one weather pattern to the
next. This is an advantage when grouping patterns into overarching circulation types, e.g.,
predominantly high or low pressure.

SOMs have been widely used in the field of atmospheric science to detect various
trends, for example, to detect changes in atmospheric weather patterns due to climate
change [22,23] and to quantify the connection between intra-seasonal rainfall variability
and weather circulation [24]. They have also been used to identify the association of large-
scale synoptic systems with extreme climate events [25–27], wind pattern classification [28]
and wind power ramps [14]. In this paper, we classify large-scale European weather
patterns and investigate how they affect the power output of offshore wind farms using
the Belgian offshore fleet as an example.

2. Data

In this study, we use wind power data provided by the Belgian system operator,
Elia [29] from the Belgian offshore wind farms located in the North Sea region at a longitude
of between 2.7◦ and 3.0◦ E and a latitude of between 51.5◦ and 51.7◦ N. These sites were
chosen because offshore wind power will make a significant contribution to future installed
capacity, particularly in Northern Europe, and because the power production data are open
access. The aggregated measured wind power is available from 2013 to date with a 15-min
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resolution. In 2013, the aggregated rated power was 195 MW and by April 2020 had grown
to 1608 MW. However, during 2015–2016, there was no change in rated power which was
712 MW. Thus, to simplify the analysis, in this study we consider only this two-year period.
Furthermore, it was found that less than 1% of the data were missing for this period.

To cluster the weather patterns, we use sea level pressure (SLP) from the fifth genera-
tion of ECMWF’s atmospheric reanalyses of the global climate (ERA5) [30] for the period
2003–2017. As the ERA5 data are of an hourly resolution, the 15-min wind power data
are also aggregated hourly so that they can be directly associated with the meteorological
data. Therefore, all wind power and ramp values in the following analysis are based on
hourly values.

3. Methods
3.1. SOM Algorithm

The SOM was originally developed for pattern recognition [31–33] and is an unsuper-
vised learning technique that maps high-dimensional input data onto a low-dimensional
output space. In this paper, we wish to map an arbitrary pressure field to one of a finite
number of classes to assess wind speed (and thus wind power) dependency on large-scale
circulation patterns.

A SOM is a simple neural network that consists of an input layer. In our case, the input
layer consists of hourly sea level pressure (SLP) for the period 2003–2017. This provides
n = 131,496 temporal data samples on a regular spatial grid of m = 201 × 141 = 28,341
values (Figure 1a). This input layer of n 1D data vectors (Figure 1b) is connected to a layer
of i output neurons through a series of weight vectors (Figure 1c). The output layer is a 2D
Kohonen map of 30 nodes where each node represents a series of representative weather
patterns (Figure 1d) based on clustering of the input data.

Figure 1. Schematic diagram of SOM: (a) n samples of hourly spatial SLP 2D maps containing m
grid points (b) 2D spatial data converted into 1D vectors, (c) weight vectors (Wi) connecting input
data with 2D Kohonen maps, (d) SOM topological maps and the neighborhood radius (σ). The red
dot is a hypothetical Best-Matching Unit (BMU) which has the smallest Euclidean distance between
the weight of the output neuron and the input data vector.

For simplicity, we initialize the weight vectors from a random sample of the input SLP
data vectors. Linear initialization would provide faster convergence but is computationally
expensive [31]. The SOM is trained over a series of iteration steps in this study using
SOM_PAK software that uses a sequential SOM training algorithm [34]. At each step t,
a Euclidean distance is used to calculate the distance between each 2D input data vector
X(t) and each of the i weight vectors Wi(t). The output node whose weight vector, Wc(t),
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is closest to each input node is called the Best-Matching Unit (BMU) and has an index c
given by:

c = argmin
i

(||X(t)−Wi(t)||) (1)

Then, the weighting vectors of the BMU and those close by are updated to better
reflect the input vector:

Wi(t + 1) = Wi(t) + α(t)hci(t)[X(t)−Wi(t)] (2)

where α(t) is a learning rate which decreases monotonically as a function of iteration time,
and hci is the Gaussian neighborhood function. The value of α(t) decreases linearly with
iteration time:

α(t) = α0

(
1− t

tmax

)
(3)

where α0 is the initial user defined learning rate, and tmax is the maximum iteration time.
The Gaussian neighborhood function is given by:

hci(t) = exp
(
− sqdist(c, i)

2σ2(t)

)
(4)

where the neighborhood radius size (σ(t)) also reduces linearly as a function of iteration t
in a similar manner to α(t), and sqdist(c, i) is the squared geometric distance between the
BMU and neuron i.

As the neurons are initialized randomly, two phases of training are required for the
neurons to maintain a topological order. In the first, rough training phase, a relatively wide
radius of influence (σ0 = 6) is used, i.e., approximately the diameter of the Kohonen map
(Figure 1d) and the initial learning rate, α0, is set to 0.05. In the second, fine-tuning phase,
the training is iterated using a smaller radius (σ0 = 3) and an initial learning rate of 0.02.
Following [34], in the first phase σ0 is about the size of the diameter of the map; and it is
reduced to one third of it in the second phase.

In both training phases, the training passes through several iteration steps. In the
rough training phase, the total number of iterations, tmax, is 10% of n (the number of input
data vectors). In the fine-tuning phase, we use a Sammon mapping projection [35] at
different iteration steps to check the topological order of the neurons to see if the SOM
is sufficiently trained. If the Sammon projection shows a relatively ’twisted’ neuron map
(see Figure 2a) then the SOM is not fully trained whereas a more organized arrangement
(Figure 2b) suggests that the SOM has been trained sufficiently.

Figure 2. Sammon map projection of ERA5 hourly SLP during fine–tuning: (a) after 10,000 iteration
steps, and (b) after 131,496 iteration steps.
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3.2. Detecting Wind Power Ramps

This research involves the study of both mean power and rapid changes in offshore
wind power, known as wind power ramps. To identify ramp events, we use the newly pro-
posed wavelet-surrogate [36] algorithm. This method first generates a wavelet transform
of an original time series. Additional wavelet transform is performed based on several
random shuffles (100 times in this study) of the original power time series. The wavelet
coefficients of this latter transform are used to discriminate the coefficients generated using
the original time series from uncorrelated noise. Cheneka et al., 2020 [36] used a Daubechies
level-1 (Haar) mother wavelet to generate the wavelet coefficients using 15-min aggregated
wind power values up to a given maximum wavelet scale (amax) and a discrimination level
(W∗T). Based on the hourly offshore wind power data, Figure 3 shows the application of
the wavelet-surrogate (WS) algorithm to detect ramps using a value of amax = 20 and four
threshold values for W∗T . As the discrimination level of W∗T is reduced from 10% to 1%,
the number and duration of detected ramps are reduced, i.e., a high percentage value of
W∗T will pick up a larger number of potentially weak ramps, whereas a smaller percentage
value only picks up the strong ramps in a given time period. To provide a reasonable
balance between these, we use a 5% discrimination level for W∗T for the subsequent analysis.
Please refer to Cheneka et al., 2020 [36] for further details.

Figure 3. Detected normalized power ramps for the period of 20 to 31 May 2015 for amax = 20 with
discrimination levels, W∗T of: (a) 10% (b) 5% (c) 2% and (d) 1%. Ramp-up events are shown in red
and ramp-down evehnts in blue.

4. Results

In this section, the main characteristics of the SOM-clustered weather patterns are first
discussed. Then the dependence of the mean power production and power ramps on the
different weather patterns are analyzed. Finally, some individual ramp case studies are
analyzed in more detail. It should be noted that in all cases, results are normalized to the
total rated capacity of the Belgian offshore wind farms during the period 2015–2016, i.e.,
712 MW.

4.1. Weather Patterns

Based on the discussion in Section 1 concerning previous attempts to classify European
weather patterns, we chose to classify the hourly ERA5 SLP for the period 2003–2017 into
30 weather patterns. The result is shown in Figure 4. Hereafter, we refer to these 30 patterns
as SOM-based weather patterns. The figure highlights the advantage of using a SOM for
classification as the weather patterns show a smooth transition from one weather pattern
to the next. This allows the patterns to be grouped by climatology. For example, weather
patterns at the center of the map (c2–e2 and c3–e3) show predominantly weak (slack)
pressure gradients, especially over the North Sea, and are characteristic of the summer
season [37]. The weather patterns at the right of the map ( f 1– f 4) are dominated by blocked
regimes/high pressure, which dominate the winter season [38].
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Figure 4. The SOM-based weather patterns using ERA5 hourly sea level pressure 2003–2017 and
corresponindg frequency of occurrence: (a) The SOM-based weather patterns. The color scale is
hourly sea level pressure (SLP) in hPa and the contour lines are at intervals of 3 hPa; and (b) frequency
of weather patterns in (%). Rows (1–5) and columns (a–f) are used to label the weather patterns.

When comparing the SOM-based weather patterns with those clustered using a
PCA [10], we found that the SOM produces similar results [39]. It can be seen that the
classification has captured the main European weather patterns including: Atlantic trough
( f 4, f 5), Scandinavian trough (a3, a4), Atlantic ridge (a1, a2), Scandinavian blocking
( f 1), Greenland blocking (e1), Northerly flow (b1, c1) and British Isles Low Pressure (a5).
The weather patterns at the bottom of the map are mainly dominated by zonal flow
(b5–e5). Moreover, we can see that the weather patterns which display strong pressure
gradients are located at the edges of the map, i.e., right ( f 1– f 4): high pressure over Europe
and Scandinavia, left (a1–a4): high pressure over the Atlantic and low pressure over
Scandinavia, top (b1–d3): meridional flow and bottom (a5– f 5): low pressure and zonal
flow. Those weather patterns in the center of the map show indistinct pressure systems
with weak gradients. In Figure 4b, the frequency of the different weather patterns is shown.
Notably, those weather patterns with distinct features at the edge of the map tend to occur
more frequently. This likely reflects the fact that most pressure fields can be mapped to
distinct weather patterns.
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The SOM-based weather patterns are also compared with the Royal Netherlands
Meteorological Institute (KNMI) synoptic charts to see how well synoptic systems at a
particular point in time are captured using the six most frequently occurring patterns, i.e.,
a1, e1, f 1, a5, b5 and f 5. The synoptic chart at 00:00UTC associated with the first occurrence
in the time series of each of these six weather patterns is used for validation. The resulting
charts are shown in Figure 5.

Figure 5. KNMI synoptic charts (https://www.knmi.nl, accessed on 5 May 2021) corresponding to
the six most common SOM-based weather patterns at 00:00 UTC on: (a) 3 January 2015 (a1), (b) 6
February 2015 (e1), (c) 17 March 2015 ( f 1), (d) 15 January 2015 (a5), (e) 10 January 2015 (b5), and (f) 13
February 2015 ( f 5). The prominent synoptic features are shown: L (low pressure), H (high pressure),
blue (cold front), red (warm front) and magenta (occluded front).

Even though the SOM-based weather patterns are based on the long-term period
2003–2017, in general, they capture quite well the individual synoptic systems on given
days, with some slight differences. For example, on 3 January 2015, the low-pressure
system centered over Finland and the extended high-pressure area west of the UK and
south over continental Europe observed on the synoptic chart are essentially captured by
weather pattern a1, though the small low to the west of the UK is not seen in the SOM-
based weather pattern. The synoptic chart also shows a warm front to the southwest of the
UK. The European (e1) and Scandinavian ( f 1) blocked regimes are clearly observed in the
synoptic charts on 6 February 2015 (Figure 5b) and 17 March 2015 (Figure 5c), respectively.
The synoptic chart on the 6 February 2015 also shows a warm front moving over the North
Sea. Weather pattern a5, dominated by a low-pressure system over the UK is clearly visible
in the synoptic chart of 15 January 2015 (Figure 5d) with cold and warm frontal systems

https://www.knmi.nl
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moving across the North Sea area. Figure 5e shows a zonal flow synoptic chart dominated
by a southwesterly wind flow which is captured by weather pattern b5. This chart also
shows a warm front over the North Sea region. Lastly, on 13 February 2015, the synoptic
chart shows a low-pressure system over the Atlantic (Figure 5f) which is well captured
by weather pattern f 5. On this chart, frontal systems can be seen in the Atlantic with an
occluded front approaching the English Channel.

In summary, the SOM-based clustering captures well the features of instantaneous
weather systems and in many cases, frontal systems are likely to be observed which may
lead to rapid changes in wind speed (wind power ramps).

4.2. Wind Power Trends by Weather Pattern
4.2.1. Wind Power Production

In Figure 6a, the frequency of normalized wind power production is shown by weather
pattern. The highest values of power production that occur frequently are associated with
those weather patterns located at the bottom left of the map shown in Figure 4 which are
mainly characterized by zonal flow and cyclonic circulation (low-pressure systems), i.e., a5,
a4, a3, b5 and b4. However, frequent low-power production value is particularly associated
with weather patterns where high pressure dominates, notably blocked regimes such as f 2
and f 3 and regimes in the center of the map with slack pressure gradients.

Figure 6. Normalized wind power production by weather patterns: (a) distribution of normalized
wind power, and (b) mean value of normalized wind power (mean capacity factor).
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In Figure 6b, the normalized mean wind power production by weather pattern is
shown. This value can be considered to be the mean capacity factor of the combined
offshore Belgian wind farm cluster. The overall mean capacity factor across all weather
patterns is about 0.4. The values effectively summarize the distributions in Figure 6a but
highlight the extreme differences in capacity factor across the different patterns ranging
from 0.2 to 0.8. Maximum capacity is observed for the weather patterns mainly located at
left-bottom which are characterized by cyclonic circulation systems. However, the weather
patterns in the right are associated with low-capacity factor, and those weather patterns are
mainly characterized by blocked regimes or high-pressure systems with a slack pressure
gradient.

4.2.2. Wind Power Ramps

Figure 7 shows the frequency of wind power ramps by weather pattern which are
detected using the wavelet-surrogate method with a 5% discrimination level for W∗T and
amax = 20. These parameters can detect both short and long duration power ramps. The
percentage of ramps is calculated based on the total number of power production values in
each weather class (Figure 7a (ramp up) and Figure 7b (ramp down)); and as a fraction of
the total number of ramps over the two-year period (Figure 7c (ramp up) and Figure 7d
(ramp down)).

Figure 7. Frequency of ramp up and ramp down events as a function of weather pattern: (a) ramp
up events as a fraction of the number of hours of generation classified as a particular pattern, (b) as
(a) for ramp down events, (c) ramp up events as a fraction of the total number of ramps identified,
and (d) as (c) for ramp down events.

In Figure 7a, it is seen that when weather patterns c2, b3, c3 and c5 are prevalent,
the largest percentage of ramp up events occur. The first three of these patterns are
associated with transitions from high to low-pressure systems when pressure gradients
are relatively weak, but wind speeds are still sufficient to maintain a modest amount of



Energies 2021, 14, 3903 10 of 14

production. In such cases, wind turbines are operating below rated power in a steep part
of the power curve and thus relatively small changes in wind speed can cause a large
change in wind power. The high number of events in c5 is less clear as there is a pattern
of distinct westerly flow, though with modest winds when looking at the capacity factor
values in Figure 6b. Again, this is likely to be associated with greater swings in production
if operating frequently below rated power.

On the other hand, the largest percentage of ramp down events is seen when patterns
a1, a2, b1, b2 (in the top left of the SOM) and b4 and c4 (in the bottom left) prevail (see
Figure 7b). There does not appear to be a clear link to the pattern of these circulations that
could lead to a higher number of ramp down events, but again, the capacity factors are
modest during these periods, so wind power output is likely to be variable for a similar
reason as above.

When viewed as the percentage of the total number of ramps, the picture is slightly
different. In this case, the most frequent number of ramp up events occurs during patterns
c5, d5 and f 5 (see Figure 7c). This is partly influenced by the frequency with which
the synoptic situations fall within one of these patterns, but this is not the entire reason.
Patterns c5 and d5 are not the most frequent patterns but show a proportionally higher
number of ramp up events. The patterns c5, d5 and f 5 are all associated with modest winds
and again it is likely that the wind turbines will be operating in the below rated range. The
ramp down events as a fraction of the total ramps show less variability (see Figure 7d),
with the highest occurrence for pattern a1 which was also seen in Figure 7a.

In summary, the occurrence of wind power ramps seems to be associated with modest
wind speeds when wind turbines are operating at below rated power in the steepest part
of the power curve. Another factor which could affect the prevalence of ramp events is the
passage of fronts [40] which is not picked up from the pressure fields alone although the
individual charts in Figure 5 shows that such activity is frequently present for several of
the most commonly occurring patterns. Alternatively, the transition between particular
patterns may play a role and this is explored in the next section.

4.2.3. Wind Power Ramp Case Studies

In this section, we look for temporal trends in weather-pattern transitions during
ramp events, classifying the ramps into weak and strong wind power ramp cases as shown
in Figures 8 and 9, respectively. In Table 1, the first four ramp cases, R1–R4 are relatively
slowly evolving ramps (weak ramp rates), whereas the ramp cases, R5–R8 are stronger
ramps that show a rapid increase or decrease over a relatively short period of time.

The temporal evolution of the weak ramp cases, R1–R4, along with the associated
weather-pattern transitions just before, during and just after each ramp event are shown in
Figure 8. The ramps are characterized by a significant rise or fall in power production over
a long period. Figure 8a,c show ramp up events in green whereas Figure 8b,d show ramp
down events in red. Figure 9 shows the equivalent results for the strong ramp cases R4–R8
where significant power changes are seen over a short period.

Table 1. Case study ramp start and end times (to the nearest hour) and type of ramp.

Ramp Cases Start End Ramp Type

R1 26-November-2015 20:00 27-November-2015 15:00 ramp up
R2 22-November-2016 10:00 23-November-2016 01:00 ramp down
R3 23-January-2015 12:00 24-January-2015 02:00 ramp up
R4 09-March-2016 11:00 10-March-2016 01:00 ramp down
R5 19-May-2016 13:00 19-May-2016 23:00 ramp up
R6 04-February-2016 11:00 04-February-2016 20:00 ramp down
R7 27-May-2015 14:00 27-May-2015 22:00 ramp up
R8 09-May-2015 14:00 10-May-2015 02:00 ramp down
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Figure 8. Weak wind power ramp cases and associated weather patterns: (a) R1 (b) R2 (c) R3 (d) R4,
and (e) a sketch of the weather-pattern transitions for R1 (solid green line), R2 (solid red line), R3
(green dashed line) and R4 (red dashed line). R1–R4 periods are shown in Table 1. The vertical black
dash lines in the (a–d) indicate the detected start and end time of the ramps.

By combining the temporal evolution of each ramp with the change in weather
patterns observed it is possible to gain some insight into the cause of the ramp events. For
example, for R1 (solid green line) and R3 (dashed green line), we can see that the start
of the ramp up events are associated with a transition from weak low-pressure systems
to strong low-pressure systems, i.e., b4 to b5 for R1 and d4 to c5 for R3. These weather
patterns are located near the bottom of the SOM in Figure 4a. In these cases, the ramps are
likely due to the fact that the wind turbine capacity factors increase as the low-pressure
systems become deeper. The ramp down cases, R2 (solid red line) and R4 (dashed red
line) are triggered when the low-pressure systems evolve to high-pressure systems. These
weather patterns transition from the center left of the SOM to the right in these ramp cases.
As a result of these weather-pattern transitions, the normalized wind power production
decreases to almost to zero from near maximum capacity factors.

For the strong ramp cases in Figure 9, the first ramp up event, R5 (solid green line),
occurs due to a transition from a weak low-pressure system (c3) to a strong low-pressure
system accompanied by a southwesterly wind flow (d4). However, the second ramp up
event, R7 (green dashed line), is triggered due to a transition from a weather pattern (a1)
with a high-pressure system in the area of the wind farms transitioning to weak zonal/low
pressure (c3). In this case, the normalized wind power production is close to zero during
weather pattern a1 as the high-pressure system leads to very low wind speeds around
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turbine cut-in. The ramp down case, R6 (solid red line), occurs due to a transition from
weather pattern a1 to the weather pattern d4 characterized by southwesterly wind flow. In
this case, occluded and warm frontal systems contributed to the development of the ramp
as seen in the KNMI synoptic chart (not shown). For the second ramp down event, R8
(red dashed line), a transition is seen from a weak pressure system (d2) to strong blocked
regimes (e3 and f 3).

Figure 9. Strong wind power ramp cases and associated weather patterns: (a) R5 (b) R6 (c) R7 (d) R8,
and (e) a sketch of the weather-pattern transitions for R5 (solid green line), R6 (solid red line), R7
(green dashed line) and R8 (red dashed line). R5–R8 periods are shown in Table 1. The vertical black
dash lines in the (a–d) indicate the detected start and end time of the ramps.

It is worth noting that for the strong ramp events, the transitions seen in the SOM
between weather patterns are larger compared to the weak ramps. This reflects the more
rapid changes in wind speed associated with rapid changes in weather conditions and the
fact that the data are hourly so that intermediate patterns are less likely to be resolved.

In summary, it can be seen that ramp events tend to be associated with a change in
weather pattern. By studying the transition through different weather patterns, the type
and strength of a ramp can be determined. The combination of weather-pattern transitions
with information about frontal activity could enhance this still further. This would require
a more detailed clustering approach using temperature information which is beyond the
scope of this study.
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5. Conclusions

In this study, we demonstrate the application of a SOM to classify weather patterns
over the North Sea. The advantage of the SOM is shown in its ability to classify similar
weather circulation patterns close together in the map allowing a higher-level overview of
the prevailing weather systems.

The relationship between the clustered weather patterns and normalized wind power
production for the Belgian offshore wind farm fleet has been quantified. Wind power pro-
duction shows a maximum capacity factor for those weather patterns that are characterized
by cyclonic (low-pressure) systems, northeasterly and zonal wind flow, whereas a weak
pressure gradient and blocked regimes are the main cause for low-capacity factors.

Finally, we have studied the dependency of wind power ramps on prevailing weather
patterns. In general, wind power ramps occur frequently for the weather patterns that are
characterized by low-pressure systems, northeasterly and zonal wind flow. The type of
weather-pattern transition determines the type of ramp. Eight ramp cases were studied to
better understand the weather-pattern transitions which occurred during these events. It
was seen that the ramp events were commonly associated with a change in weather pattern.
For the four cases examined, ramp up events occurred during the transition from weak
low-pressure systems to deep low-pressure systems. The four ramp down events were
seen to be associated with a transition from low-pressure systems to blocked regimes.

For further work, it is recommended that additional information about the prevalence
of frontal systems be included, for example, using a SOM to cluster spatial patterns in
temperature. In addition, a more comprehensive analysis is required of the weather-
pattern transitions that are seen for many ramp events to provide a deeper insight into the
dependency of wind power ramps for different weather circulation patterns.
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