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Abstract: Wide-bandgap technology evolution compels the advancement of efficient pulse-width
gate-driver devices. Integrated enhanced gate-driver planar transformers are a source of electro-
magnetic disturbances due to inter-winding capacitances, which serve as a route to common-mode
(CM) currents. This paper will simulate, via ANSYS Q3D Extractor, the unforeseen parasitic effects
of a pulse planar transformer integrated in a SiC MOSFET gate-driver card. Moreover, the pulse
transformer will be ameliorated by adding distinctive shielding layers aiming to suppress CM noise
effects and endure high dv/dt occurrences intending to validate experimental tests. The correlation
between stray capacitance and dv/dt immunity results after shielding insertion will be reported.

Keywords: wide-bandgap; gate-driver; planar transformer; CM noise; ANSYS Q3D Extractor; SiC
MOSFET; shielding

1. Introduction

The evolution of electronic devices over the past few years has resulted in compelling
impacts on the community and industry. Gradual technological leaps in the field of
semiconductors and power devices are forecasted to structure the mechanized sector of the
revolutionized globe [1,2]. Robust power electronic systems are demanded in automotive,
energy management, telecommunication, medical, and aeronautic applications [3]. Since
1970, the power density of power electronic converters in diverse operations has nearly
doubled every ten years [4]. The primary agent of this trend was the proficiency to increase
the switching frequency by a multiple of ten every decade, which was realized by the
incessant improvement of power semiconductor device technologies [5]. This continual
advancement of power density converters is portrayed by the demanded requirements
for higher efficiency and reliability, volume reduction, lightweight materials, and cost-
effectiveness [6,7]. Substantial research and examinations have been applied to different
aspects of the aforementioned power converter system constituents to attain significant
efficiency and power density objectives.

The breakthrough of wide-bandgap (WBG) device technology is a pivotal promoter
for power electronic system curtailing and miniaturizing [8]. Various studies revealed
the leading incentives and expansion of this technology which can induce momentous
impacts on system modeling and assemblage, prompting paragon transitions within the
entire power electronics industry [9,10]. The two predominantly engaged semiconductor
materials are silicon carbide (SiC) and gallium nitride (GaN), which surpass their silicon
(Si) counterpart by acquiring substantial intrinsic properties, making it feasible to intensify
the switching frequency of converters from a few hundred kHz to the MHz frequency
region [11,12]. However, optimization always comes with a cost; with every advance-
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ment, researchers and analysts are confronted with challenges and impediments to realize
upgraded power converter designs.

Favorable high switching frequency attainment becomes conflicting and challenging
when resulting in high switching transitions dv/dt, amounting to 100 kV/µs, provoking
electromagnetic disturbances in gate driver circuits due to parasitic capacitances and
inductances [13]. Hence, to profit from the encouraging advancements while inspecting the
demerits, printed circuit board (PCB)-integrated gate driver technology for WBG device
technology has been explored [14]. Electromagnetic compatibility (EMC) conformity is
crucial when designing gate driver circuits amid preserving high power density and
minimum isolation capacitance. This is attained by the utilization of planar transformers,
which harmonize with the growing demand of slim-profile power supplies, and comprising
low leakage inductance, repeatability, and low thermal resistance [15]. Yet, as previously
mentioned, a downgrade for every upgrade creates a limitless road for renovation.

Traditional planar transformers present high levels of common-mode (CM) noise due
to the presence of stray capacitances between primary and secondary windings providing
a route for CM currents generated due to large dv/dt occurrences from fast switching
devices. These circulating pulsating currents are the main originators of electromagnetic
interference (EMI) issues [16]. Various studies have been conducted to mitigate the CM
noise occurrence in planar transformers, such as adding anti-phase windings [17], in-
cluding a Y capacitor [18], or the insertion of faraday shielding layers [19–22]. Referring
to Cochrane et al. [23], the employment of a compensation capacitor with an antiphase
winding to cancel noise current from flowing through MOSFET parasitic capacitor cannot
considerably stop the noise current from flowing to the secondary side and return via
a ground path. Moreover, including bypass capacitors [18] is always limited by safety
standards and is challenging when it comes to the repeatability of prototype designs.

The objective of this paper is to investigate a pulse planar transformer integrated in a
gate driver card. Planar transformers are renowned for ultimate repeatability attributes.
The effect of integrating several modeled and designed electrostatic screens to shunt noise
current were studied to validate experimental analysis which was conducted based on trial
and error. To conserve time and expenses, the latter were designed and analyzed using
finite element analysis (FEA) tools such as ANSYS Q3D Extractor dynamically linked with
ANSYS Circuit design to analyze the transformer’s susceptibility to high dv/dt application.
The simulation of the steep dv/dt occurrence was conducted on an equivalent transformer
P-Spice model generated by ANSYS which revealed the resourcefulness of this investigation
to ensure safe operation and behavior prediction of upcoming research examinations.

The rest of this paper is structured as follows. Section 2 focuses on gate driver
illustration, constituents, and requirements. Section 3 focuses on planar transformers
integrated in gate drivers with the simulation of innovative ameliorated modeled designs
and the presentation of the simulated results. Section 4 reveals experimental validation of
results, highlighting outcome dependencies. Section 5 concludes this paper.

2. Gate Driver Convention for Power Semiconductors
2.1. Inverter Principles

The fundamental objective of power electronic technology is to transform and regulate
the flow of electrical energy aiming to supply optimum voltages and currents that fulfill
user-defined requirements. As its name signifies, a power converter is the process of
converting electrical energy from one form to another. The conversion method assigns the
category type of the power converter which can be classified as AC/AC, AC/DC, DC/AC,
or DC/DC.

Modernized power electronic converters participate in a broad scope of applications
such as switched mode power supplies (SMPS), renewable energy conversion systems, ac-
tive power filters, and vehicle technology. Typically, DC/AC converters are called inverters,
and are used to generate alternating voltages/currents from a fixed direct voltage source
such as a battery. Figure 1 reveals an example of a single-phase full bridge inverter where
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four switches are utilized, resulting in a load current that corresponds to an alternating
current source.
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Figure 1. Single-phase full bridge inverter and its associated waveform.

A half-bridge switching cell, known as the vertical arm of a full bridge inverter,
comprises controlled switches that are unidirectional in voltage and bidirectional in current
and are ordered to be either excited or blocked, and protected against arm short circuits [24].
There are diverse contemporary and controllable power electronic switches that can be
utilized such as relays, thyristors, IGBTs (insulated gate bipolar transistors) and MOSFETs
(metal oxide semiconductor field effect transistor) [25].

An example of the composition of controlled insulated-gate field-effect transistors,
commonly known as MOSFETs is shown in Figure 2. The aforementioned depiction
highlights that the practical switching times of the MOSFETs are relatively prolonged with
respect to the theoretical switching times, in addition to the inevitability of a galvanic
isolation safeguarding independent transistor control [26].
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Figure 2. A fundamental example of a switching N-MOSFET cell.

Wide-Bandgap Technology

Although silicon (Si)-based IGBTs have been on the market for more than 30 years, they
have reached their physical limits when confronted with the demand of high-power density
converters (HPDC) and therefore higher switching frequencies [27]. The emergence of
commercial WBG semiconductor devices based on SiC and GaN promoted ample reduction
in conduction losses due to their lower ON-resistance. Moreover, they are featured with
notable inferior gate capacitance, permitting them to operate at exceptional exceeding
frequencies [28]. The prominent substitutes of Si-IGBTs in power utility applications are
SiC MOSFETs due to their lower losses, higher speed operations, and higher thermal
capabilities as shown in Figure 3 [12,27,29].
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Figure 3. Intrinsic properties of particular semiconductor materials: Si, SiC, GaN.

2.2. Gate Driver Illustration

Due to the sublime convenience of WBG devices, the market witnessed immense
employment of this technology [30]. Nonetheless, to benefit from the technologies’ distin-
guished performance, it is vital to upgrade its operation and system environment [31].

One of the imperative constituents of power electronic systems is gate drivers, which
serve as an interface between microcontrollers that manage the switching operations (low
voltage side) and the power module (high voltage side) as presented in Figure 4 [32]. This
is generally referred to as the amplification stage to drive semiconductor devices. The
terminology ‘gate driver’ implies supplying a high-current drive input for a gate of a
high-power transistor such as a MOSFET.
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Figure 4. Generic demonstration of gate driver card assemblage.

Prevalent and common attributes of gate drivers are as follows [33,34]:

• Converts and amplifies power signals to drive semiconductor devices;
• Provides protection schemes and delivers feedback for operation monitoring of power

converters; and
• Grants galvanic isolation crucial to certify competent system functioning and user’s safety.

Galvanic Isolation Requirement

Galvanic isolation, a prevailing gate driver characteristic, is an isolation barrier that
electrically isolates primary to secondary circuitry, by founding segregated ground refer-
ences. It concerns the isolation of the control signal transmission and the power supply
circuit of the driver card. The power supply circuit is usually achieved by a transformer,
yet, the transmission of control signals or switching commands through the galvanic iso-
lation of gate drivers can be realized by the following technologies, appointed based on
the voltage and power range of specific applications [30]: optocoupler, transformer (with
core/coreless), optical fiber, capacitive link, piezoelectric coupling.
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Despite the extensive adoption of advantageous optocouplers in low to medium
power applications, they comprise significant parasitic capacitances which induce com-
mon mode current circulations between the primary and secondary circuit, instigating
electromagnetic disturbances [17]. Amongst the above-mentioned classifications, pulse
transformers are commonly used for medium to high power applications. Moreover, the
effective development of PCB technology supported the fabrication of practical planar
transformers (Figure 5) that are distinguished with miniaturization, good thermal charac-
teristics, transcendent repeatability, low cost, smooth fabrication, and predictable parasitic
parameters [35].
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The illustration in Figure 6 reveals the examined gate driver at IETR lab which drives
two power semiconductors, namely SiC MOSFETs. As depicted, the gate driver card
comprises four planar transformers, of which two are dedicated to supplying the electronic
circuit, and two are committed to authorizing the switching of the power semiconductors
by the transmission of triggering positive and negative pulses.
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Accompanying the high-caliber superiority of medium-voltage (MV) SiC MOSFETs,
rigorous consideration and attention must be regarded when managing a fast-switching
component whilst safeguarding reliable circuit operation and performance.

2.3. Electromagnetic Compatibility (EMC) Compliance

MV SiC MOSFETs feature extensively rapid switching speeds with high dv/dt amount-
ing to 100 kV/µs [36]. The electronics of the secondary driver circuit are referenced with
respect to the source of the controlled semiconductor, hence, the occurrence of a potential
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variation across the primary and secondary depends on the state of the adjacent tran-
sistor [37]. The existence of substantial potential variation due to switching induces the
passage of CM currents [17] through parasitic capacitances of planar transformers, known
as interwinding capacitances, prompting EMI dilemmas [18,38]. Thus, it is crucial to
analyze the EMI generated by the converters and adhere to EMC standards [39].

Since power transformers, presented in Figure 6, are utilized to supply the electronic
circuitry, the passage of CM current through the latter does not impose unfavorable
consequences on the reliability of semiconductor performance. However, significant
attention and awareness is demanded when designing pulse transformers, as they are
responsible for executing the switching orders for booting or blocking power semiconductor
transistors. Hence, a steep dv/dt occurrence might provoke faulty or invalid switching
orders due to the passage of CM currents across pulse transformers as seen in Figure 7,
leading to adverse, unfavorable results such as the occurrence of a short circuit branch.
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2.4. Conclusion

The presented and previously conferred matter highlights the necessity of ensur-
ing reliable gate driver operation by implementing adequate pulse transformer isolation
providing dv/dt robustness.

Since 1970, various studies have been conducted to optimize pulse transformer design
circuits, whilst studying the effects of parasitic elements [40]. Presently, with the aid
of rapid computer analysis and renovated software, magnetic circuit behavior can be
simulated, analyzed, and optimized to enhance design and mitigate the effect of parasitic
elements which will be demonstrated in the upcoming section.

3. Pulse Transformer Simulated Model Analysis
3.1. Planar Transformers in Gate Drivers

To realize exceptional and challenging performance levels, researchers and designers
encounter diversified confrontations when ensuing optimum upgraded design objectives:
reinforced, economical, and efficient converter designs.

WBG technology successfully grants higher switching frequency and voltage block-
ing applications; nonetheless, EMI disturbances originate with power devices’ switching
transitions [41]. Hence, as mentioned earlier, a PCB layout design was explored and imple-
mented for CM EMI reduction [42,43] where planar transformer integration is renowned
for the following incentives:

• Low profile, light weight;
• Consistent manufacturing;
• High power density;
• Distinguished repeatability; and
• Greater operating frequency in comparison to wire wound transformers.
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Table 1 below demonstrates various driver types with their corresponding features,
aiming to highlight the use of PCB arrangement:

Table 1. Comparison example of gate driver types and their relevant features.

Gate Driver Name Features
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This paper will present an alleviated planar pulse transformer design study that will
be experimentally tested for safe and reliable operation.

3.2. Pulse Transformer Scheme

A positive impulse on the primary winding of the pulse transformer invoked an
activation of the power semiconductor, a 1200 V SiC MOSFET, whereas a negative impulse
transmitted a turn off signal to block the device. The pulses transferred were shortened to
a duration of 25 ns, allowing them to cross the galvanic isolation barrier but not impact
other transmitted control command signals as revealed in Figure 8.
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Figure 8. Principle of data signal transmission through a gate driver.

For a switching frequency of 100 kHz, the use of short pulses (25 ns) is necessary but
requires considerable noise control, especially ones arousing from electromagnetic disturbances.

It is imperative to mention that the integration of the planar transformers in the gate
driver card was achieved in compliance to electrical insulation standards. Clearance (short-
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est distance through air between two conductive parts) and creepage (shortest distance
over surface between two conductive parts) measurements were implemented and consid-
ered [44]. Moreover, the insulation between layer stacks of the PCB was respected, noting
that this is not very restraining due to the utilization of rigid FR4 epoxy dielectric material
which can tolerate 20 kV/mm before breakdown. Furthermore, the design and spacing
requirements on the driver card were in accordance with the IPC-2221 standard, the generic
standard of PCB design.

The gate driver card was comprised of six stacked layers insulated by FR4 epoxy;
hence, the design of the pulse transformer respected the layering protocol of the driver.

3.3. Pulse Transformer Model Simulation Analysis

To further augment the enhancement and improvement of the global gate driver
design, the pulse transformer was explicitly elected for CM noise reduction technique
application. Several methods that serve this objective have been discussed in literature,
aiming to decrease the interwinding or coupling capacitance between the windings or
define a displacement path for CM current. Symmetry, balancing, and shielding techniques
are well-known tested methods [38,45,46]. Symmetry and balancing applications are not
effective in mass production and cannot achieve promising results at high frequencies.
Nevertheless, inserting electrostatic screens or Faraday shielding between winding layers of
transformers presents a defined grounded route for CM current flow [47], refer to Figure 9.
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Figure 9. Correlation of CM current displacement across a transformer: (a) Standard unshielded
transformer; (b) transformer with grounded electrostatic screens.

The exploited simulation methodology associated several design programs: the pulse
transformer was primarily designed in Altium Designer with different shielding models,
thereafter it was imported into ANSYS SIWAVE to verify the layer stack up, thickness, and
material assignment before being exported into ANSYS Q3D Extractor and ANSYS Circuit
Design for further analysis as depicted in Figure 10.
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3.3.1. ANSYS Q3D Extractor and Dynamic Links

To reduce design time and prototype expenses, ANSYS Q3D Extractor, the leading
parasitic extraction tool, was exploited to model and simulate the planar pulse transformer
proposed models presented in Section 3.3.3. This software performs electromagnetic field
simulations essential for the extraction of resistance, conductance, partial inductance, and
capacitance, known as RLGC parameters. The objective was to simulate realized pulse
planar transformers to ensure conformity of simulation and experimental results which
will be the groundwork for forthcoming design modeling and experimentations. Q3d
Extractor utilizes the finite element method (FEM) and method of moments to generate
an electromagnetic field solution. This is achieved by either dividing the full problem
space or surface of conductors into tetrahedral elements. It is based on the simplification
of Maxwell’s equations named quasistatic approximation by assuming that the size of
the analyzed design is small compared to the wavelength of maximum desired frequency
where the coupling between magnetic and electric fields can be neglected.

The design created in Altium designer was imported into ANSYS Q3D after verifying
layer stack up in ANSYS SIWAVE, with the respective material properties of the modeled
design displayed in Figure 11. The analysis allows one to observe and determine the RLGC
parameters of the model [48]. The source and sink identifications in the Figure signify
where the current enters and exits the windings, respectively, this is essential for AC/DC
RL analysis. However, to compute the GC matrices, it is vital to identify all copper layers
as nets.
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Surplus, dynamic linking with ANSYS Circuit Design from a created Q3D project
allows the simulation of the sub-circuit with the project original simulator to be aligned
with the circuit simulator [49]. Consequently, this further expands the analysis by granting
co-simulation features and allowing the addition of electrical components and sources to
actualize an intended experimental analysis.

3.3.2. Pulse Transformer Electronic Circuitry

Power transistor switching orders and data transfer were achieved as per the electronic
circuit presented in Figure 12 below. The circuit operation was based on a sequential logic
circuit, Set/Reset latch principle, where a positive pulse delivered a high logic, and a
negative pulse rendered a low output signal. As the sequence in the Figure conveys, firstly,
the short pulses were generated with a 15 V amplitude which increased signal/noise
ratio, then pulse selection was needed to disparate between positive and negative pulses.
Progressing, a filter stage was carried out to reduce the signal noise suitable for a 0–3.3 V
logic at output. Lastly, an RS flip-flop with an integrated Schmitt trigger allowed the
original signal to be reconstructed from the sequence of pulses and guaranteed the integrity
of the signals in the presence of noise. The disturbance caused by a steep dv/dt was
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prohibited from corrupting the control signal, justifying the selection of low impedances
on the secondary circuit.
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Figure 12. Pulse generation and transmission electronic circuit.

3.3.3. Planar Pulse Transformer Analyzed Models

The investigated pulse transformer was of planar type integrated in a six-layer PCB
stack. Four layers were designated for the conductors, primary and secondary windings,
and two shielding layers. The number of turns of the primary and secondary windings
was three, characterized by a turn’s ratio of 1, separated by FR4 epoxy dielectric material
and secured with a 3F36 EI ferrite core. Distinct electrostatic screen arrangements were
designed and simulated, as shown in Table 2, implemented based on the transformer
section view in Figure 13, showing the mid-layers along with the separating distances.
The objective of the shielding layers was to demonstrate their relevance in minimizing the
parasitic capacitance between the primary and secondary windings.

Table 2. Examined pulse transformer designs to study the effect of Faraday shield insertion.

Pulse Transformer Type Description
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Table 2. Cont.

Pulse Transformer Type Description
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3.4. Dv/Dt Immunity Test

With a motive of simulating before fabricating, the reliability of operation of the
modeled transformers and their endurance to steep dv/dt of 125 kV/µs, which simulates
severe switching conditions of power semiconductors, the designs were co-simulated in
ANSYS Circuit design software. The objective was to evaluate the merit of grounded
electrostatic screens and test the transformers’ immunity to sharp dv/dt occurrence when
driving a 1200 V SiC MOSFET using a 100 kHz frequency PWM signal. The imported Q3D
subcircuit revealed the ports correlated to nets assigned in the latter tool and are shown as
an N-port device.

At IETR lab, a Haefely generator was used to simulate a dv/dt incident; the signal
outcome of a 125 kV/µs potential variation was exported from the generator and imported
to a piecewise linear source simulated in ANSYS Circuit, aiming to originate a legitimate
simulated framework as reproduced in Figure 14.



Energies 2021, 14, 3866 12 of 16Energies 2021, 14, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 14. Sustainability of planar transformer to 125 kV/µs dv/dt simulated in ANSYS Circuit Design. 

The generated noise results of all the modeled transformers after dv/dt test applica-
tion are summarized in Table 3 below. 

Table 3. Abrupt dv/dt immunity test results for modelled transformers. 

Transformer Type Noise (V) Assembly Selection 
Unshielded 0.8031 X 

Typical shield 0.5778  
Large shield 0.6527 X 

Mirror winding shield 0.6452 X 

With phenomenal results for the typically shielded transformer, with interwinding 
capacitance of 1.6 pF compared to 2.2 pF for the unshielded planar transformer, it was 
appointed to be analytically examined and experimented on to validate its dv/dt immun-
ity. It is worth mentioning that after ten adaptive passes, the total number of triangles for 
a converged CG matrix with a high solution order and a default percent refinement per 
pass amounted to 108,506 triangles. As for the mesh statistics, the total number of elements 
created for a CG solution was 184,876. 

4. Experimental Authentication 
The typical shielded transformer was manufactured to be tested at the IETR lab un-

der the previously mentioned conditions, intending to inspect dv/dt immunity, as shown 
in Figure 15, and monitor safe operation when integrated in the gate driver card. 

Figure 14. Sustainability of planar transformer to 125 kV/µs dv/dt simulated in ANSYS Circuit Design.

The generated noise results of all the modeled transformers after dv/dt test application
are summarized in Table 3 below.

Table 3. Abrupt dv/dt immunity test results for modelled transformers.

Transformer Type Noise (V) Assembly Selection

Unshielded 0.8031 X
Typical shield 0.5778 ding52
Large shield 0.6527 X

Mirror winding shield 0.6452 X

With phenomenal results for the typically shielded transformer, with interwinding
capacitance of 1.6 pF compared to 2.2 pF for the unshielded planar transformer, it was
appointed to be analytically examined and experimented on to validate its dv/dt immunity.
It is worth mentioning that after ten adaptive passes, the total number of triangles for a
converged CG matrix with a high solution order and a default percent refinement per pass
amounted to 108,506 triangles. As for the mesh statistics, the total number of elements
created for a CG solution was 184,876.

4. Experimental Authentication

The typical shielded transformer was manufactured to be tested at the IETR lab under
the previously mentioned conditions, intending to inspect dv/dt immunity, as shown in
Figure 15, and monitor safe operation when integrated in the gate driver card.
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Figures 16 and 17 below correlate the experimental and simulated results after a high
dv/dt application between the primary and secondary grounds whilst transmitting a set
pulse. Figure 17 reveals convenient experimental and simulation results of 0.62 V and
0.5778 V, respectively. The values were much less than the threshold voltage (VT+) of the
Schmitt-trigger or logic gates [50].
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5. Conclusions and Future Scope

The root cause of CM noise in planar transformers is the existence of stray capacitances
between the primary and secondary windings. This uncertain performance can become
evident by the exploitation of adequate software tools such as ANSYS Q3D Extractor to
derive the parasitic RLGC parameters and further analyze the transformer. The utilization
of the aforementioned design software allows the prediction of the behavior of planar
transformers for forthcoming design experimentations.

This paper demonstrated the importance of adding grounded typical shielding layers
to a pulse transformer to drain the pulsating currents to ground, thus guarding EMC
standards and ensuring gate driver card reliability. This was validated by the decrease in
the stray capacitance from 2.2 pF for the unshielded transformer to 1.6 pF for the typically
shielded one, which led to improved dv/dt susceptibility decreasing from 0.8 V to 0.6 V.

Continuing studies will demonstrate an equivalent electronic circuit model of the
analyzed planar transformer based on S Parameter analysis and extracted RLGC values.
The transformer, in addition to the Haefely generator exploited, will be presented as an
equivalent circuit model to further validate the simulation attained by ANSYS Circuit
design. The modeling of the transformer in ANSYS Circuit will be based on the reduce
matrix option in ANSYS Q3D Extractor to extract the essential parameters.
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