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Abstract: Weather conditions have a significant impact on the installation of offshore wind turbines.
The rules for installation set clear limits. These limits are usually based on estimations of various
experts and not on real assumptions and measurements on-site. When wind speeds and wave heights
are too high, work cannot be carried out, and this leads to delays and additional costs. Therefore,
we have carried out a measurement campaign during the installation of rotor blades to investigate
to which extent the limits can be adjusted by using a tuned mass damper. The results from the
measurement campaign—specifically empirically derived significant wave height limits—are used in
a discrete event simulation. This study simulates delays resulting from weather conditions. Based on
this, the total installation costs are considered. The results of the measurement campaign show that a
safe installation with the use of a damper is possible at wave heights of up to 1.6 m. With the discrete
event simulation, it is possible to prove that 17.9% can be saved for the costs of the installation vessel.
In addition, the wind farm could be erected 32 days faster. Thus, it can be stated that the use of a
tuned mass damper simplifies the installation from a technical point of view and is economical.

Keywords: offshore wind energy; installation planning of offshore wind parks; discrete event
simulation; measurements; weather influences

1. Introduction

Offshore wind energy is getting more and more in direct competition with fossil energy.
Countries, such as Germany, are gradually rolling off their subsidization programs towards
subsidy-free offshore wind energy. Hence, offshore wind energy requires innovation, as
current processes are cost-intensive. Installation alone can make up 18% of the total cost in
an offshore wind park [1]. Two approaches are feasible with innovations or improvements:
Radical disruption by a complete redesign or an entirely new concept and incremental
innovation of existing processes or services. To decide which innovation or improvement
to pursue, a realistic economic and physical evaluation of the innovation’s feasibility is
needed. For processes, such as installing offshore wind parks, discrete event simulations
allow for risk, and therefore, cost assessment.

Furthermore, potential innovations or improvements can directly be assessed as to
their possible impact on cost reduction. Various authors have applied this approach
successfully. Barlow et al. investigated the impact of innovative developments on the
installation process for an offshore wind farm [2]. In a further study in 2017, Barlow
et al. developed a framework to support logistical decisions in installing offshore wind
farms [3]. In addition, Beinke et al. in 2017 conducted a simulation study to investigate the
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impact of a resource-sharing approach to installing an offshore wind farm [4], and Byon
et al. in 2017 conducted a simulation of the operation and maintenance of a wind farm [5].
However, as these simulations depend on the availability and quality of weather data and
the accuracy of process times and descriptions, results may differ from reality. To mitigate
these uncertainties, processes can be afflicted with a certain probability of delay. Rerunning
scenarios then yield average process times [6]. Furthermore, discrete event simulations do
not take the physics involved in specific process steps into account, which can be restricted
by environmental limits, such as wave height and wind speed. While these simulations can
answer the question “what is the impact of a certain process delay on the overall process
duration”, discrete event simulations yield no insight into the cause of delay. This becomes
more relevant when involved process steps depend on phenomena that are non-linear and
transient by nature, such as turbulence or wave and wind impact on marine structures.
Physical simulations or in-situ measurement campaigns must then be used to determine
the cause.

Figure 1 lays out the concept of the present study. A discrete event simulation setup
will be implemented, where the installation process limits, obtained through the results of
a measurement campaign, will be applied as boundary conditions.

Figure 1. Concept of connecting simulation and measurement campaign.

One of the main objectives for developing innovations in offshore wind energy is
to reduce the Levelized Cost of Electricity (LCoE). Thus, the discrete event simulations’
results estimate the overall installation costs, and the influence of installation bottlenecks
or the effect of process innovation on LcoE is calculated.

The installation process limits were obtained during the installation of the offshore
wind park Trianel Windpark Borkum II (TWBII); extensive measurements were carried
out to capture both installation times and the physical behavior of turbines and blades
undergoing installation. For further reference regarding details of the measurement cam-
paign, please see the publications of Sander et al. [7,8]. The measurement data is available
at https://zenodo.org/record/4498779 (accessed on 8 June 2021) [9]. Using field data,
such as the measurements from the TWBII installation, process times, and—by combining
field data with meteorological date—installation limits can be derived to yield realistic
boundary conditions for discrete event simulations. The measurement data from the TWBII

https://zenodo.org/record/4498779
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installation are of additional interest to investigate installation performance as 16 out of
a total of 32 turbines were installed using a tuned mass damper in the nacelle during
single blade installation, which in turn resulted in higher environmental limits for blade
installation [7,8]. Adding a tuned mass damper to enhance installation performance is a
possible process innovation that results in less austere environmental installation limits
and can be modeled accordingly in discrete event simulations.

In this study, the combination of a discrete event simulation and a real measurement
campaign will be used to identify potential savings in the use of tuned mass dampers for
installing rotor blades. In particular, we look at the opportunities for reducing the LCOE
that result from the use of a tuned mass damper. Thus, installing TWBII is simulated
using discrete event simulations. Initial and boundary conditions for the discrete event
simulations are derived from the measurement campaign. Once the baseline scenario
TWBII is modeled, environmental limits are varied to assess the impact of the different
limits on the overall installation time and costs. These variations in environmental lim-
its include the installation limits observed during installing TWBII with a tuned mass
damper present, but also exceed these limits to assess the impact of additional installation
process innovations.

2. State of the Art
2.1. Conventional Offshore Wind Park Installation

Conventional offshore wind park installation starts with the installation of foundations
into the seabed. Different types and concepts of foundations have emerged during the
history of offshore wind parks. Among them, the monopile foundation type has been the
common choice for water depths up to 30 m [10,11].

In parallel, the transport of required wind turbine components from their respective
production ports to a specified base port near the planned offshore wind park location
occurs. These components include the tower, the three rotor blades, and the nacelle, which
contains the drive train and sits on top of the tower. When the actual installation starts, a
jack-up installation vessel loads the components according to their capacity at the base port,
moves to the wind park location, installs wind turbines by assembling the wind turbine
parts, moves back to the base port, and repeats this process until all wind turbines are
installed. To be able to perform the installation, the vessel comes with a heavy-lift crane
installed. Furthermore, the vessel includes jack-up “legs” that extend downwards until
touching the seabed to lift the vessel above sea level, ensuring the vessel’s stability during
the installation, making the process independent from wave height restrictions. Due to
these specific functions, the charter rates of €70,000–€145,000 per day for these special ships
are high [6,12]. Besides the described steps, some further steps, such as cable installation
and commissioning, are also part of the installation process [13].

One of the main disadvantages of the conventional installation process is assembling
the wind turbine components directly at sea. High wind speeds occur, which are beneficial
once the wind park is put into operation, but unfavorable, while installing a delicate turbine
part as the blade. This causes waiting times for the expensive installation vessel [6].

Nevertheless, the conventional installation concept is still widely used as it has proven
itself as a successful and reliable way for offshore wind park installation. Alternative
concepts, such as the offshore feeder concept, in which the components are transported
to the installation vessel by a transport ship, have similar problems. Or rather, the issues
are even more significant here, as the lifting processes are significantly more complex [6].
Weather conditions also affect floating concepts, where the turbines are placed on a platform
and can be assembled in the harbor [13]. This is possible because the platform floats on
itself and can be towed by a vessel to the installation site. Weather conditions have a
significant impact on transport and anchoring. Depending on the concept, this can then be
done with an already fully installed system or components, such as the rotor blades are
installed in the field.
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For both installation and nominal operations, vibrations play have a huge impact;
artificially adding damping to the system to influence these vibrations has, therefore, been
widely covered in the literature. A simple and well-proven approach to reducing vibration
amplitudes is the deployment of tuned mass dampers. These simple systems feature
a damping mass, attached to both spring and damping elements, that can move freely
within a certain range inside of the turbine. Due to a phase lag between the motion of the
turbine and the damper’s mass, additional damping is added to the turbine. To achieve
maximum efficiency of a tuned mass damper, the eigenfrequency of the damper must
be aligned with the eigenfrequency of the turbine. Many modern wind turbines feature
tuned mass dampers, though they are usually designed for nominal operations, not for
installation. Recent studies showed a potential for tuned mass dampers to improve both
nacelle and blade installation in offshore wind turbines [14–16]. However, these studies rely
on numerical models to accurately model the physics of installations. To our knowledge,
the tuned mass damper used during the installation of the offshore wind farm Trianel
Windpark Borkum II was the first tuned mass damper that was specifically designed and
deployed for single blade installation. For details, please refer to [8].

2.2. Previous Research Regarding Offshore Wind Park Installation

Available research regarding installing offshore wind parks mainly focused on op-
timizing conventional installation concerning parameters, such as weather and resource
restrictions. Two main streams of works emerged to deal with the planning of the installa-
tion of offshore wind parks. The first stream focuses on optimizing the installation planning
using mathematical models, whereas the second stream used the simulation approach
to model the different installation processes using a discrete event simulation model to
evaluate specific assumptions and configurations. Ait Alla et al. and Irawan et al. used
mathematical models to generate an installation schedule [17,18]. Thereby, Ait Alla et al.
proposed a mathematical model to generate an aggregate medium-term installation plan
with the objective of cost reduction [17]. Irawan et al. developed a mathematical model
using integer linear programming to determine the optimal installation schedule that mini-
mizes total installation cost or total completion period [18]. They propose a bi-objective
optimization model that focuses on finding a trade-off between minimal construction times
and costs. As the scheduling problem is nondeterministic polynomial-hard, they apply
Compromise Programming using greedy heuristics to reduce computational efforts.

In Rippel et al., a mixed integer formulation for optimizing supply deliveries to the
base port is proposed [19]. Furthermore, an example of integrating this formulation into
a base port capacity optimization is presented, and a simulation study of the impact of
different resupply cycles on the efficiency of installation projects is conducted. The results
show that the resupply cycle has a small impact on the efficiency of the project, but an
enormous impact on the capacity of the base port.

Considering literature dealing with the simulation approach, Ait Alla et al., Muha-
bie et al., and Vis and Ursavas apply a simulation-based approach using discrete event
simulation models to determine the installation plan and processes sensitive to weather
restrictions [11,20,21]. In 2018, Muhabie et al. investigated the most effective approach
to installing offshore wind parks using discrete event simulation. In this context, deter-
ministic and probabilistic weather conditions were considered in their model to assess the
impact of weather conditions on the installation processes. In 2017, Ait Alla et al. proposed
a multi-agent-based simulation model to compare the conventional installation concept
with feeder concepts considering different factors like the number of wind turbines and
the distance of the wind park from shore. In 2019, Rippel et al. provide an extensive
overview of research efforts into simulating the installation of offshore wind parks [22].
More details about the current state of offshore wind turbine installations can be found in
Jiang’s technical review [13].

All previous studies cited above that have analyzed the installation costs of wind farms
are only based on estimated process descriptions, but not on real process measurements like
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this study. To our best knowledge, there is no work that uses real process measurements
and investigates the impact of weather-related waiting times in the installation of offshore
wind turbines when innovative technologies change weather and process conditions.

2.3. Field and Simulation Data

Due to very limited access to offshore wind park installations and the associated cost
of accessing installation sites, few in-situ experiments targeting the process of installation
have been carried out. In 2018, Maess et al. used an integrated GNSS-IMU approach to
track blade motions during crane operations to assess the induction of motions onto the
blade by the crane [23]. However, the measurements took place in the harbor at the quay;
thus, no significant waves were present.

Other studies utilized Supervisory Control and Data Acquisition data from operational
wind turbines. However, these data do not cover the installation phase [24–27] as the
turbines are typically not online during installation.

Several numerical studies have been carried out investigating turbine behavior during
turbine installation. Most studies concluded that wind-induced motions of the blade and
wind and wave-induced motions of the tower limit the installation of blades [28–31].

3. Material and Methods
3.1. Trianel Windpark Borkum II Installation

The Trianel Windpark Borkum is an offshore wind park in the German Exclusive Eco-
nomic Zone in the southern North Sea. It was built in two phases with 200 MW each. The
turbines of phase 1 have been in operation since 2015. The installation of the second stage,
Trianel Windpark Borkum II, began on the 1 August 2019. The base harbor for the project
was Eemshaven in the Netherlands. Two different jack-up vessels were used: Jan de Nul’s
Taillevent and Fred Olsen Wind Carrier’s Blue Tern, as shown in Figure 2. The turbines are
32 Senvion 6.2M152 with a rated power of 6.33 MW, a rotor diameter of 152.0 m, and a hub
height of 104.5 m above mean sea level. The park is located northwest of the German island
Borkum. Notably, 16 out of 32 turbines were installed with a tuned mass damper specifically
designed to be used during single blade installation. The tuned mass damper targeted the
first fore-aft and side-side frequency of the turbine during installation, significantly reducing
tower top motions, thus simplifying single blade installation. The tuned mass damper was
used for turbines 17 to 32 during the winter months of the installation.

Figure 2. Blade installation taking place at Trianel Windpark Borkum II.
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A set of motion sensor boxes was deployed during the installation campaign to acquire
process times and to monitor the structural response of the turbines during installation.
Figure 3 illustrates the placement of the motion sensor boxes.

Figure 3. Placement of motion sensor boxes on different components during the installation of Trianel
Windpark Borkum II. The blade lifting yoke is abbreviated as SBIT (Single Blade Installation Tool).
The two images on the right show the sensor boxes placed on the helicopter hoisting platform atop
the nacelle (top image), the SBIT, blade root side (bottom image). Modified after Sander et al. [7].

The motion sensor boxes featured Global Navigation Satellite Systems (GNSS) re-
ceivers and linear acceleration, angular velocity, and magnetic field sensors, as shown in
Figure 4. Sensor boxes were installed on the transition piece, on the nacelle, and on the
blade lifting yoke—the latter featured two sensor boxes to enable blade orientation during
installation. With the deployment of the tuned mass damper, an additional sensor box
was placed on the tuned mass damper, yielding both activation times, as well as relative
motions between the turbine and the damping mass.

The measurement campaign showed that the average installation time during the
installation of the blades was 4 h. After the tuned mass damper was deployed for turbines
17–32, installation time was reduced to 2.5 h. In addition, it was shown that the wave
height, in particular, influenced the successful installation of the rotor blades, which was
not initially considered as an essential factor in the planning phase of the installation. In
fact, the wave height induces strong tower top motions, while the wind speed had only a
minor influence on the blade dangling from the crane. The use of the damper has also led
to significant advantages here. Figure 5 shows the distribution of successful installations
of the rotor blades depending on the wave height. Without the damper, most blades
were installed at significant wave heights below 1.25 m. It should be mentioned that the
installation attempts were carried out with and without dampers at different wave heights
over the shown spectrum. Unfortunately, the number of failed installation attempts has not
been recorded. With the use of the tuned mass damper, the blades were installed at a much
higher significant wave height (up to 2 m) [32], where most installations were carried out
at a wave height of 1.25 m.
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Figure 4. Data acquired by the motion sensor boxes installed on top of the nacelle. (A) the raw
accelerations were filtered and numerically integrated twice, resulting in the trajectory of the nacelle
in the seaplane. GNSS altitude tracks (B) recorded simultaneously at the blade lifting yoke reveal
installation times. Calculating the absolute value of the locus vector of the nacelle results in the
deflection, a measure for the amount of distance the nacelle has been moved from its resting position
(C). Combining deflection and sea state data reveals the correlation between significant wave height
and structural response in the form of deflection (D). Further details on the measurement campaign
are provided by Sander et al. [7,8]. The measurement data is available at https://zenodo.org/record/
4498779 (accessed on 8 June 2021) [9].

Figure 5. Distribution of wave height during successful blade installations [29].

3.2. Simulation Scenario for the Discrete Event Simulation

The simulation study represents the installation of the wind park TWBII. Within this
study, 32 wind turbines are installed in the southern North Sea, approximately 50 km away
from shore. The installation scenario is a conventional installation using fixed foundations
(monopiles) that starts on the 1st of August, utilizing a jack-up vessel that can install three
turbines per cycle.

As most of the processes during installation are subject to weather condition restric-
tions, around ten years of historical weather data (1991 to 2000) were used to represent a
realistic range of weather conditions that include years, which were especially suitable or
unfavorable for the installation [33].

https://zenodo.org/record/4498779
https://zenodo.org/record/4498779
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Figure 6 shows a simplified overview of the processes for the conventional installation
of an offshore wind turbine. Each of the illustrated processes consists of several sub-steps
that are not shown for the sake of a clear overview. Every step has an expected operation
duration and restriction. In reality, the execution duration of a process varies, depending on
various circumstances. Thus, a triangular distribution was applied to the process duration
to account for variations in execution duration. The triangular distribution was chosen
such that the process is completed in 120% of the time of the expected duration for the
worst possible case, and in 90% of the time in for the best case.

Figure 6. The installation process of an offshore wind turbine.

The benefits of improving the single blade installation are investigated by performing
a parameter variation for the wave height limit for this process step. The limit for the
execution of the installation process is set at 1.0, 1.3, 1.6, and 1.9 m significant wave height
in the simulation. The limits were chosen based on the measurement campaign carried out,
as the most significant changes were expected. The wind speed limit is fixed to 12 m/s. In
addition, a learning curve was considered when installing the rotor blades.

Moreover, realistic cost rates following Oelker et al. have been included [6]. One
hundred simulations were run in total for every wave height limit configuration. The main
parameters for the rotor blade installation process are summarized in Table 1.

Table 1. Overview of limits used for blade installation in the simulation.

Parameter Value

Limit wave height 1.0, 1.3, 1.6 and 1.9 m
Limit wind speed 12.0 m per second

Mean installation time 4.0 h

In particular, the costs and waiting times for the installation vessel are considered
within the simulation framework. For this purpose, the results are compared with each
other in the different configurations.

4. Results and Discussion
Discrete Event Simulation

Figure 7 shows the development of the costs for the installation vessel in the modeled
scenarios. The costs for the charter of the vessel, the crew, and fuel costs were considered.
Increasing the allowable limit for significant wave height from 1.0 to 1.3 m, the median
for potential savings for the installation vessel is 13.1%. If the limit raises to 1.6 m, 17.9%
(median) of the costs can be saved. Beyond that, the potential savings are less significant.
With a significant wave height of 1.9 m, the median is 22.1% for the savings.
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Figure 7. Costs for the installation vessel depending on wave height.

The results of the measurement campaign have shown that it is technically possible to
carry out successful installations in the range of up to 1.6 m safely and reliably with the
use of the tuned mass damper; without a tuned mass damper, the limit for the installation
of the rotor blades is 1.0 m.

Looking at the charter rate alone and assuming €120,000 per day [6], the pure charter
costs for an installation without dampers would be €15,600,000. With savings of 17.9%,
around €2,800,000 can be saved in charter costs alone, not including the costs for fuel and
personnel. As mentioned at the beginning, the overall aim is to reduce the LcoE. The
electricity production costs result from the capital costs, the fixed and variable operating
costs, the fuel costs if applicable, and the targeted return on capital over the working
period. In 2018, the LcoE for an offshore wind turbine was 7.49 to 13.79 €Cent/kWh [34]. A
study by Fraunhofer ISE sees potential savings primarily in the costly installation of the
systems [34]. These potentials were proven within the study carried out.

Figure 8 additionally shows the waiting times and the total operation time of the
installation vessel in relation to the wave height. Again, it can be observed that the waiting
time of the vessel can be significantly reduced with a significant wave height limit of 1.3 m.
The curve for the operation duration depends on the waiting time and therefore has a
similar course.

Figure 8. Distribution of waiting times and total operation duration depending on wave height.

Overall, it shows that the waiting times, and thus, the costs for the installation vessel
can be significantly reduced by using a tuned mass damper. In order to be able to evaluate
the use of the technology conclusively, the costs for the development and production of the
technology would have to be compared to the potential savings. Unfortunately, this data is
not available, whereby the costs for a damper are estimated at €50,000 per piece. However,
it can be assumed that the amortization can easily be realized within the installation of a
wind park, such as TWBII.
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5. Conclusions and Outlook

This study showed the influence of increasing wave height limits during the installa-
tion of rotor blades. The measurement campaign showed that wave height is the crucial
parameter for installing the rotor blades. For this reason, only this parameter was varied in
the discrete event simulation, and, for example, the limits for the wind speed were kept
the same.

It was shown that even a slight increase in the wave limit from 1.0 to 1.3 m represents
a savings potential of 13.1% (median) for the costs of the installation vessel. Increasing the
wave limit requires the use of specialized technology, in this case, tuned mass dampers.
The use of this technology leads to a reduction in LCoE, making offshore wind energy a
more competitive energy source and represents a contribution to satisfying the ongoing
demand for sustainable and renewable energy.

In future studies, a detailed cost analysis for the use of tuned mass dampers will be
performed. The tuned mass dampers used in the measurement campaign were explicitly
designed for the wind turbines installed in the TWBII wind park. It needs to be investigated
how much cost and effort is required to modify such a mass damper for a different wind
turbine type and investigate the overall development costs, product costs, and maintenance
costs of such mass dampers, and how often they can be reused.

Furthermore, it also needs to be investigated if the determined savings from this
study are transferable in general. For this, weather and other installation conditions of
the North Sea need to be compared with those from other offshore installation locations,
and the installation schedules and times need to be compared with those from other
installation campaigns.

Other than that, we also plan to identify further bottlenecks in the installation process
through a systematic approach. This can also be done, for example, using CFD simulations
instead of costly measurement campaigns.
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