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Abstract: The detection and diagnosis of faults is becoming necessary in ensuring energy savings in
heat pump units. Faults can exist independently or simultaneously in heat pumps at the refrigerant
side and secondary fluid flow loops. In this work, we discuss the effects that simultaneous refrigerant
charge faults and faults associated with the flow rate of secondary fluids have on the performance of a
heat pump operating in summer season and we developed a correlation to detect and diagnose these
faults using multiple linear regression. The faults considered include simultaneous refrigerant charge
and indoor heat exchanger secondary fluid flow rate faults (IFRFs), simultaneous refrigerant charge
and outdoor heat exchanger secondary fluid flow rate faults (OFRFs) and simultaneous refrigerant
charge, IFRF and OFRF. The occurrence of simultaneous refrigerant charge fault, IFRF and OFRF
caused up to a 5.7% and 8% decrease in cooling capacity compared to simultaneous refrigerant
charge and indoor heat exchanger secondary fluid flow rate faults, and simultaneous refrigerant
charge and outdoor heat exchanger secondary fluid flow rate faults, respectively. Simultaneous
refrigerant charge fault, IFRF and OFRF resulted in up to an 11.6% and 5.9% decrease in COP of
the heat pump unit compared to simultaneous refrigerant charge fault and IFRF, and simultaneous
refrigerant charge fault and OFRF, respectively. The developed FDD correlations accurately predicted
the simultaneous refrigerant charge and faults in the flow rate of the secondary fluid within an error
margin of 7.7%.

Keywords: heat pump; fault detection; fault diagnosis; cooling capacity; COP; refrigerant charge
fault; brine flow rate fault

1. Introduction

Performance of ground source heat pumps (GSHP) decreases drastically because of
the development of faults either at the time of installation or during operation of the heat
pump, which is an integral component of the GSHP system. The existence of faults in the
heat pump unit, therefore, results in higher energy consumption in the GSHP system, less
comfort levels in humans, low productivity, increased operation and maintenance cost and
reduced indoor air quality that greatly affects the health of occupants.

It is estimated that the energy consumption of HVAC systems operating with faults can
increase up to 30% [1,2]. This is a great source of worry which has resulted in automating
heat pump fault detection and diagnosis (FDD) models. A lot of FDD models have,
therefore, been developed and applied to HVAC systems [3–13]. Shamandi and Jazi [14]
developed simulated refrigerant charge and compressor leakage faults in a refrigeration
system. The study established that superheat and subcooling were greatly affected by
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refrigerant charge fault, dirty condenser fault and evaporator air flow rate. Zhao [15]
formulated a method to detect single faults in chillers using a statistical method, support
vector regression analysis and control charts. Sellami et al. [16] formulated FDD algorithm
for singular faults in a refrigerator. Sun et al. [17] studied faults in refrigeration systems for
supermarkets and catalogued datasets for refrigerants faults. Li et al. [18] investigated the
problem of using labelled and unlabelled data for fault detection in HVAC systems and
introduced a multiclass classifier into the modified generative adversarial network method
to be able to simultaneously use labelled and unlabelled data sets for fault detection in
building HVAC systems. Bellanco et al. [19] reviewed various heat pump faults and their
effects on system performance. Authors discussed FDD models, analysed the type of
instruments needed for various laboratory and field faults and investigated sensors needed
for FDD implementation. The study found that more research is needed to improve the
use of performance criteria for detection of faults and conducting additional studies on the
use of sensors for fault detection and diagnosis in heat pump systems. Dudley et al. [20]
investigated the use of semi-supervised learning approach to detect faults in HVAC systems.
Authors tested and validated the proposed technique using statistical tools. Eom et al. [21]
developed a refrigerant charge fault detection model using convolutional neural networks
to improve on the shortcomings of various artificial neural network models for refrigerant
charge faults in heat pumps. The proposed model had an almost perfect accuracy level
with about 3.1% error in predicting refrigerant charge faults in heat pumps.

Most FDD models focus on single faults, with few available works in open literature
focusing on multiple-simultaneous faults. Zhao et al. [22] formulated an FDD method for a
chiller system using a decoupling-based FDD model. The FDD model diagnosed multiple
simultaneous refrigerant faults. Han et al. [23] used a multi-label technique and support
vector machine to formulate an FDD model for multiple faults. The developed FDD model
was applied to investigate multiple faults in a chiller using data from an ASHRAE project.
Boahen et al. [24] adopted regression analysis to formulate an FDD algorithm for faults
in the flow rate of the secondary fluids in a heat pump unit. The FDD algorithm could
detect single and multiple faults in the flow rate of the secondary fluid within an error
threshold of ±6.4%. Miyata et al. [25] used FDD algorithms for fault detection in chiller
performance, heat exchanger, pump and the temperature sensor of a heating system. The
FDD algorithm was developed using a convolutional neural network with simulated data
and validated using real data. The FDD algorithm had about 98.7% accuracy in detecting
single and multiple faults.

In the studies conducted by Mowris et al. [26] and Roth et al. [27], it was realized
that about 72% of cooling systems were operating with combined refrigerant leakage and
evaporator airflow rate faults, reducing the performance of these cooling systems by about
10%. This shows that an FDD algorithm for multiple refrigerant charge and secondary
fluid flow rate faults is inevitable and can go a long way to improve energy savings in
cooling systems. However, for heat pumps, studies on FDD algorithms for the detection of
multiple faults in the refrigerant charge and flow rate of secondary fluids is limited in the
literature. This work, therefore, uses multiple regression tools to model an FDD algorithm
for multiple faults occurring simultaneously in the refrigerant charge and flow rate of the
secondary fluid in a heat pump unit. The study discusses, in detail, the effect of these faults
on the performance of the heat pump. The developed FDD algorithm is specific to the heat
pump used in this study, however, it will serve as a guide to researchers in developing
multiple-simultaneous refrigerant charge and secondary fluid flow rate FDD algorithms
for other heat pump units.

2. Experimental Setup and Methodology

A test rig was made to study multiple refrigerant charge faults and faults in the flow
rate of the secondary fluid that simultaneously occur in a heat pump unit and develop
an FDD model for these faults. The experimental rig had a refrigerant loop consisting of
a compressor, outdoor heat exchanger (ODHX), which acted as the condenser, electronic
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expansion device (EEV) and an indoor heat exchanger (IDHX), which was used as the
evaporator as shown in Figure 1. It also had secondary fluid flow loops consisting of closed-
loop water flow paths simulated using constant temperature water baths for the IDHX
and ODHX. A photograph of the refrigerant flow loop, secondary fluid flow loop and data
acquisition and storage system of the heat pump is presented in Figure 2. The heat pump
unit adopted refrigerant R410A as the working fluid, while brine consisting of an ethylene
glycol concentration of 43% was used as the secondary fluid for the IDHX and ODHX.
The experiment was conducted in cooling mode at standard outdoor heat exchanger inlet
water temperature (OD EWT) and indoor heat exchanger inlet water temperature (ID
EWT) conditions of 25 ◦C of 12 ◦C, respectively. The standard entering water temperature
conditions were selected in relation to ISO 13256-2 [28] and NR GT 101 [29]. The types of
faults investigated were combined fault in the refrigerant charge amount and the IDHX
secondary fluid flow rate (IFRF), combined fault in the refrigerant charge amount and the
brine flow rate in the ODHX (OFRF) and combined fault in the refrigerant charge amount,
IFRF and OFRF.
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Figure 1. Schematic diagram of the heat pump. 116 Figure 1. Schematic diagram of the heat pump.
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Figure 2. Photograph of refrigerant flow loop, secondary fluid flow loop and data acquisition system of heat pump.

Table 1 shows the test conditions used for this study. To begin with, the reference
values of the refrigerant charge amount flow rates of the secondary fluid were determined
and represented as 100% at the standard OD EWT and ID EWT conditions. The optimum
charge amount was found to be 4700 g, the reference ODHX secondary fluid flow rate
(SFFR) was found to be 8LPM, and the reference IDHX SFFR was also found to be 8LPM.
Combined refrigerant charge fault and IFRF was simulated by simultaneously changing
the amount of refrigerant at 70%, 80%, 90%, 100%, 110% and 120% of the base value and
the IDHX SFFR at 60%, 80%, 100%, 120% and 140% of the base value. Combined refrigerant
charge fault and OFRF was simulated by simultaneously altering the amount of refrigerant
at 70%, 80%, 90%, 100%, 110% and 120% of the base value and the ODHX SFFR at 60%,
80%, 100%, 120% and 140% of the base value. Lastly, the combined refrigerant charge fault,
IFRF and OFRF was simulated by simultaneously changing the charge amount from 60%
to 80%, 100%, 120% and 140% of the base value, the IDHX SFFR at 60%, 80%, 100%, 120%
and 140% of the base value and the ODHX SFFR at 60%, 80%, 100%, 120% and 140% of
the base value. The OD EWT was varied at 20 ◦C, 25 ◦C, 30 ◦C and 35 ◦C to investigate
how the performance of the heat pump is affected by combined changes in the outdoor
temperature and the investigated faults.

Table 1. Experimental conditions.

Variable Base Condition Test Range

Mode of operation Cooling Cooling

Type of refrigerant R410A R410A

Refrigerant charge amount (kg) 4.7 4.7

Ratio of refrigerant charge amount (%) 100 70, 80, 90, 100, 110, 120

Indoor heat exchanger EWT (◦C) 12 12

Outdoor heat exchanger EWT (◦C) 25 20, 25, 30, 35

Secondary fluid flow rate of ODHX (LPM) 8 60, 80, 100, 120, 140

Secondary fluid flow rate of IDHX (LPM) 8 60, 80, 100, 120, 140
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During the conduct of each experiment, the electronic expansion valve (EEV) was
varied to achieve a constant superheat of 7 ◦C to serve as a control parameter for the
experiment. The experimental setup had sensors installed in it to measure the heat pump’s
performance according to the variation of the imposed faults. T-type thermocouples,
pressure transducers, flow meter and power meter were used, respectively, in the refrigerant
side, for the measurement of temperature, pressure, flow rate and compressor power. The
flow loop of the secondary fluid had flow meters and RTD sensors connected for measuring
brine flow rate and temperature, respectively. Accuracies of sensors used for the experiment
are presented in Table 2. The test data were recorded and kept on a computer within 3 s
scanning time and 30 min storage time by a Yokogawa MX100 data acquisition system.
Equation (1) shows the data reduction and determination of the capacity of the heat pump.
The cooling capacity was determined using density and specific heat capacity of water,
flow rate and difference in the temperature of the brine in the evaporator. The coefficient
of performance was calculated as the capacity of the heat pump divided by the electrical
power consumed by the compressor as shown in equation (2). Equation (3) [30] was used
to assess the uncertainty of the heat pump parameters. The coefficient of performance had
an uncertainty of 3.0% while uncertainty of the cooling capacity was found to be 2.8%.

Q =
ρ × Cp × LPM × (LWT − EWT)

60000
(1)

COP =
Q
W

(2)

U =

√
∑n

i=1

(
Ui
xi

)2
(3)

Table 2. Sensors and their accuracies.

Sensor Accuracy

Pressure transducer ±0.5%

T-Type thermocouple ±0.2 ◦C

Power meter ±0.5% of reading

Mass flow meter ±0.5% of reading

Volumetric flowmeter ±2% of reading

RTD sensor ±0.15 ◦C

3. Results and Discussions
3.1. Performance of the Heat Pump Unit According to the Various Faults
3.1.1. Simultaneous Refrigerant Charge Fault and IDHX Secondary Fluid Flow Rate Fault

As individual faults exist in heat pumps, the simultaneous occurrence of faults can
also occur when operating heat pumps. For a combined fault in the refrigerant charge
amount and the secondary fluid of the IDHX (IFRF), the following faults may exist simulta-
neously: refrigerant leak and reduced IFRF, refrigerant leak and increased IFRF, refrigerant
overcharge and reduced IFRF and refrigerant overcharge and increased IFRF. Each of these
simultaneously occurring faults will differently affect the heat pump’s performance and
operating parameters.

Figures 3 and 4, respectively, show the deviation in the reference capacity and COP of
the heat pump according to four simultaneously occurring faults. The reference cooling
capacity and COP of the heat pump were 3.1 kW and 3.43, respectively. The cooling
capacity and COP generally decreased at refrigerant leak and reduced IFRF, refrigerant
leak and increased IFRF and refrigerant overcharge and reduced IFRF due to the dominant
reduction in COP and capacity because of the refrigerant charge faults. However, the
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capacity and COP increased at refrigerant overcharge and IFRF above 120% of the reference
value. The cooling capacity and COP decreased greatly at higher refrigerant leak (70%
refrigerant charge ratio) and highly reduced IFRF (60% IDHX flow rate). This combined
fault resulted in the worst performance of the heat pump. At 90% refrigerant charge ratio
(10% refrigerant leakage) and 80% indoor heat exchanger (IDHX) secondary fluid flow rate
(SFFR), the capacity decreased by 10%. However, cooling capacity decreased by 19% at a
90% refrigerant charge ratio and 60% IDHX SFFR. At 80% IDHX SFFR, capacity decreased
by 10%, 21% and 30% at 10%, 20% and 30% refrigerant leak, respectively. Nonetheless,
at 60% IDHX SFFR, the cooling capacity decreased by 19%, 29% and 36% at refrigerant
leak of 10%, 20% and 30%, respectively. Furthermore, at 10% refrigerant leak, the COP
decreased by 3.8% and 10.8% at 80% and 60% IDHX SFFR respectively. At 80% IDHX
SFFR, the COP decreased by 3.8%, 9.2% and 14% at 10%, 20% and 30% refrigerant leak,
respectively. Nevertheless, at 60% IDHX SFFR, the COP decreased by 10.8%, 16.0% and
20.9% at refrigerant leak of 10%, 20% and 30%, respectively. This also demonstrates that
degradation of the COP and capacity due to simultaneous faults is greater than that of
individual faults in the heat pump. Though the highest degradation of the capacity and
COP with refrigerant charge fault was 26.2% and 17.1%, respectively, and that of the IFRF
was 11.5% and 7.9%, respectively, the capacity and COP degraded up to 36% and 20.9% in
the simultaneous refrigerant charge fault and IFRF, respectively.
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3.1.2. Simultaneous Faults in the Refrigerant Charge and Secondary Fluid Flow Rate of
Outdoor Heat Exchanger

Faults in the refrigerant charge and the flow rate of the secondary fluid in the outdoor
heat exchanger (OFRF) can exist simultaneously in a heat pump as refrigerant leak and
reduced ODHX secondary fluid flow rate (SFFR), refrigerant leak and increased ODHX
SFFR, refrigerant overcharge and reduced ODHX SFFR and refrigerant overcharge and
increased ODHX SFFR. Figures 5 and 6, respectively, show deviations in the capacity and
COP of the heat pump unit in respect to refrigerant charge ratio and ODHX SFFR fault
(OFRF). Cooling capacity decreased at all simultaneous refrigerant leakage and reduced
ODHX SFFR faults due to increase in evaporating temperature as presented in Figure 7.
Refrigerant charge amount directly affects the evaporating temperature; this implies that
refrigerant leak greatly affected the cooling capacity and reduced ODHX SFFR. COP of the
heat pump also reduced at all simultaneous refrigerant leakage and reduced ODHX SFFR
faults because of the reduction in capacity. Furthermore, the cooling capacity decreased at
all simultaneous refrigerant leaks and increased ODHX SFFR faults while COP decreased
at increased ODHX SFFR and refrigerant leak faults above 10% of the reference value.
For simultaneous refrigerant overcharge and reduced ODHX SFFR faults, the cooling
capacity remained almost constant while COP decreased. However, cooling capacity and
COP increased at refrigerant overcharge and increased ODHX SFFR faults. Regarding
simultaneous refrigerant charge and ODHX secondary fluid flow rate faults, refrigerant
charge faults greatly affected the cooling capacity than fault in flow rate of the secondary
fluid of the ODHX because they significantly affected the subcooling and evaporating
temperature; while ODHX SFFR faults had a significant effect on the COP because they
greatly affected the condensing pressure and the heat pump’s power consumption.
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Figure 7. Change in evaporating temperature according to refrigerant charge and outdoor heat
exchanger flow rate faults.

3.1.3. Simultaneous Faults in the Refrigerant Charge and Secondary Fluid Flow rate of
Outdoor Heat Exchanger and Indoor Heat Exchanger

Refrigerant charge fault, and faults in the flow rate of secondary fluid of the IDHX
(IFRF) and ODHX (OFRF) can occur simultaneously in a heat pump unit. In this case, there
will be a combination of refrigerant undercharge and overcharge occurring simultaneously
with either reduced IFRF, increased IFRF, reduced OFRF or increased OFRF. The probable
simultaneous faults that may exist and their consequences on the heat pump’s performance
are listed in Table 3. Refrigerant overcharge, reduced IFRF and increased OFRF is referred
to as simultaneous fault one (SF1). Refrigerant overcharge, reduced IFRF and reduced
OFRF is referred to as simultaneous fault two (SF2). Refrigerant overcharge, increased
IFRF and increased OFRF is referred to as simultaneous fault three (SF3). Refrigerant
overcharge, increased IFRF and reduced OFRF is referred to as simultaneous fault four
(SF4). Refrigerant undercharge, reduced IFRF and increased OFRF is referred to as simul-
taneous fault five (SF5). Refrigerant undercharge, reduced IFRF and reduced OFRF is
referred to as simultaneous fault six (SF6). Refrigerant undercharge, increased IFRF and
increased OFRF is referred to as simultaneous fault seven (SF7). Refrigerant undercharge,
increased IFRF and reduced OFRF is referred to as simultaneous fault eight (SF8). The
capacity and COP were greatly affected by the simultaneous occurrence of all three faults
as presented in Figures 8 and 9, respectively. The cooling capacity decreased with SF1,
SF2, SF4, SF5, SF6 and SF8 but increased with SF3. However, in SF7, cooling capacity
decreased at refrigerant undercharge conditions below 80% but increased at refrigerant
undercharge conditions higher than 80%. Similarly, COP decreased at SF2, SF4, SF5, SF6
and SF8 conditions due to the combined effect of refrigerant overcharge, reduced IFRF and
reduced OFRF, refrigerant overcharge and reduced OFRF, refrigerant undercharge and
reduced IFRF, refrigerant undercharge, reduced IFRF and OFRF, refrigerant undercharge
and reduced OFRF, respectively. COP decreased at SF3 due to increased IFRF and increased
OFRF. However, COP showed an increasing and decreasing effect at SF1 and SF7. At SF1
conditions, COP decreased at all conditions except IFRF between 80% and 100%, while
COP decreased at all conditions at SF7, except refrigerant charge ratio between 90% and
100%.
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Table 3. Simultaneous faults in refrigerant charge and flow rate of secondary fluid of outdoor heat
exchanger and indoor heat exchanger.

SF Refrigerant
Charge Fault

Fault in the Flow
Rate of the IDHX
Secondary Fluid

Fault in the Flow
Rate of the ODHX
Secondary Fluid

Cooling
Capacity COP

1. Refrigerant
overcharge Reduced IFRF Increased OFRF
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2. Refrigerant
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The simultaneous occurrence of all three faults greatly affected the heat pump’s
performance than the simultaneous occurrence of two faults. For simultaneous IFRF and
refrigerant charge faults at 60% IFRF and 70% refrigerant charge ratio (RCR), capacity and
COP, respectively, decreased by 30.5% and 24.3%. However, at 60% IFRF, 70% RCR and
80% OFRF, capacity and COP reduced by 32.2% and 28.2%, respectively. The capacity and
COP continued to decrease by 36.2% and 35.9%, respectively, at 60% IFRF, 70% RCR and
60% OFRF. Given simultaneous OFRF and refrigerant charge faults at 60% OFRF and 70%
RCR, capacity and COP reduced by 28.2% and 30.9%, respectively. Nonetheless, at 60%
OFRF, 70% RCR and 80% IFRF, capacity and COP reduced by 31.0% and 32.6%, respectively.
Furthermore, at 60% IFRF, 70% RCR and 60% OFRF, capacity and COP reduced by 36.2%
and 35.9%, respectively.
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Figure 8. Change in cooling capacity according to refrigerant charge and flow rate of secondary fluid in indoor and outdoor
heat exchanger of (a) 60%, (b) 80%, (c) 100%, (d) 120% and (e) 140%.
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3.2. Development of Fault Detection and Diagnosis Algorithm

This study has shown that capacity and COP of the heat pump greatly deteriorates as
intensity of faults increases. It is therefore important to diagnose and detect faults in their
early stages to prevent greater damage to the heat pump’s performance. To achieve this,
results discussed in this study were used to develop an FDD algorithm, using multiple
linear regression, that can detect and diagnose simultaneous refrigerant charge fault and
IFRF, simultaneous refrigerant charge fault and OFRF and simultaneous refrigerant charge
fault, IFRF and OFRF of the heat pump studied.

According to Boahen et al. [24] and Boahen et al. [31], the compressor discharge
temperature, brine temperature difference in the IDHX and ODHX have direct relations
with the refrigerant charge fault, IFRF and OFRF, respectively. As a result that these
operating parameters can be easily measured using temperature sensors when operating
the heat pump, they were selected as independent variables for the FDD algorithm.

The effect of refrigerant charge fault, IFRF and OFRF on compressor discharge tem-
perature, and brine temperature difference in the IDHX and ODHX at different OD EWT is
as shown in Figure 10. The FDD algorithm was modelled as a polynomial of 2nd order
because of the nature of the curves relating the faults and their corresponding heat pump
operating parameters. As shown in Figure 10, the compressor discharge temperature,
temperature difference across the indoor heat exchanger and temperature difference across
the outdoor heat exchanger show a linear relationship with the refrigerant charge and
secondary fluid flow rate faults at 60% and 80% ODHX flow rate. However, from 100%
outdoor heat exchanger secondary fluid flow rate, the compressor discharge temperature
showed some deviation from linearity. Therefore, to minimize the error margin, a sec-
ond order polynomial was selected to develop the FDD algorithm. The FDD algorithm
is presented in Equation (1), where P is refrigerant charge ratio (RCR), flow rate of the
secondary fluid of the outdoor heat exchanger (OFR) or flow rate of the secondary fluid
of the indoor heat exchanger (IFR), TIHX is temperature difference of the secondary fluid
across the IDHX, TOHX is temperature difference of brine in outdoor heat exchanger, Tdis
is compressor discharge temperature while a, b, c, d, e, f, g, h, i are constants that have
coefficients as shown in Table 4.

Table 4. Coefficients of simultaneous RCR, IFRF and OFRF FDD correlations.

Coefficients RCR Correlation IFR OFR

a −152.2 −281.9 −372.8

b −14.43 −31.63 −49.67

c −0.5533 −0.4396 0.9043

d −4.863 −45.12 −2.046

e 0.2156 3.5198107 0.6293

f 5.987 14.42 15.48

g −0.0373 −0.08216 −0.08193

h −0.2563 0.5873 0.969

i 0.2438 0.3473 0.1717

j 0.05946 −0.2359 −0.191

To use the correlation, the outdoor entering water temperature, compressor discharge
temperature and temperature difference of the secondary fluid in the IDHX of the heat
pump are measured with temperature sensors. The measured data are put into Equation (4),
together with the coefficients in Table 4 for RCR correlation, IFR correlation and OFRF
correlation to simultaneously determine the refrigerant charge ratio, brine flow rate in the
IDHX and ODHX, respectively. The developed correlation was tested by predicting the
experimental data used in this study. The correlation accurately predicted the simultaneous
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refrigerant charge ratio, IFRF and OFRF within an error threshold of ±7.3%, ±7.4% and
±7.7 as shown in Figures 11–13, respectively. Figure 14 shows a block diagram of the FDD
algorithm for the simultaneous refrigerant charge and flow rate faults discussed in this
study. The proposed algorithm is applied when the heat pump is operating at steady state.

P = a + bTIHX + cTIHX
2 + dTOHX + eTOHX

2 + f Tdis + gTdis
2 + hTIHXTOHX + iTIHXTdis + jTOHXTdis (4)
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Figure 10. Variation of compressor discharge temperature, temperature difference of outdoor heat exchanger secondary 322 
fluid, temperature difference of indoor heat exchanger secondary fluid according to refrigerant charge ratio and indoor 323 
heat exchanger secondary fluid flow rate of (a) 60%, (b) 80%, (c) 100%, (d)120% and (e) 140%. 324 

Figure 10. Variation of compressor discharge temperature, temperature difference of outdoor heat exchanger secondary
fluid, temperature difference of indoor heat exchanger secondary fluid according to refrigerant charge ratio and indoor heat
exchanger secondary fluid flow rate of (a) 60%, (b) 80%, (c) 100%, (d) 120% and (e) 140%.
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Figure 12. Error threshold of indoor heat exchanger secondary fluid flow rate for simultaneous 329 
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rate fault. 331 

Figure 11. Error threshold of refrigerant charge for simultaneous refrigerant charge fault, indoor heat
exchanger flow rate fault and outdoor heat exchanger flow rate fault.
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4. Conclusions

In this work, the effects of simultaneous faults in the refrigerant charge and flow rate
of the secondary fluid on the performance of a heat pump unit operated in the summer
season was investigated. An FDD algorithm was developed for the simultaneous faults
in the refrigerant charge amount and flow rate of secondary fluid in the outdoor heat
exchanger (OFRF) and indoor heat exchanger (IFRF) using multiple regression analysis.
The study concludes as follows:

• Three faults occurring simultaneously greatly affect the heat pump’s performance
compared to the occurrence of two simultaneously combined faults. At 70% refrigerant
charge ratio (RCR), 60% IFRF and 60% OFRF, capacity and COP of the heat pump
unit decreased, respectively, by 5.7% and 11.6% more than at 70% RCR and 60% IFRF.
Furthermore, the heat pump’s capacity and COP decreased, respectively, by 8% and
5.9% at 70% RCR, 60% IFRF and 60% OFRF more than at 70% RCR and 60% OFRF.

• An FDD algorithm was developed to detect the simultaneous faults using multiple
linear regression. The parameters used in the algorithm include discharge tempera-
ture of the compressor and the temperature difference of the secondary fluid across
the IDHX and ODHX. The developed algorithm was able to detect simultaneous
refrigerant charge fault and IFRF, simultaneous refrigerant charge fault and OFRF
and simultaneous refrigerant charge fault, IFRF and OFRF within error thresholds of
±7.3%, ±7.6% and ±7.7%, respectively.

• The proposed FDD model uses temperature sensors to detect and diagnose faults.
This method is cheap and simple to use, compared to other FDD models that use
thermal imaging models and quantitative model-based methods that demand com-
plex mathematical models of the systems. Thermal imagining is fast, efficient and
safe; however, the initial cost of purchasing thermal imaging cameras is high with
low accuracy for temperature measurement due to different emissive properties of
surfaces. Moreover, thermal imaging FDD methodologies are faster than the proposed
methodology. Future studies will focus on developing FDD algorithms for simultane-
ous refrigerant charge and secondary fluid flow rate faults for heat pumps operating
with variable speed compressors.

Author Contributions: S.B. and J.M.C. analysed the data and prepared the manuscript. K.M. and
S.K.A. performed the experiment. K.H.L. reviewed the test results and the paper. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was sponsored by the Korean government (MSIT) [No. 2019R1A2C2087157].

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to on-going work.

Acknowledgments: This research was assisted by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. 2019R1A2C2087157, Artificial neutral network-
based optimized operating model of building HVAC systems control parameters for improved energy
efficiency and reduced operating cost).

Conflicts of Interest: Authors have no conflict of interest.



Energies 2021, 14, 3877 18 of 19

Nomenclature

COP Coefficient of performance
Cp Specific heat capacity of water [kJ/kgK]
EEV Electronic expansion valve
FDD Fault detection and diagnosis
HVAC Heating, Ventilation and Air Conditioning
HX Heat exchanger
IFRF Indoor heat exchanger secondary fluid flow rate fault
LPM Secondary fluid flow rate [LPM]
LWT Leaving water temperature [◦C]
OD EWT Outdoor heat exchanger entering water temperature [◦C]
ODHX Outdoor heat exchanger
OFRF Outdoor heat exchanger secondary fluid flow rate fault
Q Capacity [kW]
RCR Refrigerant charge ratio
RTD Resistance temperature detector
SFFR Secondary fluid flow rate
Tdis Discharge temperature of compressor [◦C]
U Uncertainty
W Power consumption [kW]
x Variable nominal value
ρ Density of water [kg/m3]
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