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Abstract: In the resilient and reliable electrical power system, the condition of high voltage insulation
plays a crucial role. In the field of high voltage insulation integrity, the partial discharge (PD)
inception and development trends are essential for assessment criteria in diagnostics systems. The
observed trend to employ more and more sophisticated algorithms with machine learning features
and artificial intelligence (AI) elements is observed everywhere. The classification and identification
of features in PD images is perceived as a critical requirement for an effective high voltage insulation
diagnosis. In this context, techniques allowing for anomaly detection, trends observation, and feature
extraction in partial discharge patterns are important. In this paper, the application of few algorithms
belonging to image processing, machine learning and optical flow is presented. The feature extraction
refers to image segmentation and detection of coherent forms in the images. The anomaly detection
algorithms can trigger early detection of the trend changes or the appearance of a new discharge
form, and hence are suitable for PD monitoring applications. Anomaly detection can also handle
transients and disturbances that appear in the PD image as an indication of an abnormal state. The
future monitoring systems should be equipped with trend evolution algorithms. In this context, two
examples of insulation aging and application of PD-based monitoring are shown. The first one refers
to deep convolutional neural networks used for classification of deterioration stages in high voltage
insulation. The latter one demonstrates application of optical flow approach for motion detection
in partial discharge images. The motivation for the research was the strive to machine-controlled
pattern analysis, leading towards intelligent PD-based diagnostics.

Keywords: partial discharges; phase-resolved patterns; high voltage insulation systems; diagnostics;
machine learning; deep learning; convolutional neural network; optical flow; image processing

1. Introduction

In the resilient and reliable electrical power system, the condition of high voltage
(HV) insulation plays a crucial role. This refers to various objects in power grids and the
types of insulating medium, i.e., gaseous, solid, and liquid dielectrics. The architecture
of a complex asset management system is based usually on past, historical data, lifetime
models, as well as on the monitoring data obtained from real-time connectivity. The
observed trend to employ more and more sophisticated algorithms with machine learning
features and artificial intelligence (AI) elements is observed everywhere. The reasoning
foundation will rely mostly on several weighted key indicators reflecting the condition of
analyzed objects and systems. In the field of high voltage insulation integrity, the partial
discharge (PD) inception and development trends are essential for the assessment criteria
in diagnostics systems. Partial discharges refer to the phenomena where there is no direct
insulation breakdown, but rather gradual degradation of the electrical insulation. However,
prolonged time of PD exposure has impact on electric power equipment lifetime, due to
deteriorations in tiny voids, development of treeing channels in solid insulation, or surface
erosion effects at the solid-gas interfaces. PD-based diagnostics of power equipment
has a long history, e.g., [1–20], and is prone to scientific enhancements. The statistical
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character of partial discharges has been already recognized in 1970s of last century and
was extensively studied over next 20 years e.g., [1,2]. The application of machine learning,
especially neural networks in this field, was observed in the early 1990s, e.g., [3–14], which
is when the first automated analyzers and expert systems with AI elements were designed,
e.g., [7–9,13,15–19]. Therefore, one can observe a continuous strive for advancements in
evaluation methods, instrumentation, methodologies, and algorithms of future diagnostics
and monitoring systems of HV insulation of power equipment [21–40]. Over the last
decade, strong attention in pattern recognition was paid on deep neural networks as a
technique presenting high performance, e.g., [22,25–27,33–36], not only with respect to PD
images but also for waveform analysis, e.g., [11,32]. Nowadays, state-of-the-art in partial
discharge acquisition are phase-resolved PD (PRPD) patterns, which can be interpreted
also as images. The classification and identification of features in PD images is perceived as
a crucial requirement for a high-performance insulation diagnosis. Since PRPD images are
susceptible to the high voltages harmonics, particular notice is needed in the classification
and interpretation stages [41]. The partial discharge pattern evolution methods are applied
to almost all high voltage devices such as transformers, bushings, cables, GIS, insulators,
generators, motors, and accessories [6,27,28,30,33]. In this context, techniques allowing
for anomaly detection, trends observation, and feature extraction in partial discharge
patterns are important. In this paper, application of a few algorithms belonging to image
processing, machine learning, and optical flow are presented. Optical flow is recognized as
an emerging approach in motion analysis, successfully applied in many sectors, such as
medical imaging, surveillance, human-machine interactions, e.g., [42–46]. Among neural
networks, convolutional neural networks (CNN), are predominantly being used in various
fields, from medical, finance, biotech, to engineering. The presented various approaches of
trend evolution and anomaly detection in PD images might be directly applied in electrical
insulation diagnostics systems of power equipment.

2. Partial Discharge Based Diagnostics

Diagnostic methodologies that are comprised of sets of measuring methods and sys-
tems used to assess the condition of objects as well as the possibilities of their further
operation are of fundamental importance in the strategies of operating electrical devices,
both in power grid and industrial applications. With regard to high-voltage electrical power
equipment, diagnostic investigations mainly concern the insulation systems, which are
the main structural elements of these devices. Unavoidable operational exposures (which
include the electric field in high-voltage insulation systems, thermal, mechanical, and
chemical stresses) are the causes of partial discharges, which initiate degradation processes
in the dielectric structures. Partial discharges in high-voltage electrical devices are the main
threats to their failure-free operation and apply to all groups of such devices. The lifetime
and endurance of electrical high-voltage insulation is determined by its integrity and is
expressed by the presence of partial discharges; these are the phenomena occurring in the
internal structure of dielectrics or on their surfaces that lead to gradual degradations and,
ultimately, breakdowns. New diagnostic challenges have resulted from the great progress
in digital signal and image processing, advanced techniques such as machine learning, AI,
smart sensors, and communication as well as the application of new materials in insulating
systems (e.g., synthetic polymers, functional dielectrics, or nanocomposites). Modern
diagnostics deals with a complementary set of techniques and methodologies that are
object- and application-tailored, e.g., [25–31,33,39]. The non-invasive and non-destructive
character of the PD-based diagnostic methods make it especially attractive for diagnos-
tics and monitoring purposes. The phase-resolved partial discharge analysis (PRPDA)
is established nowadays as the most accepted tool in the field of PD-based diagnostics
of HV electrical insulation [2]. This method is based on acquisition of individual partial
discharge signals with reference to the phase position of the applied high voltage. The
measuring approach is based on combined two-dimensional multi-channel analyzers and
is highlighted in Figure 1 along with an exemplary PD monitoring sequence. Since real PD
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physical phenomena reveal the statistical nature, a method based on phase-resolved partial
discharge images is particularly helpful. For example, phase position of an individual PD
within the high voltage AC period delivers complementary information, which enables
for partial discharge form recognition, separation, and classification in a phase-resolved
domain. The recorded partial discharge patterns, associated with various stages of dis-
charge evolutions, may be regarded as images [2,12–14,38]. Among the tailored and object
specific diagnostics algorithms, there are also generalized methodologies, common for
all approaches, and especially attractive for future autonomous diagnostics systems. The
common methods, presented in this paper, refer to anomaly detection, trend evolution, and
feature extraction in partial discharge patterns.

Figure 1. Visualization of partial discharge phase-resolved methodology along with exemplary
monitoring sequence.

3. Detection Techniques of PD Pattern Motion and Feature Extraction

The effective PD-based diagnostic and monitoring systems require detection tech-
niques for partial discharge pattern analysis. The high voltage insulation degradation is
revealed in the evolution of PD patterns acquired in time periods. Apart from PD pat-
tern evolution, the image may contain superimposed transient disturbances or effects of
harmonic modulation. Such diagnostic systems usually operating on phase-resolved PD
images should detect anomalies in PD patterns, identify critical moments in the trend evo-
lution, and provide feature extraction mechanisms, as graphically highlighted in Figure 2.
Presented in that figure, three classes are associated with the corresponding methodologies
analyzed in the paper. The feature extraction approach is based on the use of various image
processing techniques for the separation of characteristic elements in the image according
to certain criteria. The example described in this paper refers to image segmentation using
K-means and detection of coherent forms in the images.

The anomaly detection algorithms can trigger the early detection of the trend changes
or the appearance of a new discharge form, and hence are suitable for PD monitoring
applications. This class is represented by One Class SVM and Local Outlier Factor. Anomaly
detection can also handle transients and disturbances that appear in the PD image as an
indication of an abnormal state. Transients may reveal various forms, such as one-shot
propagating switching over-voltages, more seldom lightning ones, but also continuous
ones such as external corona. Another class of disturbances is related to power electronic
equipment and for example transients propagating from converter switching, which are
usually coherent with recorder phase-resolved pattern. Attention should be also paid
to the influence of harmonics, which may modulate the PD pattern and significantly
influence the origin of partial discharges in the acquired PD image. The main problem
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in PD measurements is related to proper identification between real partial discharge
impulse and external transients or disturbances. The big improvement in that field was the
introduction of the phase-resolved acquisition, which allowed for separation of discharges
along the phase angle of high voltage. In this way, PD having even smaller magnitude than
repetitive impulse disturbances or external corona, can be separated on the PRPD plane.
Another problem occurs with power electronics equipment and semi square HV stimuli.
In this case, the high voltage spectrum usually overlaps with the PD spectrum and cannot
be easily filtered out, as in case of sinusoidal excitation. Thus, the detection is performed
often in an ultra-high frequency band using antennas.

Figure 2. Partial discharge image processing and machine learning techniques for diagnostics and
monitoring analyzed in the paper in the following classes: feature extraction, anomaly detection, and
trend evolution.

The future monitoring systems should be equipped with trend evolution algorithms.
In this context, two examples of insulation aging and application of PD-based monitoring
are shown. The first one refers to the deep convolutional neural networks used for classi-
fication of deterioration stages in HV insulation specimen. The latter one demonstrates
application of the optical flow approach for motion detection in partial discharge images. In
this method, the sequence of PD images is (treated as a video frames) exposed to on-the-fly
scanning, and notification in case of deviations in subsequent images is provided.

4. Feature Extraction in PD Images

A key element of artificial intelligence is its automatic feature extraction and segmen-
tation of images. This also refers to partial discharge patterns used for diagnostics and
monitoring applications. One of the new directions of PD image processing (described in
the following part) might be related to the motion estimation of PD image development.
This aspect could be interesting in applications such as PD monitoring, where the trends
and rates of cluster changes could be observed and assessed instead of the absolute dis-
charge magnitude. In this aspect, low-level segmentation methods are of special interest;
e.g., intensity thresholding, edge detection, region growing, morphological operators, or
more-advanced syntactic methods of pattern recognition [47,48]. Since partial discharge
images can be associated with different forms depending on the physical mechanisms as
well as the different objects that are usually manifested in various high-voltage insulating
materials, the feature extraction, clustering, and segmentation methods have an underlying
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importance. A commonly used clustering algorithm is called K-means, where K refers to
the specified number of clusters. A cluster refers to a collection of data points that are
aggregated together due to certain similarities. For image segmentation, the clusters indi-
cate different image colors. This approach belongs to the unsupervised machine-learning
category, without providing data labels and expecting the machine to derive the cluster
structure from the data on its own. This is also called flat clustering, where the machine
receives information on how many categories into which to cluster the data, in contrast to
hierarchical clustering, where the machine is allowed to decide how many clusters to create
based on its own algorithms. The K-means algorithm starts with the selection of K random
prototype points and assigns the data points to the closest centroid. In the following steps,
the distances in the clusters are measured and updated until convergence; i.e., finding
the least variance in the groups by minimizing an optimization function according to a
certain criterion. The updated centroid location is obtained by calculating the center of
gravity inside the temporary cluster. Formally, the algorithm aims to minimize an objective
function in the form of a squared error function OKM of a distance between a data point xj

i
and the cluster center cj containing L data points in one of the K clusters.

OKM = ∑K
j=1∑

L
i=1||x

j
i − cj||2. (1)

The partial discharge phase-resolved images reflect the physical phenomena of the
discharges gathered during a certain acquisition time period on a statistical domain. The
magnitude of the discharge pulse is essentially determined by the breakdown voltage of
the cavity and phase position with respect to the high-voltage waveform. This mechanism
might be influenced by the statistical time lag (defined as the time of the appearance of
the initiating electron), which changes the breakdown voltage inception level and, thus,
the pulse magnitude and phase position. In order to assess the PD pattern, intelligent
autonomous PD expert systems need to determine the number of clusters in a PRPD plain
at the first instance. The idea of this approach is to identify autonomously the best number
of K means. In this way, the system is performing certain representations of clusters and
fitting to the possible partial discharge scenarios of patterns. Such scenarios may be related
to the systematic growth, identification of disturbances, or appearance of another PD
form. The presented results were coded in Python with the OpenCV image processing
framework [33]. The K-means-based clustering examples of PD images obtained in various
insulating systems are shown in Figures 3–6. The first example refers to partial discharges
recorded in medium-voltage electrical machine insulation (Figure 3a), where characteristic
groups of discharges from the positive and negative sinusoidal voltage periods were
extracted into K = 2 and K = 4 sub-clusters (respectively, as illustrated in Figure 3b,c).

Figure 3. Clustering of partial discharge image (a) recorded in medium-voltage electrical machine insulation. Characteristic
groups of discharges from positive and negative sinusoidal voltage periods extracted into K = 2 (b) and K = 4 (c) sub-clusters.
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Figure 4. K-means-based clustering of PD image with two discharge groups per phase: (a) original image; (b) K = 2;
(c) K = 4.

Figure 5. Extraction of four clusters in PD corona image: (a) PRPD image; (b) K-means clustered
image.

The color palette in the PD image reflects the intensity of the discharges in certain
phase slots of a high-voltage period. The PD image shown in Figure 4a reflects the stage
where two distinguishable groups per phase can be identified. In a first approximation for
K = 2, two PD groups from the positive and negative voltage periods are automatically
clustered properly (Figure 4b) along with the impulse overshoots in each phase, forming
the opposite tiny clusters. In the case of K = 4, each of the previously extracted clusters is
subdivided according to its intensity (Figure 4c).

The PD image presented in Figure 5a corresponds to the corona effect reflecting the
discharges in air at a high electric field (usually around the sharp edges). The corona
starts during the negative half-period, which has been identified in the clustered image
in Figure 5b. Three elements in this negative discharge group have been extracted: one
depicting the nucleus of the corona (marked in the aquamarine color), followed by the
dark-green group corresponding to the tail, and the third (highlighted in olive) indicating
the discharges with small magnitudes.

The high-voltage electrical equipment is in real transmission or distribution networks
exposed to various disturbances. One of the typical examples is the presence of harmonics
at a high voltage [42]. The distorted voltage waveform has a crucial impact on the PD phase-
resolved images, introducing an additional modulation effect (as shown in Figure 6) [33].
The segmentation of a PD image containing the 3rd and 5th harmonics at a 50-Hz high volt-
age (Figure 6a) by the K-means-based extraction of four clusters is illustrated in Figure 6b.
Introducing higher harmonics such as the 11th (Figure 6c) has introduced sharp PD image
modulation. The six clusters extracted by the K-means algorithm (Figure 6d) reflect the
separate PD groups, also taking the discharge intensity into account. In this way, the
low-intensity sub-clusters marked in aquamarine and black are identified and classified
into a separate group.
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Figure 6. Segmentation of PD image containing higher harmonics: (a) 3rd and 5th harmonics at
50-Hz high voltage; (b) K-means-based extraction of four clusters; (c) modulation of PD image by the
11th harmonic; (d) extraction of six clusters.

Another example of partial discharge image clustering is presented in the patterns
obtained from discharges recorded in HV cables in an industrial environment that contains
elevated levels of noise and disturbances (Figure 7a) [33]. In this case, the low-level
discrimination has been increased during acquisition to eliminate most of pulses, non-
coherent with HV excitation. The remaining elements stretch across the entire pattern. Due
to high amplification factor the strong overshoot pulses are also present in the pattern. The
sequence of clusters extracted by the K-means image segmentation process is shown in
Figure 7b–d for a K equal to 2, 3, and 4, respectively. The background was treated as a
separate class in this case.

The four-class segmentation (Figure 7d) reflects the original PD image well (Figure 7a),
whereas the regions are identified and can be individually highlighted or masked in the
segmented case. Such an effect is shown in Figure 7e,f, where only one cluster is selectively
highlighted in pink (i.e., in the first case, Cluster 2, and in the latter one, Cluster 3). The
automatic segmentation with selective filtering of subclasses is a useful feature, both for
experts operating manually on the PD pattern and for future autonomous systems. In this
way, assessment and interpretation can be focused on certain sub-elements of the whole
pattern.

The following example presents the case of PD acquisition in HVDC containing a
superimposed 50 Hz AC harmonic. In the classic partial discharge acquisition with DC
voltage, the time mode is usually applied, as there is no phase voltage angle present
anymore [49].
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Figure 7. Segmentation of image containing discharges in HV cable insulation by K-means clustering
(a): K = 2 (b), K = 3 (c), K = 4 (d). Selective highlighting (pink) of only Cluster 2 (e) and Cluster 3 (f).

The case with the superimposed harmonic with the dominated DC voltage allows
for the synchronization with the AC harmonic component and acquisition in the semi-AC
mode (Figure 8a). The segmentation into four clusters using K-means and highlighting
Cluster 2 is shown in Figure 8b. This cluster (marked in pink) corresponds to the inception
of the discharges coming from the AC component superimposed on the HVDC.
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Figure 8. Extraction of PD inception component from PD image: (a) related to AC harmonic. inception; (b) present in
HVDC configuration with dominant DC voltage (pink).

The PD image presented in Figure 9a was recorded during the PD imaging experiment
with the simultaneous observation of streamer channel development in air in the needle-
plain configuration. The pattern contains the main spot originating at the maximum of the
applied voltage with a long vertical tail that has a gradually decreasing intensity. The goal
was to automatically extract the PD hot spots (the main cluster highlighted in pink) using
K-means with four clusters (as shown in Figure 9b).
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5. Anomaly Detection in PD Patterns

Anomalies are data patterns that have data characteristics that are different than those
from normal instances. Anomaly detection is a useful operation in autonomous partial
discharge diagnostics systems. Nowadays, such systems operate mostly on 2D PD datasets
in the form of images. Partial discharge images contain a statistical distribution of dis-
charges recorded synchronously with the applied voltage having a sinusoidal, semi-square,
or other waveform. The phase-resolved acquisition within a certain time period results in
the probabilistic intensity patterns that are characteristic for different forms of discharges
in various HV electrical insulating systems. These images may additionally contain the
superposition of distinctive discharge forms as well as disturbances or noise signatures.
In this way, an anomaly-detection algorithm coping with multimodal data is able to dis-
tinguish high-density regions and potential outliers. On the one hand, anomaly detection
can handle noise and disturbances that appear in the PD image; on the other hand, it can
provide early detection of the trend changes in monitoring applications or the appearance
of a new discharge form related to the underlying physical phenomena in HV insulating
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systems. In the unsupervised mode, selecting the best-performing algorithm might be a
challenge in the absence of labeled data. In this context, the presented comparison of the
anomaly-detection approaches provides application hints. The presented examples were
programmed in the Python environment with the Sklearn framework [50]. The following
algorithms were tested on the PD images:

– OneClassSVM—a variant of the SVM (support-vector machines) method especially
tuned for the so-called novelty detection. The main modification done by [51] re-
stricted the classification to one class, yielding an algorithm that was focused on
anomaly detection. It learns the boundaries of the points in the class and, therefore,
can classify any points that lie outside the boundary as outliers. The radial basis
function (RBF) kernel (popular in machine learning) was applied. The RBF kernel is
defined as follows on two samples (x and x′) that are represented as feature vectors:

RBF
(
x, x′

)
= exp

(
−||x− x′||

2σ2

2
)

, (2)

where the metric is a squared Euclidian distance between two feature vectors, and σ

is a parameter. Setting of parameter σ influences the selectivity of the boundaries.
– IsolationForest—this algorithm is built on the basis of decision trees and assumes

that outliers are spaced further away from the regular observations [52].
– LocalOutlierFactor—the anomaly score of each sample in a data set. This measures

the local density deviation of a data set with respect to its neighbors. Thus, it highlights
isolated objects with respect to the surrounding neighborhood. The metrics are defined
by the k-nearest neighbors, whose distance is used to estimate the local density. By
comparing the local density of a sample to the local densities of its neighbors, one can
identify samples that have a substantially lower density than their neighbors. In this
way, the outliers are extracted and classified as anomalies.

The anomaly-detection algorithms were tested on five different classes of PD images
(shown in the left column of Figure 10) representing different forms:

– PD in gas-filled instrument transformer (top row in Figure 10);
– PD in MV cable insulation;
– corona discharges;
– discharges in electrical machine insulation;
– PD pattern modulated by 11th harmonic.

The decision boundaries between the inliers and outliers are displayed in the plots in
Figure 10 (in black for the first two methods that have built-in prediction).

The comparison shown in Figure 10 demonstrated the isolation of individual pulses or
low-density PD populations as outliers. The Isolation Forest approach has rather clustered
whole regions or segments in the PD image, whereas OneClassSVM creates boundaries
more selectively around the individual pulses for kernel parameter σ2 = 0.1 and less
selectively for σ1 = 0.001. Local Outlier Factor classifies the individual pulses and low-
density envelopes of the characteristic PD groups as outliers. The presented approach
might be very useful in identifying non-coherent noise and disturbances as anomalies in a
PD pattern in future autonomous PD expert systems.
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Figure 10. Anomaly detection in PD images applying three algorithms: OneClassSVM (for kernel parameters of σ1 = 0.001
and σ2 = 0.1), Isolation Forest, and Local Outlier Factor.

6. Trend Evolution in PD Patterns

One of the key elements of modern diagnostics is determination of the trend evolution.
This aspect is highlighted in the high voltage insulation diagnostics based on PD patterns.
Strategically important devices in the electrical grid system, such as power transformers,
gas insulated substations, switchgears, etc., are gradually more and more equipped with
monitoring systems. The digital transformation of the grid elements is driving a ubiquitous
Internet-of-Things (IoT) connectivity. However, the monitoring platforms, apart from the
big data collections, require decision-oriented reasoning. The foundation of this process
is related to trend observation and determination of the evolution phases. In this paper,
two examples of trend evolution in PD images are presented. The first one refers to the
application of deep convolutional neural networks, whereas the latter refers to optical flow
algorithms.

6.1. Application of Deep Convolutional Neural Networks

Artificial neural networks (ANN) are perceived nowadays to be among the best classi-
fication techniques. Especially disruption offered by deep convolutional neural networks
(CNN) in image processing is observed in many engineering applications. The novelty in
CNN architecture refers to reduced interconnections in interlayers due to introduction of
convolutional layer. The fully connected layers are replaced in this section by transforma-
tion of input image I convolved with a light kernel M, called filter, into output image O, as
stated by the equation:

O(i, j, k) = ∑L
l=1∑

N
n=1∑

M
m=1Mk(m, n, l)I(i−m, j− n, l). (3)

where: L—denotes number of filters; l—filter index; M, N—size of filter.
The coefficients of a filter Mk are determined during backpropagation training process.
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As an example, a monitoring sequence of PD patterns was analyzed by CNN. The
test specimen was subjected to a high electric field undergoing insulation aging and
deterioration. Simultaneously, the PD images were recorded in a long time-stamped
sequence. The details about the experiment and setting of the CNN are presented in [36].
The four characteristic classes of the HV insulation aging were associated with the stages
of the insulation deterioration, and were denoted as Stage 1, Stage 2, and Stage 3. These
stages may reflect for example the normal, warning, and alarm conditions. In addition,
the 4th class represents the possible disturbances, which may occur during PD acquisition.
The graphical representation of distinctive classes is shown in Figure 11.

Figure 11. Example of PD monitoring sequence and distinctive patterns reflecting stages. of electrical insulation condition.

The convolutional neural network topology applied to PD patterns in monitoring
application is shown in Figure 12. In the presented example, the CNN may contain
up to 6 convolutional Conv2D and MaxPooling layers, which are followed by up to 5
fully connected (FC) hidden layers, each having from 128 to 1024 sigmoidal nodes. The
dimension of an output layer contains a number of outputs that is equal to the number of
subclasses of PD pattern. The PD images had a format 128 × 128 × 3 and applied kernel
filter had a size 5 × 5 pixels. The size of convolution kernels M was selected in a range
from 32 to 128 [36].

Figure 12. Convolutional neural network topology applied to PD patterns in monitoring application [36].

In the presented example, the recorded data block of PD images was subdivided
in 3 groups, as training, validation, and test sets. The first group is used for adjusting
the weights in a backpropagation process. The validation data set is used for tuning the
parameters, whereas the test group is used to validate the efficiency of the entire network.
The recognition score may be visualized as an array, with the rows corresponding to the
separable classes and columns reflecting the size of the test sets. The exemplary colored
score array displaying recognition probability after 50 epochs is shown in Figure 13.
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Figure 13. Recognition score array in PD monitoring example after 50 epochs using convolutional.
neural network. According to the notation rows relate to the number of classes and columns to the
number of test sets.

Popular network performance measure is defined as accuracy A; reflecting the correct
fraction of network predictions:

A =
TP + TN

TP + TN + FP + FN
, (4)

where TP—true positives; TN—true negatives; FP—false positives; FN—false negatives.
In Equation (4), true positive (TP) and true negative (TN) are denoted as the number

of correctly classified images. False positive (FP) and false negative (FN) are reflecting the
number of misclassified patterns. The classification performance of CNN, with respect to
various hyperparameters and topology, in PD aging test is shown in Table 1. The results
refer to the exemplary PD pattern belonging to class ‘Stage 3′ in the form of accuracy A of
the proper assignment to the actual class.

Table 1. Comparison of PD pattern classification performance by CNN in monitoring aging test.

Conv2D Conv Kernel FC NN A [%]
64-Mp-128-Mp 5×5-5×5 1024-1024-512-4 99.14
16-Mp-32-Mp 5×5-5×5 1024-512-4 68.54
64-Mp-128-Mp 5×5-5×5 1024-4 95.23
64-Mp-128-Mp 5×5-5×5 1024-512-4 99.21

64-Mp-128-Mp-256-Mp 5×5-5×5-5×5 1024-5 98.28
64-Mp-128-Mp-256-Mp 5×5-5×5-5×5 1024-512-5 99.65

64-Mp-128-Mp-256-Mp-512-Mp 5×5-5×5-5×5-5×5 1024-5 99.67
32-Mp-32-Mp 5×5-5×5 1024-5 71.55

A—accuracy; Mp—MaxPooling layer; FC—fully connected neural network layers.

Comparison of 2D convolution topologies along with various stages of FC fully
connected neural network layers reveals accuracy variations (Table 1). A consequence of
lower number of kernel filters (16–32) is downgrading of the accuracy. In a topology of FC
section of neural network, up to four FC layers were tested (1024-1024-512-4). An interplay
between the numbers of convolutional layers and fully connected layers was noticed. The
PD monitoring example presented in this chapter has highlighted the application of CNN
for trend evolution observation and assessment.

6.2. Optical Flow Based Motion Detection in PD Images

The evolution of static PD pattern during power equipment exploitation can be at-
tributed to motion in PD images. In this way, trend evolution of the partial discharge
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activity can be traced for diagnostic purposes. A novel approach in image processing
suitable for this operation is an optical flow [42–46], which is broadly tested for movement
detection and traction in people movement, autonomous cars, robotics, and medicine.
The optical flow methodology offers spatio-temporal identification of trend and course
evolution in partial discharge images. Such a feature is highly attractive both for manually
operated domain experts and for intelligent machine learning frameworks. Since optical
flow has been successfully applied to the video frames, the proposed approach for PD anal-
ysis opens new perspective with on-the-fly tracking and notification for future autonomous
monitoring systems. The optical flow method operates on the brightness elements and
derives a vector of motion, which reflects both the temporal and spatial image gradients
of a train of subsequent frames. The foundation of the approach originates from video
processing [53,54]:

• the intensities of pixels do not change significantly between consecutive images;
• the time elapsed between frames is short enough in order to use differentials to denote

motion change;
• adjacent pixels represent comparable motion.

It is important to notice, that for partial discharge images, the meaning of time is rather
different than in the case of pure video streaming. The temporal aspect in PD analysis refers
to collection of diagnostic images or successive images from monitoring trend observations.
The optical flow methodology applied to PD images is graphically presented in Figure 14.

Figure 14. Visualization of PD pattern evolution in a form of motion and expansion along phase and
charge axes: (a) image at time t; (b) image at time t + ∆t.

The graphical evolution of a PD image I(x, y, t) is shown in Figure 14, where elements
of the pattern undergo expansion (Figure 14a) along the phase axis between time moments
t and t + ∆t, as well as simultaneous motion and expansion along both the phase and charge
axes (Figure 14b). The presented example is based on the Lucas-Kanade (LK) approach [46]:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t), (5)

where I(x, y, t) represents the intensity of pixel (x, y) at time t, ∆t is a time interval, ∆x is the
x-direction displacement distance, ∆y is the y-direction displacement distance.

After transformations, the optical flow equation has following form:

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t

= 0. (6)
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Denoting vx = dx
dt and vy = dy

dt as vector directional components of optical flow, the
above equation can be rewritten:

Ixvx + Iyvy = −It , (7)

where Ix, Iy indicate gradient of an image, in the x and y directions, and It is a gradient
along time.

In this notation, flow vector k = [vx, vy] is pointing towards the direction where pixel (x,
y) is moving. The methodology based on the Lucas-Kanade approach has been coded in the
OpenCV framework. It provides solution of the above equation. In the basic form, the LK-
tracking algorithm based on a sparse optical flow is tracing distinctive points such as the
corners [43]. Sparse optical flow provides the flow vectors of some “characteristic features”
(e.g., pixels representing the corners or edges of an object), unlike dense optical flow, which
yields the flow vectors of the entire image for all pixels. Thus, motion detection is based
on two steps, first, the distinctive points are marked, and then the tracking approach is
used for this set of elements. The identification of characteristic points is performed by the
Shi–Tomasi algorithm implemented in the OpenCV framework. In the following step, the
Lucas–Kanade optical flow approach is applied to interactively track the movement of these
points between subsequent images. In the PD-based diagnostics, the sequence of patterns
may be acquired from cyclic inspections accomplished in time intervals or in the case of
monitoring from PD image streaming according to the time stamps. In the pre-processing
stage, the thresholding operation can be applied to eliminate the background noise or the
irrelevant structures in the PD image [46]. The presented motion detection example relates
to the chain of partial discharge images acquired in an aging monitoring experiment of
dry-band arcing appearing on a cable insulation surface exposed to a rainfall. Initially
discharges are triggered on the droplet surfaces subjected to high voltage (Figure 15a). In
the following phases, a stronger corona and surface discharge are progressing (Figure 15b).
Due to a fall intensification a dry-band arcing occurs and strong surface discharges are
observed (Figure 15c). In these images, the dots mark the distinguished corner points,
reflecting significant transitions in the pattern composition. The lines depict the vectors
of motion, showing a directional vector between subsequent frames and indicating the
pattern growth’s directions. In this way, dry-band arcing monitoring reveals a trend of
partial discharge intensity.

Figure 15. Detection of motion in partial discharge images in monitoring observations: (a) discharges on droplet surface at
the initial phase; (b) more-intensive corona and surface discharges; (c) superimposed dry-band arcing and strong surface
discharges.

It should be underlined that the meaning of frames in optical flow applied to PD
diagnostics is different comparing to the conventional interpretation known in video se-
quences and streams. In the presented method, the PD have been recorded in a form of
phase-resolved patterns within a certain time, forming a sequence of PD images. What is
crucial here is the perception of time elapsed between the partial discharge image frames,
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which may vary from a few orders of magnitude depending on the insulation of power
equipment, electrical stress, environmental conditions, discharge physics, etc. It can ex-
tend from fraction of seconds, throughout hours up to weeks or months in cases of very
slow degradation processes. The speed of image acquisition might also be adaptively
tuned, depending on the analyzed rate of phenomena development. However, the pre-
sented methodology is generic and can be applied to trend evolution assessment in many
applications.

7. Conclusions

Diagnostic methodologies are of fundamental importance in the strategies of operat-
ing electrical devices, both in power grid and industrial applications. This paper reports
the application of various image processing techniques to partial discharge images, with a
special focus on anomaly detection, trend evolution, and feature extraction. The analyzed
images have a form of phase-resolved PD patterns. In each of the above-mentioned classes,
dedicated image processing algorithms were applied. Segmentation techniques were ap-
plied for feature extraction, anomaly detection is focused on outliers identification, whereas
for trend evolution convolutional neural networks and optical flow were used. Application
of presented methods in the partial discharge field might depend on whether the case
concerns monitoring or a diagnostics session. For example, the OneClass SVM depending
on sigma setting allows for quite precise detection of incremental growth of the image
and is thus accurate for monitoring case. Whereas in the case of Insulation Forest global
boundaries are denoted, and it might indicate more coarse changes, for example related to
the appearance of additional forms of discharges or certain disturbances. The classification
and identification of features in PD images is perceived as a crucial requirement for an
efficient diagnosis of high voltage insulation. The future monitoring systems should be
equipped with trend evolution algorithms. The presented examples referred to the intrinsic
functionalities of future autonomous partial discharge-based diagnostics systems. Apart
from quantitative measurements it is expected that qualitative evaluation, especially in
the case of monitoring systems, will play a bigger role. It refers both to trend analysis
and deviations of PD patterns from canonical forms. The presented various approaches of
trend evolution and anomaly detection in PD images might be directly applied in electrical
insulation diagnostics systems of power equipment. The purpose of the presented research
was to further automate pattern processing by machine-controlled algorithms, striving
towards intelligent and autonomous PD-based diagnostics.
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