
energies

Article

Optimization of Wind Energy Battery Storage Microgrid by
Division Algorithm Considering Cumulative Exergy Demand
for Power-Water Cogeneration

Mohammadali Kiehbadroudinezhad 1 , Adel Merabet 1,* and Homa Hosseinzadeh-Bandbafha 2

����������
�������

Citation: Kiehbadroudinezhad, M.;

Merabet, A.; Hosseinzadeh-

Bandbafha, H. Optimization of Wind

Energy Battery Storage Microgrid by

Division Algorithm Considering

Cumulative Exergy Demand for

Power-Water Cogeneration. Energies

2021, 14, 3777. https://doi.org/

10.3390/en14133777

Academic Editor:

Djaffar Ould-Abdeslam

Received: 26 May 2021

Accepted: 18 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Engineering, Saint Mary’s University, Halifax, NS B3H 3C3, Canada;
mohammadali.kiehbadroudinezhad@smu.ca

2 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and
Technology, University of Tehran, Karaj 77871-31587, Iran; homa.hosseinzadeh@ut.ac.ir

* Correspondence: adel.merabet@smu.ca; Tel.: +1-902-420-5712

Abstract: This study investigates the use of division algorithms to optimize the size of a desalination
system integrated with a microgrid based on a wind turbine plant and the battery storage to supply
freshwater based on cost, reliability, and energy losses. Cumulative exergy demand is used to identify
and minimize the energy losses in the optimized system. Division algorithms are used to overcome
the drawback of low convergence speed encountered by the well-known method genetic algorithm.
The findings indicated that there is a positive relationship between cost, cumulative exergy, and
reliability. More specifically, when the loss of power supply probability is 10%, compared to when it
is 0%, the total cumulative exergy demand and total life cycle cost are reduced by 34.76% when the
battery is full and 45.44% when the battery is empty and there is a 44.43% decrease in total life cycle
cost, respectively. However, the more reliable system, the less exergy is lost during the production of
1 m3 freshwater by desalination integrated into wind turbine plant.

Keywords: wind energy; cumulative exergy demand; reliability; optimization; division algorithm;
desalination

1. Introduction

The 35% growth of the world population between 2015 and 2050 not only increases the
demand for energy resources but also, leads to the rapid increase in the demand for fresh-
water [1]. Freshwater resources on Earth are limited, and to cope with the global freshwater
demand, desalination is introduced as one of the most feasible solutions [2]. Among the
various available technologies for desalination, reverse osmosis systems are recognized as
economic technology [3]. However, reverse osmosis systems are energy-intensive; in better
words, desalination of 1 m3 of freshwater approximately consumes 4 kWh of energy [4].
To address this challenge, the integration of desalination into renewable energy systems is
suggested [5].

Despite all the favorable features of renewable energy, such as wind energy, renewable
energy systems suffer from a time mismatch between power generation and consumption
and subsequently low reliability [6]. The battery bank as a backup power can partly
solve the problem [7]. However, consumption of non-renewable energy in battery bank
manufacturing and even in the construction of renewable energy plants such as wind
farms has caused broad concerns. Therefore, it is necessary to study the energy demand in
the life cycle of electricity generation from wind-based systems including the total energy
consumed in the manufacturing of system components, especially batteries.

Cumulative energy demand (CED) is one of the most important methodologies for
studying and quantifying energy consumption according to a cradle to grave approach. It
can calculate the total energy demand to produce a product or perform a process over its
life cycle, from material extraction to waste management [8]. On the other hand, Bahlawan
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et al. [9] reported a strong link between CED and critical environmental impacts such as
abiotic resource depletion and global warming potential. However, it is based on the first
law of thermodynamics; thus, its scientific robustness is not appropriate [10]. Also, it does
not consider non-energetic materials and focus on the sources of the calorific value. In
comparison, cumulative exergy demand (CExD) is based on thermodynamics’ second law
and includes non-energetic resources such as minerals and metal [10–12]. This indicator is
introduced to depict the total exergy removal from nature to produce a product or perform
a process [13]. Therefore, it could be a suitable indicator to study the energy in the life cycle
of renewable energy systems.

On the other hand, high cost is the most significant barrier to renewable energy
systems acceptance, as reported by Iskin et al. [14]. Although the cost of renewable energy-
based systems has considerably reduced in recent years, they are still more expensive
than fossil fuel-based systems [15]. Therefore, cost reduction is a crucial parameter for the
successful adoption of renewable energy-based systems [16]. Various methods examine
the costs in systems, life cycle cost (LCC) computes all production costs of a product with
relatively high operating costs/long life span [17].

To have a reliable, low CExD, and cost-effective system based on renewable energy
resources, it is required to optimize the size of the system. It should be noted that oversizing
the system suffers from high initial costs, while its undersizing leads to energy shortfalls
and operational limitations, despite lower initial costs [18]. Optimizing hybrid renewable
energy systems reduces initial costs by energy storage and increases reliability due to
various energy resources. The genetic algorithm (GA) as a population-based optimization
method is widely used in hybrid renewable energy systems to obtain the optimal solution
for a nonlinear optimization problem [19–23]. However, GA is easily trapped into local
optimization [24]. Also, it has been reported that in solving real-world problems with
complicated landscapes, GA suffers from low convergence speed [25]. For solving this
problem, novel algorithms are proposed and developed to optimize the multi-objective
problems. Recently, Kiehbadroudinezhad et al. [26] developed a novel algorithm named
division algorithm (DA) to optimize reliable and cost-effective desalination based on
renewable energy resources. They claimed that in solving problems, DA is flexible, simple,
precise, and fast compared to GA.

Generally, islands and higher altitude zones that are usually far from freshwater
sources and close to the seawater have a high potential to use wind energy to produce
fresh water from the desalination process [27]. Due to this fact, the present study proposes
using wind energy to generate the electricity required in the desalination process to supply
freshwater to the inhabitants of Larak Island, Iran. Nevertheless, as mentioned, optimal
sizing of systems based on renewable energy can lead to increased cost-effectiveness and
reliability as well as exergy management. Accordingly, this paper searches for the best
system size based on cost, reliability, and exergy demand which has been neglected so far.

Although various studies design, model, and optimize desalination integrated with
renewable energy in terms of size, reliability, and cost, but the CExD of systems is not still
widely discussed. This paper has provided a deeper insight into the role of optimal size
and reliability on the exergy flow of desalination. In better words, this paper contributes to
existing knowledge of wind energy battery storage microgrid by providing a new algorithm,
that is, DA, and a new objective function, that is, minimum CExD. The findings reported
here contribute to a better understanding of exergy flow in renewable energy systems and
provide a basis for paying attention to optimizing the exergy flow in renewable energy
systems. The findings from this study also contribute to understanding the relationship
between exergy flow and reliability in renewable energy systems.

To achieve the purpose, the first section of this paper explains the modeling of de-
salination integrated with a renewable energy system. The second section focuses on cost
modeling, followed by modeling cumulative exergy demand and cumulative degree of
perfection (CDP). The third section describes system reliability followed by the power control
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system. The fourth section explains the problem of optimization and the proposed algorithm.
Finally, in the fifth section, the optimization results will be presented and discussed.

2. Materials and Methods
2.1. Modeling of Wind Turbine (WT)

Wind is introduced as the most mature and cost-efficient renewable resource for elec-
tricity generation among different renewable resources [28–30]. A wind turbine converts
the mechanical energy of wind into electrical energy [31]. Generally, two influential pa-
rameters play a critical role in the amount of power output of WT, that is, wind speed and
height of the WT hub that could be modeled using Equation (1) [26]:

V
V0

=

[
h
h0

]α

(1)

In this equation, α denotes the power-law exponent, and V and V0 are wind speeds at
height h and h0 or reference height. Moreover, the power output of WT could be modeled
as follows [7]:

PWT =


0, V(t) ≤ Vci or V(t) ≥ Vco

a×V3 − b× Pr, Vci ≤ V(t) ≤ Vr
Pr, Vr ≤ V(t) ≤ Vco

(2)

a =
Pr(

Vr
3 −Vci

) (3)

b =
Vci

3(
Vr

3 −Vci
3
) (4)

where PWT and Pr are power output from WT and rated power of a WT, respectively. Also,
Vci, Vco, and Vr represent cut-in wind speed, cut-out wind speed, and rated WT speed,
respectively. When the number of WT (NWT) is more than 1, the power output of WTs (PT)
is obtained using Equation (5):

PT = NWT × PWT (5)

Moreover, Pr could be modeled using Equation (6):

Pr = 1/2× AWT × Cp × ρa × ηr × ηWT ×Vr
3 (6)

In this equation, AWT is the area swept by WT’s blades, ηWT is WT efficiency, ηr is
reducer efficiency, ρa is the air density, and Cp is the power coefficient.

2.2. Modeling of Battery Bank Storage (BBS)

As mentioned, batteries are commonly used in systems based on renewable energy to
achieve higher reliability. When the desalination plant’s power demand is less than the
power generated by WT, BBS acts as a power storage unit that the capacity of the BBS in
this mode could be calculated using Equation (7) [32]:

SOC(t) = SOC(t− 1)× (1− σ) +

[
PWT(t)−

PL(t)
ηInv

]
× ηBC (7)

where SOC(t) is the BBS charge at time t (SOCmin ≥SOC(t) ≥ SOCmax) and SOC(t − 1)
denotes the BBS charge at time t − 1. Also, PL is the desalination plant’s power demand, σ
represents the hourly self-discharge rate, ηInv shows charge efficiency of inverter efficiency,
and ηBC indicates charge efficiency of BBS.
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On the other hand, when the desalination plant’s power demand is more than the
power generated by WT, BBS acts as power support units that the available BBS capacity in
this mode, that is, discharging mode, could be calculated using Equation (8):

SOC(t) = SOC(t− 1)× (1− σ)−
[

PL(t)
ηInv

− PWT(t)
]

/ηBF (8)

where ηBF denotes the discharge efficiency of the BBS. It should be noted that loss of power
supply (LPS) could also be estimated by Equation (9):

LPS(t) =
PL(t)
ηInv

− PWT(t)− [SOC(t − 1) × (1 − σ)− SOCmin(t) ]× ηBF (9)

2.3. Modeling of Seawater Reverse Osmosis Desalination (SWROD)

Power consumption per hour in a desalination plant depends on the volume of hourly
freshwater demand that is obtained as follows:

PDEM = HWD × SDC (10)

PDEM is the hourly power consumption of the desalination plant, HWD is the hourly
water demand, and SDC is the specific energy consumption of the desalination plant. In the
current study, the power required by the desalination plant is determined by ROSA soft-
ware. This software could also assess the desalination plant’s specific energy consumption,
freshwater and seawater quality, membrane type, flow permeate rate, and structure and
pressure of the vessels [26]. In this study, the daily water capacity that desalination could
generate is estimated as follows [33]:

DWC = 24×
(

PD
SDC

)
(11)

In this equation, DWC and PD are daily water capacity and desalination installed
power, respectively. Overall, PD is between minimum power (PMD) and nominal power
(PDI) [34]. Notably, the excess freshwater produced by the desalination plant is stored in
the water tank (WTa). If the freshwater is kept for two days, the water tank capacity is
obtained as follows:

VWTa = 2× DWD (12)

VWTa is the water tank’s capacity, and DWD is the total capacity pertaining to the daily
freshwater demand.

2.4. Economic Modeling

LCCWT or total life cycle cost of WT includes total investment cost (CCWT) and the
maintenance cost (MCWT) of WT that could be modeled as follows:

LCCWT = CCWT + MCWT (13)

In this equation, CCWT and MCWT are obtained using Equations (14) and (15), respectively:

CCWT = AWT × CWT × CRF (14)

MCWT = CMnt-WT × AWT ×∑19
k=0

1

(1 + i)k × CRF (15)

CWT is the WT price and the WT installation fee, CMnt-WT is the maintenance cost of
each WT per year, and CRF is the capital recovery coefficient which is defined as follows:

CRF(i, n) =
i(1 + i)n

(1 + i)n − 1
(16)
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In this equation, I indicates the system’s interest rate, and n denotes the system’s life span.
LCC of BBS also is the sum of the investment cost of BBS (CCBBS) and maintenance and

operation cost of BBS (MCBBS) that could be calculated Equations (17) and (18), respectively:

CCBBS = NBBS × PWBBS × CRF (17)

MCBBS = NBBS × CMnt−BBS (18)

NBBS is the number of battery banks, CMnt-BBS is the maintenance cost of each BBS in
a year, and PWBBS is payment present worth factor of battery that could be obtained as:

PWBBS = CBBS × ∑
k=0,5,10,15

1

(1 + i)k (19)

where CBBS is battery cost. Notably, in this study, the battery bank lifetime is assumed five years.
Also, alternating current is converted to direct current by converter/inverter that its

LCC of converter/inverter could be determined as follows:

LCCConv/Inv = CCConv/Inv + MCConv/Inv (20)

where CCConv/Inv is the investment cost of the electric current converter and could be
expressed as follows:

CCConv/inv = NConv/Inv × PWConv/Inv × CRF (21)

where NConv/Inv is the number of converters, and PWCon/Inv is the payment present worth
factor of converter/inverter as follows:

PWConv/inv = CConv/Inv ×∑k=0,10
1

(1 + i)k (22)

MCConv/Inv, that is, the maintenance cost of the electric current converter, is modeled
using Equation (23):

MCConv/Inv = NConv/Inv × CMnt−Conv/Inv (23)

CMnt-Conv/Inv is the maintenance cost of the converter per year.
Finally, LCC of SWROD is the sum of the investment cost of SWROD (CCSWROD), the

maintenance cost of SWROD (MCSWROD), membrane replacement cost (TCMR),
water tank cost (CCWTa), and the chemical cost (TCCH) that could be computed using
Equations (24)–(28), respectively:

CCSWROD = CSWROD ×CaWD × CRF (24)

MCSWROD = CMnt−SWROD × DWD (25)

TCMR = CMR ×CaWD × NMe (26)

CCWTa = CWTa ×VWTa × CRF (27)

TCCH = CCH × DWD (28)

In Equation (24), CSWROD and Cawd are the cost of the SWROD plant and the capacity
of the desalination plant per day, respectively. In Equation (25), CMnt-SWROD is the main-
tenance cost of SWROD per year and DWD is the total freshwater demand per day. In
Equation (26), CMR and NMe are the cost of membrane replacement and the number of
membrane replacements per year, respectively. In Equation (27), CWTa is the sum of the
price to buy and install the water tank, and VWTa is the volumetric capacity of the water
tank. Finally, in Equation (28), CCH is the cost of chemicals used in desalination.
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2.5. Modeling Cumulative Exergy Demand (CExD)

To find an optimized model in hybrid energy systems, identifying and minimizing
the energy losses is essential. However, conventional energy analysis, which relies on
the first law of thermodynamics, cannot consider the quality of energy inputs and energy
losses [35]. Therefore, the exergy analysis based on the second law of thermodynamics has
been developed to meet this challenge, as previously mentioned. The CExD indicates the
sum of exergy of all the natural resources used to produce a product during the life cycle,
that is, the cradle to grave approach, that could be determined by the natural resources’
exergy values [36]. To calculate the CExD, first, inventory data were collected from all
energy and materials used in freshwater production by developed configuration in the
current study, that is, seawater reverse osmosis desalination/wind turbine/battery bank
storage (SWROD/WT/BBS) (Figure 1). Data related to energy carriers and materials used
in producing components in the system named (background data) were extracted from
EcoInvent database [37]. Data related to chemical consumption for membrane cleaning
and other chemicals were not included in the analysis. It should be noted that energy
form categories of CExD include “non-renewable, fossil”, “non-renewable, nuclear”,”non-
renewable, primary”, “non-renewable, minerals”, “non-renewable, metals,” “renewable,
kinetic”, “renewable, potential”, “renewable, solar”, “renewable, biomass” and “renewable,
water”. In the current research, CExD was calculated for 1 m3 as the functional unit (FU).
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Figure 1. Developed configurations for freshwater production in the current study.

In addition, CDP was obtained for comparative exergy analysis of freshwater produc-
tion by developed configuration. CDP is defined as the ratio of the exergy content of the
final product (electricity generated) to the total CExD of the final product [38]. It should be
noted that a higher CDP implies better savings and more efficient consumption of inputs
in the system. It should be noted that results are provided both for when the batteries are
fully charged and for when the batteries are charged using a turbine.

2.6. Modeling the System Reliability

The power required for desalination should be uninterruptedly provided by a reliable
power generating system. Loss of power supply probability (LPSP) is introduced as a
critical parameter to determine the reliability of a power-generating system [39]. Generally,
LPSP that could be calculated by Equation (29) varies from zero to one; when it is zero, the
power requirement can be satisfied, and when it is one, it cannot be satisfied [40,41].

LPSP(t) = ∑T
t=1 LPS(t)

∑T
t=1 PL(t)

(29)
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2.7. Power Control System

In this study, a power control system is designed according to the relationship between
the power demand of desalination and power generated by WT (Figure 2). When the power
demand of desalination and power generated by WT are the same, all the power generated
is directed to desalination, and no power is stored in the BBS (Equation (30)).

PWT = PLoad (30)
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On the other hand, when the power demand of desalination is more than the power
generated by WT, the power required could be supplied using BBS (Equation (31)).

PWT < PLoad (31)
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Finally, when power the demand of the desalination is lower than the power generated
by WT, the surplus power could be stored in BBS. The remaining surplus power could also
be directed out of the system by the damper (Equation (32)).

PWT > PLoad (32)

2.8. Optimization Problem

Typically, the objective function is defined based on one or more continuous and/or
discrete decision variables that the values of these variables are determined by the opti-
mization models [42]. For optimizing the size of the system, two decision variables are
considered in the current study, that is, AWT as a continuous decision variable and NBBS as
a discrete decision variable.

According to optimization objectives, the objective function could be defined using
Equation (33):

Minimize TLCC ( AWT , NBBS) = Min. ∑m=WT,BBS,Conv/Inv,SWROD TLCCm (33)

There are constraints in solving the optimization problem of this study that are listed
in Equations (34)–(39):

AWT ≥ 0 (34)

NBBS ≥ 0 (35)

LPSPm ≥ LPSP (36)

SOCmin ≤ SOC(t) ≤ SOCmax (37)

SOCmin = (1–DOD)× SBBS (38)

PWT(t) + PBBS(t) ≥ PL(t) (39)

LPSPm is the maximum LPSP, and SBBS and DOD represent nominal battery bank
capacity and the battery bank’s depth of discharge, respectively.

As previously mentioned, this study follows the DA, which is faster, simpler, more
flexible, and precise than the GA for optimization, since it overcomes the disadvantages
of GA [26,43]. For example, the DA could work without operators like crossover and
mutation and reduce the complexity. The implementation process of the DA for the current
study coded by MATLAB software is demonstrated in Figure 3.

2.9. Characteristics of Case Study

The design of a renewable energy-based desalination plant in Larak Island, Iran is
presented as a goal. Larak Island (Longitude: 56◦21′20.0′′ E and Latitude: 26◦51′12.0′′ N)
with an area of about 49 km2 is an island off the coast of Iran (Figure 4). The drinking
water of the island’s households, estimated at 261 households, is mainly provided by
Bandar Abbas, Iran. This dependence leads to difficulties in access to freshwater for
the inhabitants of this island. Nevertheless, this island is surrounded by the sea; thus,
launching a desalination plant could be a promising option for non-dependence on other
areas in the water supply. On the other hand, according to data extracted from NASA
(https://power.larc.nasa.gov/ accessed on 12 January 2020), there is a high potential for
using wind as a renewable energy resource.

https://power.larc.nasa.gov/
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3. Results and Discussion

According to the objective function and the DA, the size of the components of desali-
nation based on wind energy are optimized, and the results are summarized in Table 1.
Findings illustrate that there is an inverse relationship between LPSP and LCC and CExD
for producing 1 m3 of freshwater. More specifically, when LPSP is 10%, compared to LPSP
is 0%, the total CExD is reduced by 34.76% and 45.44%, for when the battery is full and
empty, respectively. Also, there is a 44.43% decrease in the total LCC of 1 m3 of freshwater.
In our previous study [26], which focused on costs and reliability, cost optimization results
were well discussed. This study focuses on CExD for producing 1 m3 of freshwater, which
is discussed in more detail below.

Table 1. LCC and CExD or producing 1 m3 of freshwater according to the optimal size of system components. Data
associated with the size of system components extracted from [26].

SWROD AWT (m2) NBBS LPSP (%) LCC ($/m3) CExD (MJ/m3) A CExD (MJ/m3) B

1 104.6 117 0 38.10 12.80 18.21
1 92.1 110 2 33.33 11.50 16.61
1 78.8 101 5 29.03 10.10 14.80
1 61.5 90 10 21.17 8.35 12.52

A When the battery is full. B When the battery is empty.

Although the energy consumed in desalination is wind and does not have concerns
associated with non-renewable energy, one should not ignore the energy consumption in
the manufacturing process of components. Knowledge of the type and amount of energy
consumption in the life cycle of producing 1 m3 of freshwater by desalination integrated to
WT helps better manage energy consumption. The results presented in Table 2 show the
type and amount of energy consumption for producing 1 m3 freshwater in terms of CExD
when the battery is full. The results indicate that exergy removal from nature in freshwater
production by SWROD/WT/BBS is primarily in the form of “renewable, kinetic” in the
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range of 5.56–9.46 MJ/FU and followed by “non-renewable, fossil” in the range of 1.8–2.17
MJ/FU. Other impacts categories have less of a contribution in the total amount of exergy
removal from nature. The contribution of impact categories in developing the total CExD
for producing 1 m3 freshwater are presented in Figure 5, for LPSP it is 0%, 2%, 5%, and 10%.

Table 2. CExD for producing 1 m3 freshwater by SWROD/WT/BBS in various impact categories when the battery is full.

Impact Category Unit
LPSP (%)

0 2 5 10

Total MJ 1.28 E + 01 1.15 E + 01 1.01 E + 01 8.35 E + 00
Non-renewable, fossil MJ 2.17 E + 00 2.07 E + 00 1.95 E + 00 1.80 E + 00

Non-renewable, nuclear MJ 2.17 E − 01 2.05 E − 01 1.91 E − 01 1.74 E − 01
Renewable, kinetic MJ 9.46 E + 00 8.33 E + 00 7.12 E + 00 5.56 E + 00
Renewable, solar MJ 4.30 E − 05 3.99 E − 05 3.61 E − 05 3.15 E − 05

Renewable, potential MJ 9.88 E − 02 9.22 E − 02 8.42 E − 02 7.43 E − 02
Non-renewable, primary MJ 1.71 E − 04 1.61 E − 04 1.48 E − 04 1.31 E − 04

Renewable, biomass MJ 5.51 E − 02 5.15 E − 02 4.71 E − 02 4.16 E − 02
Renewable, water MJ 5.94 E − 02 5.58 E − 02 5.13 E − 02 4.58 E − 02

Non-renewable, metals MJ 7.30 E − 01 7.09 E − 01 6.83 E − 01 6.52 E − 01
Non-renewable, minerals MJ 1.35 E − 02 1.24 E − 02 1.11 E − 02 9.51 E − 03

Table 3, also shows the type and amount of energy consumption for producing 1 m3

freshwater in terms of CExD when the battery is empty and energy must be supplied by
turbines. In addition, the contribution of impact categories in developing the total CExD in
this mode, for producing 1 m3 freshwater are presented in Figure 6, for LPSP is 0%, 2%,
5%, and 10%. Due to the consumption of wind energy to charge the batteries, the share of
this energy is increased compared to when the batteries are fully charged.

Table 3. CExD for producing 1 m3 freshwater by SWROD/WT/BBS in various impact categories when the battery is empty.

Impact Category Unit
LPSP (%)

0 2 5 10

Total MJ 1.82 E + 01 1.66 E + 01 1.48 E + 01 1.25 E + 01
Non-renewable, fossil MJ 2.41 E + 00 2.29 E + 00 2.15 E + 00 1.98 E + 00

Non-renewable, nuclear MJ 2.40 E − 01 2.27 E − 01 2.11 E − 01 1.91 E − 01
Renewable, kinetic MJ 1.45 E + 01 1.31 E + 01 1.15 E + 01 9.48 E + 00
Renewable, solar MJ 4.83 E − 05 4.49 E − 05 4.07 E − 05 3.56 E − 05

Renewable, potential MJ 1.10 E − 01 1.03 E − 01 9.42 E − 02 8.32 E − 02
Non-renewable, primary MJ 1.82 E − 04 1.71 E − 04 1.57 E − 04 1.40 E − 04

Renewable, biomass MJ 6.16 E − 02 5.76 E − 02 5.27 E − 02 4.66 E − 02
Renewable, water MJ 6.36 E − 02 5.97 E − 02 5.49 E − 02 4.90 E − 02

Non-renewable, metals MJ 7.71 E − 01 7.48 E − 01 7.19 E − 01 6.84 E − 01
Non-renewable, minerals MJ 1.63 E − 02 1.51 E − 02 1.36 E − 02 1.17 E − 02

As shown, when system reliability is reduced, a decrease in the contribution of
“renewable, kinetic” or wind energy is recorded. In contrast, an increase is shown in the
contribution of “non-renewable, fossil.” Therefore, it can be concluded that the lower the
system’s reliability, the greater the share of “non-renewable, fossil” in the system. Given
the adverse consequences of non-renewable energy, finding its source in the current study
is essential. Figure 7 demonstrates the contribution of various system components in
producing 1 m3 freshwater by SWROD/WT/BBS for the “non-renewable, fossil” impact
category based on different LPSP (%) when the battery is full (Figure 7A) and when the
battery empty (Figure 7B).
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The water tank (polyethylene) exhibited the highest effect on the “non-renewable,
fossil” impact category, followed by battery for all different LPSP (%). Fossil fuels often
produce polyethylene. More specifically, ethylene gas is the main ingredient for polyethy-
lene made from crude oil and natural gas [44]. Thathiana Benavides et al. [44] reported that
feedstock production, that is, natural gas and crude oil, is the most significant contributor
to the consumption of fossil fuels in polyethylene production. Although the recycling of
waste polyethylene is widely regarded as a cost-effective and eco-friendly technology [45],
appropriate approaches should be considered that reduce the use of polyethylene. Be-
cause the recycling process, in turn, leads to the consumption of fossil fuels, Thathiana
Benavides et al. [44] suggested bio-polyethylene production instead of fossil-polyethylene
production. They reported that bio-polyethylene production leads to a reduction of 63% in
fossil fuel consumption. In addition to reducing fossil fuel consumption, bio-polyethylene
leads to decreased carbon dioxide emissions [44,46,47]. However, in comparison with
fossil-based plastics, bio-based plastics with similar mechanical properties are expen-
sive [48]. Therefore, future research is recommended on the production of bio-polyethylene
at competitive prices with polyethylene.

Inventory analysis shows that graphite used in battery production has a significant
role in the “non-renewable, fossil” impact category. According to Notter et al. [49], graphite
is made from hard coal coke as base material; thus, hard coal used in graphite production is
main responsible for the "non-renewable, fossil” impact category. Given that the presence of
a battery is essential to increase the system’s reliability, its presence is necessary; therefore,
it should be directed towards the production of batteries that consume fewer fossil fuels.
For example, Padashbarmchi et al. [50] claimed that metal oxides such as iron oxide, more
than graphite, are favorable anode materials in fossil fuel consumption. Due to the higher
operation of the power plant to supply the battery charge, the plant’s share will increase
when the battery is empty.

Figure 8 presents the CDP values in the production of 1 m3 freshwater by SWROD/
WT/BBS. In Figure 8, there is a clear trend of decreasing CDP with increasing LPSP. The
higher value of CDP indicates that lower exergy is lost, that is, the exergy performance of
the system is higher in the production process [51]. Accordingly, it could be said that the
more reliable the system, the less exergy is lost during the production of 1 m3 freshwater
by SWROD/WT/BBS. To improve CDP, strategies can be used to reduce CExD, especially
the "non-renewable, fossil” impact category, as previously described. On the other hand,
more efficient desalination plants should be designed to consume less electricity to produce
fresh water.
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different LPSP (%) (FU = 1 m3).

Finally, Figure 9 shows the convergence speed to reach the optimal solution for the
DA optimization algorithms compared to GA and the artificial bee swarm optimization
(ABSO) algorithms. Based on the results, the DA’s convergence speed is much higher
and better than the GA and ABSO. Yang et al. [52] reported that the multi-objective
firefly algorithm achieves the best result in the 200th iteration (1000 iterations in total).
Cao and Ye [53] also showed that the best Coarse-Grained Parallel Genetic Algorithm
performance is approximately achieved in the 800th iteration when there are 1000 iterations.
Amaireh et al. [54] also reported that the Antlion optimization algorithm starts converging
to optimum value at almost 300 iterations (1000 iterations in total).
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4. Conclusions and Further Works

Developing economic growth and social welfare depends on energy, especially elec-
tricity. However, electricity is usually generated by fossil fuels, whose adverse effects on
the environment are well known. Accordingly, safe and clean electricity generation by re-
newable energy resources has currently been considered. The wind is one of the renewable
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resources that its conversion to electricity is presently a matured technology. However,
there is a time mismatch between power generation and consumption in systems based
on renewable energy resources that could be solved using support units such as battery
banks. Due to the significant cost and the high consumption of non-renewable energy in
the production of system components, it should not overlook energy consumption and the
costs of producing the system components. To have a reliable, low CExD, and cost-effective
system, this paper optimizes the components’ size of a desalination system integrated
into a wind turbine plant to supply the freshwater of inhabitants of Larak Island, Iran by
DA. Overall, results show the convergence speed to reach the optimal solution for the DA
optimization algorithms than the GA and ABSO algorithms.

More specifically, the results showed that when LPSP is 10%, compared to when
LPSP is 0%, the total CExD and total LCC are reduced by 34.76% when the battery is full
and 45.44% when the battery is empty and there is a 44.43% decrease in the total LLC,
respectively. Moreover, based on the results, exergy removal from nature in freshwater
production by developed configuration is primarily in the form of “renewable, kinetic”
in the range of 5.56–9.46 MJ/FU and followed by “non-renewable, fossil” in the range of
1.8–2.17 MJ/FU when the battery is full. Due to the consumption of wind energy to charge
the batteries, the share of this energy increased compared to when the batteries are fully
charged. The water tank and battery exhibited the highest effect on the “non-renewable,
fossil” impact category, for all different LPSP (%). The bio-polyethylene application instead
of fossil-polyethylene production in water tank production and the application of metal ox-
ides instead of graphite in battery production are promising approaches for reducing fossil
fuel consumption. Although the more reliable the system has a higher CExD, the system
with higher reliability lead to less exergy loss during the production of 1 m3 freshwater by
SWROD/WT/BBS. It should be noted that the main limitation of the proposed solution
here is that in the real world, there are cases that may affect the energy consumption of the
desalination plant that is not considered in this solution. A database has also been used to
analyze the exergy, and the exergy flow may be slightly different in the real world and the
target area.

Future studies should also pursue these objective functions for desalination integrated
to other renewable energy resources such as solar energy, geothermal energy, biomass, etc.

Author Contributions: Conceptualization, M.K., A.M. and H.H.-B.; methodology, M.K.; software,
M.K.; validation, M.K.; formal analysis, M.K., A.M. and H.H.-B.; investigation, M.K.; resources, M.K.;
data curation, M.K.; writing—Original draft preparation, M.K.; writing—Review and editing, A.M.
and H.H.-B.; supervision, A.M.; project administration, A.M.; funding acquisition, A.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in insert article.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

AWT Total area swept by the WT generator blades (m2)
CaWD Capacity of SWRO desalination system (m3/day)
CBBS Battery bank cost ($)
CC Capital cost ($)
CCH Cost of chemicals ($/m3)
CConv/Inv Converter/inverter price ($)
CDP Cumulative degree of perfection
CED Cumulative energy demand
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CExD Cumulative exergy demand
CMnt-BBS Annual maintenance cost of the battery ($/year)
CMnt-Conv/Inv Annual maintenance cost of converter/inverter ($/year)
CMnt-SWROD Maintenance cost of SWROD system ($/m3)
CMnt-WT Annual maintenance costs of wind turbine ($/year)
CMR membrane replacement cost ($/m3)
CP Wind power coefficient
CRF Capital recovery factor
CSWROD Cost of SWROD unit per m3/day ($/m3/day)
CWT Wind turbine price ($)
CWTa Water tank cost ($/m3)
DA Division algorithm
DOD Maximum depth of discharge (%)
DWD Daily freshwater demand (m3/day)
EIA Energy information administration
GA Genetic algorithm
GHG Greenhouse gases
HWD Hourly water demand (m3/h)
i Interest rate (%)
LPSP Loss of power supply probability (%)
LPSPm Maximum allowable LPSP (%)
MC Maintenance cost ($)
n Project lifetime (year)
NBBS Number of batteries
ηbc Charge efficiency of the battery bank (%)
ηbf Discharging efficiency of the battery bank (%)
ηInv Converter/inverter efficiency (%)
NMe Number of membrane replacements per year
NWT Number of wind turbine
ηWT Wind turbine reference efficiency (%)
PD Desalination installed power (kW)
PDEM Power consumption of SWROD plant (kW)
PDI Nominal load of the SWROD plant (kW)
PInv Nominal converter/inverter power (kW)
PL Annual load demand (kW)
PMD Minimum load of the SWROD plant (kW)
Pr Rated power of the wind turbine (kW)
PWBBS Factor of payment present worth of battery
PWConv/Inv Factor of payment present worth of Conv/Inv
PWT Output power of wind turbine (kW)
SBBS Nominal capacity of battery bank (kWh)
SDC Specific energy consumption (kWh/m3)
SOC(t) State of the battery charge at the time t (kWh)
SOC(t−1) State of the battery charge at the time t−1(kWh)
SOCmax Maximum charge of the battery bank (kWh)
SOCmin Minimum charge of the battery bank (kWh)
TCCH Cost of chemicals of ROD unit ($)
TCMR Membrane replacement cost of ROD unit ($)
TLCC Total life cycle cost ($)
Vci Cut-in wind speed (m/s)
Vco Cut-out wind speed (m/s)
Vr Nominal wind speed (m/s)
VWTa Fresh water tank volumetric capacity (m3)
ηPC Power conditioning efficiency (%)
ηr Reducer efficiency (%)
ρa Air density (kg/m3)
σ Hourly self-discharge rate (%)
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