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Abstract: Induction contour hardening of gear wheels belongs to effective heat treatment technolo-
gies especially recommended for high-tech applications in machinery, automotive and aerospace
industries. In comparison with long term, energy consuming conventional heat treatment (carburiz-
ing and consequent quenching), its main positive features are characterized by high total efficiency,
short duration and relatively low energy consumption. However, modeling of the process is relatively
complicated. The numerical model should contain both multi-physic and non-linear formulation of
the problem. The paper concentrates on the modeling of rapid induction heating being the first stage
of the contour induction hardening process which is the time consuming part of the computations. It
is taken into consideration that critical temperatures and consequently the hardening temperature
are dependent on the velocity of the induction heating. Numerical modeling of coupled non-linear
electromagnetic and temperature fields are shortly presented. Investigations are provided for gear
wheels made of a special quality steel AISI 300M. In order to evaluate the accuracy of the proposed
approach, exemplary computations of the full induction contour hardening process are provided.
The exemplary results are compared with the measurements and a satisfactory accordance between
them is achieved.

Keywords: induction heating; contour hardening; energy efficiency; coupled problems; critical tem-
peratures

1. Introduction

Induction Contour Hardening (ICH) of gear wheels is an innovative technological
process making it possible to obtain a thin hardened zone along the whole working
surface of teeth. The result is a hard microstructure in the contour zone and less-hard
microstructure in the transition zone [1,2]. The microstructure of the internal part of the gear
wheel remains practically unchanged [3]. Such an environment-friendly heat treatment
process is very effective. It is characterized by large productivity and low-specific energy
consumption. It is more effective than a long term, energy consuming conventional heat
treatment process of gear wheels consisting of carburizing and consequent quenching [4,5].
In many high-tech, industrial applications the crucial quality condition is the fully uniform
shape of the hardened contour zone. For the ICH of big gear wheels, such an expected
result could be easily achieved by means of Tooth-by-Tooth Induction Hardening (TTIH)
method [6,7]. However, for small gear wheels such a method cannot be applied, and
it is not so easy to obtain the uniform thickness of the hardened contour zone along
the whole tooth by ICH methods. The paper describes the full hardening process. The
induction heating stage of the ICH process can be realized mostly in one or two cycles.
The one cycle heating process consists of Single Frequency Induction Hardening (SFIH) or,
more often, Simultaneous Dual Frequency Induction Hardening (SDFIH) in the medium
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frequency (MF) and high frequency (HF) electromagnetic fields [8–12]. The two cycles
process consists of MF induction heating first, followed by immediate shifting of the body
between inductors and then finally HF induction heating. The paper deals with this
second kind of the approach, which will be later defined as Consecutive Dual Frequency
Induction Hardening (CDFIH) [13–15]. In general, the CDFIH process consists of five
consecutive stages: MF induction heating, immediate shifting the workpiece between
MF and HF inductors, rapid HF induction heating, immediate shifting the gear wheel to
the sprayer area, and finally the intensive cooling. Due to a short duration of induction
heating, the austenitization process is completely different in comparison with any classical
kinds of hardening [16]. Critical temperatures characterizing transformation of any prior
microstructure to uniform austenite microstructure are dependent on velocity of induction
heating (see Figure 1). In order to determine dependences between critical temperatures
and velocity of induction heating the Time-Temperature-Austenitization (TTA) diagram for
investigated steel is measured [1]. Austenitization begins at the lower critical temperature
Ac1. When the temperature of the material reaches the upper critical temperature Ac3
we obtain the austenite microstructure, but it is non-uniform. A fully uniform austenite
microstructure is finally obtained only at the modified upper critical temperature Acm.
The paper is aimed at modeling the ICH process with a special emphasis put on the
induction heating stage. The main goal is formulated as elaboration of the computation
method making it possible to obtain an accurate prediction of hardness and microstructure
distribution in a hardened element and determination of the shape of the contour zone.
However, the modeling of the process is complicated because of the necessity to analyze
multi-coupled, non-linear physical fields. In order to reduce the duration of computations,
magnetic field quantities are considered in a simplified way as harmonic [7]. However,
in order to achieve the expected accuracy of hardness prediction it is crucial to take into
consideration:

- The dependence of the critical temperatures for the investigated steel on velocity of
induction heating strongly influences upon accurate determination of the hardening
temperature;

- The material properties of the investigated steel as non-linear dependences on the
temperature;

- The dependence of hardness on the velocity of cooling should be elaborated based
upon a set of continuous-cooling-transformation diagrams for the investigated steel
starting at different hardening temperatures.
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In order to obtain uniform austenite microstructure, the average hardening temper-
ature Th in the contour zone should be slightly higher than the modified upper critical
temperature Acm.

Th ≥ Acm(vih) = Acm + ∆T, (1)

where: ∆T = 20–30 K.

2. Mathematical Model of ICH process
2.1. Induction Heating for CDFIH Approach

The mathematical model of the ICH process for electromagnetic computations has
been represented by the non-linear partial differential equation for the magnetic vector
potential A [7]:

curl
(

1
µ
· curl A

)
+ γ

∂A
∂t

= JS, (2)

where: µ—denotes the magnetic permeability, γ—the electric conductivity, JS—vector of
field current density.

The solving of the Equation (2) in the 3D configuration has to be simplified assuming
that the magnetic field quantities are harmonic [18]. The main reason of such a simplifica-
tion is a distinct disproportion between period of field current and time constant of thermal
phenomena. Equation (2) is transformed to the following Equation (3) for phasor of the
magnetic vector potential A:

curl(curl A) + j ·ωγµA = µJS, (3)

where: j denotes the imaginary unity and ω—angular frequency.
The continuous mathematical model of the ICH process for temperature computations

has been represented by the non-linear Fourier–Kirchhoff Equation [19]:

div (λ · gradT)− ρ · cp ·
∂T
∂t

= −pV, (4)

where: λ—thermal conductivity, ρ—specific mass, cp—specific heat at constant pressure, pV—
volumetric power density as external heat source taken from electromagnetic computations.

The block diagram representing mathematical model of induction heating is presented
in Figure 2.
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Input data for electromagnetic computations contain:

- Electric supply parameters: Inductor current or voltage and its frequency;
- Geometry of inductor-gear wheel system;
- Material properties of investigated steel and their dependences on field quantities

(magnetic field intensity H, temperature T);

Average volumetric power density pv consists of two components connected respec-
tively with Joule pJ and hysteresis pH phenomena:

pV = pJ + pH = γ · |E|2 + µ · f · |H|2 (5)

where: E—phasor of electric field density, f —frequency of field current, H—phasor of
magnetic field density.

However, for the analyzed case the hysteresis components are significantly smaller
than the Joule phenomenon one and it could be neglected [20]. Finally volumetric power
density has only one component and it depends on induced current density Jind:

pV = γ · |E|2 =

∣∣∣Jind

∣∣∣2
γ

Jind = −j ·ω · γ ·A, (6)

The magnetic permeability of the investigated steel AISI 300M and other ferromagnetic
parts like magnetic core depends on magnetic field density and temperature. In order to take
into account a non-linear dependence of magnetic permeability on magnetic field intensity,
its local values in each cell of the discretization mesh are determined. Dependence of the
magnetic permeability on temperature is considered by means of ((Equations (7) and (8)):

µ(H, T) = µ0[1 + (µr(H, T0)− 1) · f (T)], (7)

f (T) =

 1− e
T−TC

C for < TC

e
10(TC−T)

C for T≈ TC
, (8)

where: µ0—the magnetic permeability of vacuum, µr—relative magnetic permeability,
T0—ambient temperature, TC—temperature of the Curie point, C—constant dependent on
kind of steel.

For ambient temperature, the magnetic permeability is determined by measurements.
However, a dependence of the magnetic permeability of the investigated steel on the field
current frequency is neglected [20]. The non-linear dependence of the electric conductivity
on temperature is taken into consideration.

Input data for temperature computations contain:

- Distribution of volumetric power density in the heated element;
- Dependence of specific heat, thermal conductivity, convection and radiation heat

transfer coefficients on temperature;
- Time-temperature-austenitization diagram for the investigated steel;
- Expected hardening temperature guaranteeing uniform austenite microstructure.

For temperature field calculations convection and radiation heat transfer phenomena
are considered. The boundary condition along the external surface of the workpiece is
given in the Equation (9):

− λ
∂T
∂n

= αch(T − Tac) + σ0 · ε ·
(

T4 − T4
ar

)
, (9)

where: n denotes outwards normal to the external border of the domain, αch—convection
heat transfer coefficient (heating), Tac, Tar—temperature of convection and radiation envi-
ronment respectively, σ0—Boltzmann constant, ε—total emissivity of radiation surface.
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Analysis of the multiple reflection phenomena required special numerical proce-
dure [21]. For this problem they are neglected. Taking into account non-linear dependences
of material properties and heat transfer parameters on temperature makes possible to avoid
inaccuracy in modeling which could reach an order even of about 100 K [22–24]. As a result
of temperature computations, we obtain temperature as a function of time and velocity
of induction heating. Computations are provided by means of the Flux 3D software for
hard coupled electromagnetic and temperature field during induction heating and some
single-owned procedures elaborated by the authors [25]. For CDFIH process modeling of
induction heating stage consists of three consecutive stages:

- MF heating—time tMF;
- Short break for shifting workpiece between inductors—time tb;
- HF heating—time tHF.

Total time of induction heating:

tih = tMF + tb + tHF, (10)

MF heating terminates when average temperature in contour zone reaches the level of
the lower critical temperature Ac1(vih)

Tav|t= tMF
= TL ≈ Ac1(vih), (11)

Computations of HF induction heating terminate when the average hardening tem-
perature exceeds the modified critical temperature Acm(vih).

Tav|t=tih
= Th ≥ Acm(vih), (12)

2.2. Cooling

Input data for cooling computations contain:

- Geometry of sprayer-gear wheel system;
- Cooling parameters (parameters of cooling medium, its pressure, flow-rate and tem-

perature);
- Initial temperature distribution in the workpiece;
- CCT (Continuous-Cooling-Transformation) diagram for investigated steel;
- Convection heating transfer coefficient for intensive cooling.

Block diagram of numerical model for cooling is presented in Figure 3.
Time of a break between heating and cooling could be neglected because the cooling

practically starts immediately when the HF inductor is switched off. Temperature field
is determined based upon Equation (4) (pV = 0). Radiation is neglected. Convection heat
transfer coefficient for cooling αcc depends on temperature, but in practice it is analyzed in a
simplified way by putting different values on all boundaries of the domain. For the cooling
stage as well the Flux 3D software for temperature field coupled with the modified QT steel
supported by several own numerical procedures for hardness and microstructure fields
are applied [26]. A special numerical procedure making possible to couple directly Flux
3D and QT steel codes is elaborated. Taking into consideration that when the induction
heating is terminated, the non-uniform temperature within the tooth, highest at the surface
and lower inside the material is observed. The velocity of cooling vc is determined based
upon several measured Continuous-Cooling-Transformation (CCT) diagrams starting of
different hardening temperatures Th. For the analyzed problem hardening temperature Th
changes between (850–1050 ◦C). Based upon these diagrams, dependences of the hardness
on the velocity of cooling in different points of tooth are elaborated. Exemplary dependence
of hardness on velocity of cooling for the hardening temperature Th = 960 ◦C is presented
in Figure 4.
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Finally, hardness and microstructure distributions within 1
4 part of the tooth are

determined and a shape of the hardened contour zone is achieved. Computations are
compared with measurements and if a condition of accordance is not satisfied, the next
case with modified parameters is computed.

3. Formulation of the Problem

Let us consider an example of the CDFIH process provided for small gear wheels
made of the special quality steel AISI 300M (AMS 6419) [17]. Its chemical composition is
presented in Table 1.
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Table 1. Chemical composition of alloy additions steel AISI 300M.

Element C Si Mn Cr Ni Mo Fe

Mass, % 0.41 1.63 0.83 0.83 1.91 0.41 95

Its prior microstructure consists of the tempered martensite with some single particles
of tempered bainite. Phenomena connected with reverse transformation from the tempered
martensite to the uniform austenite are described for instance in [27]. Dependence of
modified upper critical temperature for steel AISI 300M is shown in Table 2 (see Figure 1).

Table 2. Dependence of modified upper critical temperature Acm on velocity of induction heating [17].

vih, K/s 0.1 1 10 100 200 500 1000

Acm, ◦C 887 899 924 955 985 1030 1055

Material properties for steel AISI 300M determined by measurements are depicted in
Figures 5–7 respectively.
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Main dimensions and parameters of the inductor gear wheel systems are as follow [28]:

• Gear wheel: teeth number—16, width of the tooth ring—6 mm, top diameter—
35.6 mm, root diameter—26.9 mm, hole diameter—16 mm.

• MF inductor: external diameter—54 mm, internal diameter—39.5 mm, height—7 mm.
• HF inductor: external diameter—61 mm, internal diameter—39.5 mm, height—21 mm,

flux concentrator made of Fluxtrol 50: its external diameter—81.5 mm, its internal
diameter 39 mm, thickness of upper and lower cylinder—5 mm.

• Sprayer: distance between inductor and sprayer—20 mm, external diameter—85 mm,
internal diameter—61 mm.

Several computations are provided in order to make a correct selection of the process
parameters. Due to symmetry and periodicity of the system computations are provided for
1
4 part of tooth only. Based upon these computations following parameters for experiments
of the CDFIH process are finally determined:

• MF induction heating: current—1450 A, heating time—4.4 s, frequency—36 kHz.
• Break between MF and HF heating: —0.1 s.
• HF induction heating: current—520 A, time—0.4 s, frequency—242 kHz.
• Parameters of cooling: quenchant—polymer solution Aqua Quench 140, concentration—

10%, temperature—25 ◦C, pressure—89 kPa, flow-rate—2·10−5 m3/s, convection heat
transfer coefficient at external surface—400 W/(m2·K).

• Heating rate and critical temperatures: velocity of induction heating—205 K/s, modi-
fied upper critical temperature—993 ◦C, hardening temperature—1010 ◦C.

Experiments are provided at the specialized laboratory stand located in the Silesian
University of Technology in Katowice [29]. Configuration of inductors–sprayer–gear wheel
systems is shown in Figure 8.



Energies 2021, 14, 3885 9 of 14

Energies 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

• MF inductor: external diameter—54 mm, internal diameter—39.5 mm, height—7 
mm. 

• HF inductor: external diameter—61 mm, internal diameter—39.5 mm, height—21 
mm, flux concentrator made of Fluxtrol 50: its external diameter—81.5 mm, its inter-
nal diameter 39 mm, thickness of upper and lower cylinder—5 mm. 

• Sprayer: distance between inductor and sprayer—20 mm, external diameter—85 
mm, internal diameter—61 mm. 
Several computations are provided in order to make a correct selection of the process 

parameters. Due to symmetry and periodicity of the system computations are provided 
for ¼ part of tooth only. Based upon these computations following parameters for exper-
iments of the CDFIH process are finally determined: 
• MF induction heating: current—1450 A, heating time—4.4 s, frequency—36 kHz. 
• Break between MF and HF heating: —0.1 s. 
• HF induction heating: current—520 A, time—0.4 s, frequency—242 kHz. 
• Parameters of cooling: quenchant—polymer solution Aqua Quench 140, concentra-

tion—10%, temperature—25 °C, pressure—89 kPa, flow-rate—2.10-5 m3/s, convection 
heat transfer coefficient at external surface—400 W/(m2.K). 

• Heating rate and critical temperatures: velocity of induction heating—205 K/s, mod-
ified upper critical temperature—993 °C, hardening temperature—1010 °C. 
Experiments are provided at the specialized laboratory stand located in the Silesian 

University of Technology in Katowice [29]. Configuration of inductors–sprayer–gear 
wheel systems is shown in Figure 8. 

 
Figure 8. Configuration of the CDFIH system. 

Both inductors have a ring shape. They are water cooled. The HF inductor is 
equipped in the magnetic flux concentrator made of Fluxtrol 50 [30]. 

4. Results and Discussion 
Comparison between computations and measurements is done for hardness distri-

bution along the line A…G at the working surface of the tooth, while point A is located in 

Figure 8. Configuration of the CDFIH system.

Both inductors have a ring shape. They are water cooled. The HF inductor is equipped
in the magnetic flux concentrator made of Fluxtrol 50 [30].

4. Results and Discussion

Comparison between computations and measurements is done for hardness distribu-
tion along the line A . . . G at the working surface of the tooth, while point A is located in the
root and point G in the top of the tooth (see Figures 9 and 10). Measurements of hardness
distribution on the cross-section of studied gear wheels are carried out by Vickers method
at load 5N (HV0,5) using microhardness tester Future-Tech FM 700 [31]. Microstructure
observations are provided at micro-sections taken from slices of gear wheels by means of
microscope Olympus type GX51.
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The difference between computations and measurements reaches a level of 20 HV. It
is almost the same difference along the whole line A . . . G. For both computations and
measurements the difference between hardness at point A (root) and point G (top) is about
20 HV. Such accuracy matches practical requirements. However, another, but more serious
problem is the shape of the contour hardened zone. For many advanced applications there
is a request for the shape of contour pattern which should be as uniform as possible.

Let us define the Surface Depth Hardening coefficient (SDH) describing a thickness of
the contour layer defined as a distance from the surface inside the material to a point in which
the hardness decreases to the value of 80% of hardness on the surface. The dependence of
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and D (middle part of the tooth body) are presented in Figures 11–13 respectively.
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For point G at top SDH = 1.8 mm and thickness of the hardened zone is the biggest.
A minimal value of the SDH coefficient is noticed in point A at the root (SDH = 0.5 mm).
Distribution of the SDH coefficient along the line A . . . G is presented in Figure 14.
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The obtained SDH coefficient changes from 1.8 mm at the top of the tooth to 0.5 mm
at the root. It means a reasonable (less than 5%) difference between computations and
measurements. Microstructure of the contour zone creates acicular martensite with some
single particles of bainite (Figure 15).
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Inside the material, if a distance from the surface is higher than 4 mm the hardness
decreases to the value of 320 HV which means that, as expected, the prior microstructure
of tempered martensite in the core of the gear wheel is unchanged. Results presented and
described in the paper confirm that the proposed method makes it possible to achieve the
expected accuracy of hardness prediction. The presented calculation method makes it possible
to achieve reasonable accordance between computations and measurements. Another problem
is the shape of the contour zone. For its description, the SDH coefficient is used. The calculated
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non-uniform shape of the contour zone is validated by the measurements. In order to achieve
a more uniform shape of the contour hardened zone it is necessary to decrease heating time
and increase the delivered power. Another solution is to apply the SDFIH process, and in this
case short heating duration and large delivery of power are expected.

5. Conclusions

The CDFIH process described in the paper is successfully applied for the energy-
efficient contour hardening of gear wheels. The proposed mathematical model could be
the effective tool for the design of such processes. It makes it possible to predict hardness
and microstructure distributions with a reasonable accuracy of about 20 HV. In order to
minimize the computation time, magnetic field quantities are considered in a simplified
way as harmonic. The model should contain additional numerical procedures based upon
specialized measurements for the investigated steel (TTA and CCT diagrams), making it
possible to determine hardening temperature as a function of velocity of induction heating
and hardness as a function of velocity of cooling and hardening temperature. The next
paper in this area will be aimed at improvement of the described process in order to obtain
the uniform shape of the contour zone.
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