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Abstract: As the amount of information collected by wind turbines continues to grow, so too does the
potential of its leveraging. The application of machine learning techniques as an advanced analytic
tool has proven effective in solving tasks whose inherent complexity can outreach expert-based ability.
Such is the case presented by this study, in which the dataset to be leveraged is high-dimensional
(79 turbines × 7 SCADA channels) and high-frequency (1 Hz). In this paper, a series of machine
learning techniques is applied to the retrospective power performance analysis of a withheld test set
containing SCADA data collectively representing 2 full days worth of operation at the Horns Rev
I offshore wind farm. A sequential machine-learning based methodology is thoroughly explored,
refined, then applied to the power performance analysis task of identifying instances of abnormal
behaviour; namely instances of wind turbine under and over-performance. The results of the final
analysis suggest that a normal behaviour model (NBM), consisting of a uniquely constructed artificial
neural network (ANN) variant trained on abnormality filtered dataset, indeed proves effective in
accomplishing the power performance analysis objective. Instances of over and under performance
captured by the developed NBM network are presented and discussed, including the operation
status of the turbines and the uncertainty embedded in the prediction results.

Keywords: machine learning; performance monitoring; artificial neural networks; long short-term
memory; wind farm operation and monitoring; wind farm power curve

1. Introduction

The wind energy industry and field of machine learning share a relationship that has
spanned decades. Recently, however, this relationship has entered the industry’s innova-
tional main stage as technological advancements have enabled access to unprecedented
levels of computational power and information access. Though wind energy has always
existed as a data-driven industry, this increasingly facilitated application of machine learn-
ing allows for data utilisation on a new scale, one that is actively improving the design,
control and analytical insights derived from new and existing wind energy applications.

As the core technologies supporting wind energy (e.g., the design, fabrication and
application of the wind turbine and distribution of its power) have reached relatively
mature states of general development, a new focus has been placed on the importance
of data utilisation in an effort to drive down the levelised cost of energy produced by
wind turbines and sold to the electricity market. This utilisation comes in many forms, but
perhaps the two most general regimes in the context of machine learning are the forecasting
of wind power to improve bids to the electricity market and the monitoring of existing
field data in an effort to aid the ongoing operation and maintenance of wind turbines and
wind farms at large. The topics addressed by this study concern the latter domain more
directly. Within this domain, the main application types are structural health monitoring
(SHM), condition monitoring (CM) and performance monitoring (PM).

A fundamental way in which PM differs from SHM and CM is in that its output
for a single wind turbine can rely significantly on the the outputs of other wind turbines
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within the wind farm. Thus, an important application of PM is to identify methodologies
that do and do not allow a collection of wind turbines within a wind farm to perform
synergistically in an effort to refine control schemes both on a wind turbine and wind farm
level. This topic, broadly referred to as wind farm control, has become more prevalent as
advanced data analysis has offered increasingly accurate characterisation of the complex
aerodynamic interactions within wind farms consisting of many turbines.

This study concerns a novel machine learning-based methodology that can serve the
aforementioned goals of PM. In it, historic SCADA data from the Horns Rev I offshore
wind farm are used as a basis for development and testing of the proposed methodologies.

The overarching goal of the monitoring tasks, including PM, is to detect system
abnormalities, and the general methodology that can be employed to accomplish this goal
is referred to collectively as normal behaviour modelling (NBM). In short, the normal
behaviour modelling method consists of training a model to understand only normalcy,
so that when exposed to new and potentially abnormal observations, low model support
of these observations suggests the presence of abnormality. For machine learning models
that are typically employed in NBM, the level of a model’s support for an observation can
come in different forms based on the model type. In general, support can be a regression
model’s prediction error, a density model’s probability assignment or a distance-based
method’s calculated relative distances. The general flow of building and applying a NBM
with the purpose of monitoring abnormalities can be described by the flow chart presented
in Figure 1. The procedures within the NBM flowchart are briefly explained with example
implementations in wind energy field below.

Figure 1. General normal behaviour modelling (NBM) flowchart describing major steps and sub-steps.

Of all the general NBM steps shown in Figure 1, the three most relevant to this work’s
methodology are described below.

(1) Preprocessing: The first step in NBM flowchart is preprocessing, which prepares data
for both training and testing the NBM. It includes the procedures of filtration (see,
e.g., in [1]), feature selection (e.g., recursive feature elimination (RFE) as in [2], tree-
based out-of-bag permutation importance matrix (OOB) [3], brute-force sensitivity
analysis [4] and feature extraction (FE) [5,6]) and transformation of the dataset (e.g.,
normalisation, standardisation and case-specific selective transformation [7]). These
sub-steps clean the dataset of identifiably faulty data, refine the feature set and scale
the data such that the different features’ significance on model performance are
comparable. In short, this first step refines the dataset so as to yield a set of features
and targets clearly possessing the relationships needed for the modelling task.

(2) Defining and Identifying Normality: The second step of the NBM flowchart is to
choose specific observations which represent system normality to train the NBM. The
methods applied for this step vary the most in wind energy applications throughout
the literature. For example, the authors of [8] take advantage of a binary label feature
in the considered dataset, which indicates wind turbine “healthy” or “unhealthy”
status and is tied to the error flags of different system components. In, e.g., [1,9],
normal behaviour is defined considering a period after an act of repair or mainte-
nance, assuming it represents the wind turbine operating at its most normal state.
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In the absence of labelled data or known periods of assumed normalcy, the act of
defining normality becomes less trivial. For such a task, various types of machine
learning-based outlier detection algorithms can be used to isolate and filter instances
of abnormal observations [5,10].

(3) Train and evaluate model: For the third step in NBM flowchart, two general ap-
proaches are typically used: the training of a regression model or of a density model;
with the use of the former being far more prevalent than the latter through the lit-
erature surveyed. An overview of the machine learning algorithms used for NBM
is presented in Table 1. A regression model is trained in order to predict a response
variable given explanatory variables. In the case of a regression-based NBM model, if
it is trained on a dataset representing purely normal behaviour, then any deviation
from a residual of 0 when presented with new test set observations would indicate
abnormality.

Table 1. Selected machine learning algorithms used in NBM.

Model Type Machine Learning Model Selected References

Regression

feedforward artificial neural network (ANN-FF) [4,8,11]

random forest regression (RFR) [3,4,12]

K-nearest neighbours regression (KNNR) [13,14]

support vector regression (SVR) [3,11]

linear regression (LR) [9,11]

Lasso LR [2]

Gaussian process (GP) [8]

long short-term memory ANN (ANN-LSTM) [6]
[7]

fuzzy inference systems & logic [13]

Density Gaussian mixture model (GMM) [1,10]

Herein, the majority of the NBM workflow in Figure 1 is implemented with the
exception of defining intervention limits and making intervention suggestions, a step which
introduces a temporal aspect to residual-based control limits, e.g., suggesting intervention
in the form of repair or replacement of an affected component after its NBM’s residual
signal has exceeded its control limit a certain number of times (as in [9]). However,
this study differs from the previous studies of NBM applied within the wind energy
field (including but not limited to PM) in the chain of methodologies that are applied
as well as the utilisation of high-frequency (1 Hz) SCADA data of a large offshore wind
farm. Table 1 classifies the methodologies used for NBM with utilisation of SCADA data
within the most relevant literature for the study presented here. For CM, the authors
of [4,9] investigate a single turbine using 10 min SCADA data, which are then extended
to wind farm level in [2,13], respectively. Similarly for PM via 10 min SCADA data,
a case study for a single turbine is reported in [1] and wind farm level analyses are
performed in [7,8]. With increasing availability of high(er) frequency SCADA signals,
the authors of [3,12] investigated the added value of employing 0.25 Hz (4 s) resolution
data for PM at wind farms. The authors of [6] utilized 1 Hz SCADA into the workflow
with ANN-LSTM networks with the objective of real-time power curve assessment and
available power estimation including data-driven wake modelling. Distinctly here in this
study, the potential of high-frequency SCADA from Horns Rev-I is fully harnessed to
generate a data-driven workflow for PM of large wind farms with state-of-the-art machine
learning techniques.

The structure of the paper is as follows. In Section 2 of the investigation presented here,
first all available raw SCADA data are processed and assembled into a single dataset for all
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wind turbines in Horns Rev I, indexed together on time. Second, a definition of normality
is considered and two methods of abnormality filtration are applied in parallel to enforce
this definition: First, an operational filter capturing nominally known regions indicative
of instances of abnormal behaviour and/or disinterest (e.g., power downregulation), and
second a finer filter capturing outliers as identified by an outlier detection machine learning
algorithm. Next, the scope of features to use as explanatory variables for the regression
task is considered on two levels: (1). SCADA signals types and (2) number of neighbouring
turbines to source selected SCADA signals from to predict power for a given turbine (herein
referred to as the model’s “scale”).

Next, in Section 3, a regression-based NBM is selected through comparison of baseline
and state-of-the-art machine learning algorithms (the hyperparameter tuning of which is
also presented). Finally, utilising statistical control limits defined by cross-validated NBM
uncertainties as guidance, a power performance analysis is performed on the withheld test
set. In this paper, single instances of power under-performance as well as over-performance
are identified and analysed in detail.

In the concluding Section 4, summarising remarks and considerations are given and
ideas for further improvements to the method are proposed.

2. Materials and Methods
2.1. Description of Dataset

Horns Rev I is an offshore wind farm located 14 km off the Western coast of Denmark.
It originally consists of 80 Vestas V80-2MW turbines (only 79 operational during the period
considered in this study). Figure 2 presents the location and the layout of the wind farm.

The dataset used in this study is based on Supervisory Control and Data Acquisition
System (SCADA) data collected from various measurement devices mounted on each
turbine. The SCADA channels considered in this study are the active power (ActivePower);
the operator controlled active power set-point (ActivePowerSP); wind speed measured at
nacelle anemometers (WindSpeed); wind direction measured at the wind vanes at the top
of the nacelle (WindDirection); and rotor rotational speed (RotorRPM), blade pitch angle
(BladePitchAngle) and temperature (TempAvg) recorded at each turbine. All the SCADA
data used in this analysis were stored at a nominal 1 Hz frequency. This relatively high
temporal resolution is a significant aspect of the investigation presented here as it allows for
visibility into potential abnormal performance events on a fine temporal scale. Note that
despite possessing the advantage of high resolution, the dataset used in this work is limited
in the overall time range it represents (after processing, only about 8 days remain for model
training). As such, this work aims not to establish a globally optimal model, but rather a
methodological framework. Accordingly, the resulting over- and under-performance are to
be read in a real-time operation context, rather than a longer term evaluation (e.g., power
degradation studies as investigated, in, e.g., [15]). Finally, note that the overall dataset
exists as a collection of four distinct continuous periods that requires attentive preparation
for further sequence modelling overall. That is detailed in the next section.
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Figure 2. Left: plotted layout of Horns Rev I, with truncated turbine names labelled at each turbine position. Right: Geo-
graphic location of Horns Rev I.

2.2. Dataset Formation and Preprocessing

After the initial filtering for invalid observations, the dataset is split into training and
validation subsets, where the initial 80% of each of the 4 continuous observations are used
for training and the last 20% for testing. Though random sampling, or shuffling, of data
is typically employed to mitigate biasing in the distribution of data assigned to the train
dataset vs. those assigned to the test dataset, the sequential temporal-based nature of the
observations in this project is of significant importance as it both aids in an understanding
of the final power performance analysis and in fact serves as direct training input for the
recurrent regression models considered.

In total, the training set was allocated 680 k observations (approximately 7.9 days)
while the test set was allocated 170 k observations (approximately 2 days).

A scatter-matrix portraying the pairwise relationship between all features as well as
the distribution of each feature is given in Figure 3. In Figure 3, the operational relation-
ships between blade pitch, rotor rotational speed and power produced are clearly visible;
especially with reference to wind speed. At low wind speed, pitch is essentially at rest
while rotor RPM and resultant power increase. Then, as wind speed approaches rated
levels, the pitch increases monotonically in order to limit rotational speed and power to
rated levels. Outside of these operational relationships, no strong trends are exhibited by
wind speed, wind direction and temperature. Figure 3 also shows that the distributions
describing the features in this dataset are all unique and of non-Gaussian nature. Partic-
ularly, the distributions of wind speed and direction are important as they provide the
chief stimulus for a turbine to produce power, wind speed directly and wind direction
indirectly due to the wake effect. In Figure 3, the wind speed indeed appears amenable to
a Weibull distribution with a peak at approximately 8.5 m/s and a positive tail extending
to 16 m/s. The wind direction distribution is quite biased with a predominance centred at
230◦, corresponding closely to a true south-westerly wind. There is another smaller peak
between 310◦ and 330◦, the presence of which will be later referenced in the hypotheses
regarding trained NBM behaviour.
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Figure 3. Scatter matrix showing pairwise relationships and distributions (in diagonal) of all SCADA signals for all turbines
across entire joint dataset. Dataset resampled to 10 min statistics to clearly demonstrate pairwise relationships.

2.3. Defining Normality

As previously discussed, in order to create an NBM that can accurately detect abnormal
behaviour, it must be trained on data that represents normal system behaviour. As in this
study there is no indication of inherent degrees of wind turbine behaviour normality
accompanying the dataset (e.g., a span of newly rejuvenated wind turbine operation
following a known maintenance event, as in [9]), a dual-method, multi-step approach was
taken to define normality by means of filtering out abnormal behaviour in the training set.
The first filtration method was physics-based and set using nominal operational thresholds
as indicated by the turbine manufacturer. The second method employed a machine learning
outlier detection algorithm to reduce outlying behaviour and thus serve to enforce a tighter
joint distribution of normality for the NBM to be trained. Both methodologies were
employed sequentially in a multi-step filtration applied to each wind turbine individually.
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Upon the completion of this per-wind turbine filtration, the filtered data for each turbine
were recombined into a single dataset. Through each step of this filtration process, care
was taken to balance enforcing normality while preserving an adequate sample size to
use for eventual NBM training, in which more samples will generally produce a more
robust model.

The operational filters were used to filter (1) the curtailment (also referred as downreg-
ulation periods) periods, where the active power set-point was set below rated, and (2) ob-
servations that exceed the rated power based on the nominal wind turbine power curve.

Though the operational filtration was successful in removing most of the gross ob-
servational abnormalities, the anomalous behaviour still existed within the dataset of
several turbines in the form of apparent outliers. To identify these outliers, a machine-
learning outlier detection algorithm called the Local Outlier Factor (LOF) is implemented
via scikit-learn library [16]. LOF is a density-based outlier detection algorithm that assigns
to an observation a degree of it being an outlier. The two that were tuned were the K
number of neighbours (or n-neighbours as referred in scikit-learn) to identify for each
observation using KNN, and a threshold setting called the contamination parameter. For
the former, a systematic grid search showed that the decision boundary formed by the
assignment of outliers appeared to converge as n-neighbours increased, and it appeared
that a choice of n-neighbours = 100 offered a reasonable balance between performance and
calculation complexity. For the determination of a suitable contamination parameter to
use in the LOF implementation, the results of case studies presented in [17] in which a
LOF score of 1.5 aligned approximately with known outliers are leveraged. Though it is
possible to set this LOF-based limit directly, a percentile-based threshold was preferred
here as it respects the uniqueness of each wind turbine’s specific behaviour (e.g., it does
not over-penalise wind turbines which inherently exhibit more outlying behaviour). In
order to determine a suitable percentile-based threshold given this benchmark standard,
the CDF of the median of all wind turbine’s complete set of LOF scores was calculated at
LOF = 1.5. This corresponded to a CDF of 0.01745, meaning in application that the 1.745%
most outlying observations would be deemed outliers. This value was thus selected for the
contamination hyperparameter in the application of LOF to each turbine.

2.3.1. Power Curve Regime Partitioning Concept

The power curve for a given turbine is regime-dependent based on operational con-
trols. As the turbine is subjected to distinctly different phenomena in each control regime, it
follows that, for a given turbine, each regime should be given its own definition of normal
behaviour. Conversely, this is to say that what is considered abnormal in one regime of
a power curve should not necessarily be considered abnormal in another. Thus, in the
sequential application of the operational and LOF abnormality filters discussed, the power
curve of each turbine was partitioned and subjected to specific filtration explicitly. At the
end of the filtration sequence, all partitioned regimes are rejoined into a single filtered
power curve offering a single representation of normal behaviour for a given turbine to be
used in the training of its NBM.

In order to determine proper regime-defining thresholds, the power curve and the
distributions of its contributing SCADA tags were inspected. As discussed in Section 2.2,
the distribution of power is bimodal with a peak at rated power (2000 kW) due to the tur-
bine’s control scheme. This bimodality is an indication of the aforementioned regime-based
partitioning of normality. Thus, the power curve for a given turbine is first partitioned into
two components representing operation above and below rated power.

From closer inspection of distribution of the active power, a threshold of 1992 kW, slightly
less than the rated power, is proposed as it appears to adequately delineate regimes and
represent the transition effectively. This threshold is henceforth referred to as threshold 1.

Beyond this Prated threshold, there exists yet another regime of unique behaviour that
can be characterised as power production at most 5% greater than Prated. This behaviour
could either exist as a feature of the long positive tail of the distribution representing
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behaviour of the turbine controlling to rated power, or it could belong to a separate
distribution representing a different behaviour altogether. In fact, a small peak in density
observable at approximately 2100 kW (see Figure 4) serves to substantiate the latter claim.
This high power production occurring beyond the above threshold is thus considered
abnormal and accordingly is filtered. This threshold is henceforth referred to as threshold 2.

2.3.2. Per-Wind Turbine Filtration Concept

As aforementioned, the abnormality filtration sequence is applied to each wind tur-
bine’s power curve explicitly before ultimately recombining all filtered data into a single
wind farm-wide dataset. The reasoning for filtering abnormalities on a per-wind turbine
basis, as opposed to globally filtering the joint power curve of all turbines is twofold: First,
as in the concept of regime partitioning, each wind turbine in the wind farm is subjected
to unique meteorological and aerodynamic stimuli, and thus each should be expected to
exhibit unique behaviour relative to other wind turbines.

Aside from possessing varying geospatial coordinates (which should have minimal
meteorological implications given the physical dimensions of the wind farm layout), by
far the most significant behaviour-defining difference between wind turbines is the nature
of the wake to which they are predominantly exposed. Wind turbines that are located
deeper within the wind farm are subjected to the superimposition of wake effects from
upstream turbines resulting chiefly in the downwind turbine’s experience of lower wind
speed and higher turbulence intensity (TI), commonly calculated as TI = σ(v)

µ(v) using
10 min statistics. These changes directly affect the power produced by the turbine, e.g., a
turbine experiencing a lower velocity and more variable (higher TI) incident wind field
will produce, in general, lower and more variable power. This characteristic of the power
curves within the investigated dataset is correlated with the given turbine’s location in the
wind farm and can be divided into three general types based on the wind direction: “no
wake”, “mid wake” and “deep wake” power curve types. Accordingly, mid-wake turbines
have a higher spread than no-wake turbines in their power curves and they experience a
higher density of observations in the lower-wind speed range due to the wake-induced
wind speed reduction occurring between these turbines.

2.3.3. Application of Abnormality Filtration Sequence

With the fundamental methods and concepts described, it is now possible to present
the application of the entire filtration sequence applied to each wind turbine. Table 2 offers
a summary of the process, which is followed by a step-by-step description.

Table 2. Summary of entire abnormality filtration sequence.

Step Filter Name Filter Type Programmatic Filtrate
Definitions

Power Curve Regime to Be
Filtered

1 curtail

operational

ActivePowerSP < 2000 kW entire

2 cutin
(WindSpeed < 4 m/s)
OR
(ActivePower < 66.6 kW)

entire

3 cutout WindSpeed > 25 m/s entire

4 uprated ActivePower ≥ 2010 kW P > threshold 1

5 LOF
machine learning
outlier detection

hyperparameters:
n-neighbours = 100,
contamination = 0.0174

P < threshold 1

6 LOF
hyperparameters:
n-neighbours = 100,
contamination = 0.05

threshold 1 > P > threshold 2
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(1) Curtailment filter:
In this step, power that is downregulated, or curtailed, is filtered from the dataset.

(2) Cut-in filter:
In this step, observations representing power production below the expected min-
imum production as defined by the OEM nominal specifications are filtered using
both the nominal cut-in wind speed (4 m/s) and the power produced at this wind
speed (66.66 kW) as filter thresholds. Both were used in tandem as neither fully
isolated the power production regime represented by below-cut-in conditions, i.e.,
only applying a wind speed-based cut-in filter allowed many observations exhibiting
power production ≤ Pcut−in to remain in the dataset. As this behaviour is deemed
abnormal in this project, such a result was insufficient.

(3) Cut-out filter:
In this step, power production above the expected minimum production as defined by
the OEM nominal specifications is filtered using only the nominal cut-out wind speed.
As aforementioned, when wind speed exceeds the turbine’s cut-out rating, it will
attempt to control to a minimal rotor rotational speed for safety purposes in light of
the extreme wind conditions. As the rotor speeds and/or resultant power associated
with this control situation were unknown and absent from potential inspection within
this dataset, it was decided that simply using the cut-out wind speed-based filter was
sufficient to isolate this behaviour. Upon inspection of the dataset however, it was
observed that only one turbine recorded wind speeds greater than the cut-out wind
speed, and that at these wind speeds the power produced was less than 66 kW, and
thus captured by the cut-in filter criteria.

(4) Uprated power filtration:
It was unknown whether, in fact, the Vestas V80 turbines represented by this dataset
were equipped with the power-uprate enhancement described by Vestas as boosting
power performance to the tune of an approximate 4% increase in AEP. Further, it
is known that the density of power produced in this potentially uprated region is
significantly lower than that produced by the distribution centred on and likely
belonging to Prated control behaviour. These considerations combined, the decision to
define this behaviour as abnormal was made.

(5) LOF applied to P < threshold 1:
This machine learning-based outlier detection was applied to the main body of the
each turbine’s power curve using hyperparameters discussed in Section 2.3.

(6) LOF applied to threshold 1 < P < threshold 2
This machine learning-based outlier detection was applied to the distribution of the
power curve belonging to the wind turbine’s control to Prated. Like in Step 5, LOF
n-neighbours = 100 was used, but unlike Step 5, a contamination parameter of 5%
was used. This was a decision based on empirical observation of the visual effect
of different contamination parameters on this regime, where it was seen that lower
contamination parameter levels (e.g., 0.01745 used in Step 5) resulted in an inlying
distribution that appeared to include abnormal observations. Further, the fact that
the observation counts belonging to this regime and the range of power produced are
relatively low compared to the main body of the power curve substantiates the use of
such a simple visual-based decision; the implications on overall model performance
should be relatively low.

After concatenating the now filtered partitioned components back together, the fil-
tration process for a single wind turbine is complete. This was performed for all turbines
upon which all individual turbine-specific datasets were recombined into a single wind
farm-wide dataset. The full and final effect of the filtration sequence as applied to a single
turbine can be visualised by Figure 4 below.
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Figure 4. Comparison of pre (left) and post (right) fully filtered power curves for a given turbine.

Recombining Filtered Datasets

After individually filtering all wind turbines with the described sequence, their re-
spective data could be rejoined together into one dataset indexed on time. However, as
the various filters addressed different observations for different turbines, invalid values
were imputed to fill these now voided observations. Thus, a strategy for imputing these
values was employed in which voided data points were linearly interpolated over for up
to 30 s forward in time from the most previous valid observation. After this, if any more
observations contained any invalid values, then the entire wind farm-wide observation
was filtered from the dataset. Finally, with all the normality filtration applied, the dataset
observation count decreased by 21% from 680 k to 537 k observations, now representing
defined normal behaviour for each turbine.

2.4. NBM Training

With the dataset filtered to a state representing normal behaviour for each wind
turbine, it is now possible to use it to train an NBM. To reiterate, the objective here is to
train machine learning regression algorithms to understand, and thus be able to predict,
power associated with normal power curve behaviour. If given true normal behaviour,
a perfect NBM would predict the normal power production with zero error. However,
when presented with an abnormal observation, the perfect NBM’s prediction error would
differ from zero in accordance with the observation’s degree of abnormality. Thus, as
discussed in Section 1, the goal in training a regression based NBM is to generate a model
that can predict normal-behaviour power production with minimal error so as to maximise
the difference in error between a normal and abnormal observation. For the larger this
difference, the more confident the assignment of abnormality becomes.

Due to the aforementioned uniqueness of each wind turbine’s power curve behaviour,
a different model is trained for each wind turbine. Given that the wind farm-wide dataset
at this point consists of 553 columns (79 turbines × 7 SCADA tags for each turbine), there
are a number of routes that may be considered in training an NBM. As training a model
using the full 532 k × 553 dataset is highly computationally demanding, it is certainly
unattractive from a computational complexity standpoint. Further, it is likely that there is a
diminishing return in model performance with the addition of decreasingly meaningful
features included in model training. In fact, often including erroneous features can inhibit
a model’s ability to learn the more important relationships between the features and the
response variable. Thus, a down-selection of these potential features was performed on
two levels:
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(1) The number of wind turbines to draw SCADA from to predict the power of a given
turbine. This level is herein referred to as the regression model’s “scale”.

(2) The number of SCADA tags to use per wind turbine selected at the model’s scale.

At each scale and utilising select SCADA tags, a number of different regression model
algorithms were trained with the goal to determine which was best suited for the prediction
task. However, before their comparison, the hyperparameters of specific models were
tuned to settings appropriate for the regression task. Once tuned, the models were all
subjected to 10-fold CV in an effort to assess their relative ability to not simply predict
power for observations represented by the training set, but do so with generalisability, i.e.,
to perform well given hitherto unseen observations. Based on this comparison, a final
regression is selected with which to perform the power performance analysis using the test
set defined in Section 2.2.

2.4.1. Model Scale

Three scales were considered for the regression task:

(1) Wind turbine (WT) —predict power for a given wind turbine using only select SCADA
tags for that turbine.

(2) Wind farm local (WFL)—predict power for a given wind turbine using only select
SCADA tags from a down-selected number of turbines exhibiting key correlations
with the given turbine.

(3) Wind farm (WF)—predict power for a given wind turbine using select SCADA tags
from all turbines.

It is hypothesised that using more turbines to generate features for training will, in
general, result in a higher performance model. This is to say that in regards to perfor-
mance, it is expected that WT < WFL < WF. The reason for exploring all three is then to
quantify this performance difference as well as their difference in computational cost in
order to identify the scale that represents models exhibiting the most attractive balance of
these metrics.

2.4.2. Feature Selection of SCADA Tags

Typically, the goal in a regression model feature down-selection is to down-select to
those features which, when used together, provide a model that can make predictions with
minimal error. However, in this project’s specific NBM task, there is another important
consideration that takes precedent. This is the fact that, as many SCADA tags are directly
(and mechanically) coupled to and correlated with our target variable of power, an NBM
built on the use of such tags is liable to corruption through shared abnormality. As an
example, consider an NBM that predicts power for WT01 by using its rotor rotational
speed and blade pitch angle signals. If presented with a new observation representing
abnormal power production, it is likely that the rotational speed and/or blade pitch angle
signals at that same observation are also behaving abnormally. As a result, the ability of
the NBM to discern abnormality in power production will decrease. As another example
applicable to the WFL and WF model scales, consider if the model for WT05 was trained
to predict its power using the rotor speed and pitch angle experienced by it and by the
neighbouring turbines, WT04 and WT06. Even if the SCADA signals experienced by WT05
were representative of normal power performance behaviour for a given observation,
the model’s prediction will be corrupted if in that same observation WT04 or WT06 was
behaving abnormally.

Considering these points, the decision was made to separate the mechanically corre-
lated tags from those that are causal, i.e., those that are the true external stimuli to which a
wind turbine’s power production is a response. In this dataset, these tags are wind speed
and wind direction. As will be shown, each regression model was trained with two feature
sets: one using both wind speed and wind direction, and one using only wind speed.
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2.4.3. Feature Selection (Turbine Level) for WFL Models

Before the WFL scale model can be trained for a given wind turbine, it is necessary to
first identify which other turbines in the farm possess SCADA tags that provide the most
explanatory power for the power production of the given turbine. In order to accomplish
this, a 2-step approach was taken:

(1) Cross-validated recursive feature elimination (RFECV):
Perform RFECV for each turbine to identify the set of wind turbines that, when used
as features for training, yields a model of minimised power prediction error. Briefly
mentioned in Section 1, RFE works by iteratively down-selecting features. At each
down-selection, a model is trained and the model coefficients corresponding to each
feature are stored. The significance of such coefficients used in many regression tasks
is that they are indicative of the explanatory power of each feature in regards to the
response variable. In the context of this project’s task for example, a highly positive
coefficient belonging to a feature would mean that with its increase, an increase in
power produced is to be expected. The opposite can be said for a feature possessing a
highly negative coefficient: power would be expected to decrease in response to the
feature’s increase.
Thus, in RFE, the first model iteration is trained using all features. Using the resultant
feature’s coefficients, the least important feature is identified and excluded in the
feature set used in the next training iteration. This iterative down-selection is repeated
recursively until there are no more features to exclude. Though this approach does
not promise a globally minimal solution (as not all possible combinations of features
are tested) it provides a computationally efficient means of feature down-selection.
The RFE used in this task was cross-validated; meaning that at each recursive iteration,
10-fold cross-validation was used to determine which feature was least important and
discarded in future iterations. To explain explicitly, at each iteration, the dataset is split
into 10 folds. The wind turbine model for which RFECV is being performed is then
trained on 9 of these folds, and the coefficients corresponding the the different wind
turbines (features) are stored. This is repeated for every possible combination of 9 folds
within the 10 total folds. The mean of the coefficients across all these combinations of
folds (10 coefficients per feature) is taken. Using these coefficient means, the cross-
validated least important feature is identified. This feature is discarded in the next
recursive iteration and the 10-fold cross validation is repeated. Thus used, cross-
validation serves to offer more robust estimates of a feature’s importance, as it is
assessed over varied subsets of observations.
The final aspect of the implemented RFECV to be discussed is the regression algorithm
used at each recursive elimination to generate the feature coefficients and the choice
of data to feed it as input. First, as an ordinary-least squares linear regression model
(LR) satisfies the need of RFE for a coefficient-based algorithm as well as offers the
simplest and quickest computation, it is selected as the algorithm to use in RFECV.
Next, the decision of which feature set to use (wind speed, or wind speed and wind
direction) had to be made. As can be observed in Figure 3, wind direction shares a
highly nonlinear relationship with power and thus is ill-suited for use in the LR-based
RFECV. Accordingly, wind speed was the sole feature chosen for RFECV. Finally, in
order to improve the quality of the LR’s fit to the feature’s data, a truncated range of
the the power curve of the wind turbine being modelled was used. Specifically, the
filtered dataset output from Section 2.3 was only used in the range < Prated. This region
was selected as it explicitly is more linear than the power curve taken as a whole, and
thus presents an input more compatible with the constructed LR-based RFECV.

(2) Entire WF-informed down-selection cut-off:
After RFECV is performed for every turbine, curves showing number of features vs.
cross-validated power prediction error can be generated. Plotting these curves for
every turbine demonstrates that though prediction error decreases with the inclusion
of more wind turbines as features as earlier hypothesised, there is a common point
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among turbine models where the benefit seems to diminish. Thus, to strike a balance
between model complexity and performance, a feature cut-off of 15 wind turbines
was made. To down-select to 15, the absolute value of the set of coefficients for a
given model were sorted by value, and the 15 features (wind turbines) possessing the
highest coefficients were taken as the most important. Figure 5 with the following
visualisation of these curves was used as reference in determination of this cut-off.

Figure 5. Cross validated score vs number of features used where each series represents results for
an individual turbine (results for all WT shown). Proposed cut-off = 15 turbines indicated by dashed
red line.

Figure 6 serves to represent two characteristically different outcomes of this feature
down-selection: The first being a case where the feature cut-off of 15 is much less than the
RFECV’s best number of turbines, and the second being where it is closely aligned with the
best number of turbines. In the case where best number of turbines was less than the cut-off,
the RFECV’s best set was used as it yielded the simplest and highest performing solution.

2.4.4. Regression Model Overview

With the datasets needed for all three model scales now defined, it is possible to use
them for training different machine learning algorithms to be tested as the NBM’s regressor.

2.5. Model Selection Rationale

The implementation of machine learning estimators in a programmatic environment
like Python makes their application relatively straightforward. However, rather than
simply applying many algorithms to the task to see which one prevails, a rationale is
considered for using thoughtfully selected algorithms from both a demonstrative and
task-specific perspective.
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Figure 6. Contour plot representing a turbine for which the 15 turbine cut-off is much less than RFECV’s optimal count
(a) and a turbine for which the 15 turbine cut-off is similar (slightly lower) to the RFECV’s optimal count (b). The Z-axis
represents rank of each WT in predicting the power of the target WT, where 1 = best.
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First, an explanation as to why some of the top-most algorithms, as presented in
Section 1, were not tested in this project is offered. Certain algorithms, such as SVR
and GP, use the kernel trick to learn high-order relationships between explanatory and
response variables. This ability to model high-order relationships is essential given the
nonlinearity of the power’s relationship with wind speed and wind direction. However,
as previously discussed, this trick requires the expansion of the dataset dimensionality
that scales with the number of observations in the dataset. Considering the size of datasets
considered here, this represents a prohibitive computational-expense. Another common
family of regression algorithms not tested here are those that employ regularization, such
as in Lasso. Regularized LR models are an extension of linear regression that effectively
introduce a tuned amount of bias in the LR’s solution so as to decrease its variance in test
set performance. Regularization is thus a primarily useful extension when observations
available for training are few, as such a scenario presents the risk of overfitting, or overly
biasing, the purely LR solution to understand the dataset. In such a scenario, a model may
understand its training data well, but is liable to generalise to new observations poorly. As
lack of observations is not an issue in this project, it was decided that the particular benefits
of regularized LR methods would not be needed.

Thus, the models that were chose represent a spectrum of abilities either specifically
suited for this task or suitable to serve as a baseline regressor that, through its use as
a comparative reference, serves to justify the testing of more computationally complex
estimators. The baseline regressor tested in this project is least squares LR. The next
estimator tested was RF regression (RFR), as it represented an algorithm with the ability to
fit to nonlinear relationships without the aforementioned level of computational complexity
associated with other methods possessing the ability to make nonlinear fits. Two types
of ANN, representing the state-of-the-art family of algorithms considered fit for such a
nonlinear task, were also explored. Like LR and RFR, a typical ANN-FF learns to make
a prediction for a given observation given only feature values at that single observation.
ANN-LSTM however, represents a fundamental recurrent extension from the ANN-FF and
the other regressors considered. For it learns to make a prediction for a given observation
given the feature values over a preset range of previous observations. As demonstrated
by a density of recent relevant studies (some being presented in Section 1), this temporal
model extension seemed worthy of testing in this project’s task.

2.5.1. Dataset Transformations

Before being used in the tuning of the described regression models, the explanatory
variables (X) in all appropriate datasets were standardized using the following definition:

X̃ =
X − µX

σX
(1)

where µX and σX are the mean and standard deviation for a given feature of X.

2.5.2. Model Tuning

As performed for the LOF hyperparameter tuning briefly presented in Section 2.3, here
each regression model has an array of hyperparameters that can be tuned to better adapt
each model to the specific task at hand in an effort to ultimately yield better performance.
For all estimators other than the ANN’s, the default hyperparameter settings as defined
in their scikit-learn implementations [16] were utilized. This decision was made for a
number of reasons. First and foremost, at this initial stage, it was desired to compare
models primarily on a high level to see if any were particularly well or ill-suited for the
task. Second, upon investigation it was confirmed that the default hyperparameter settings
often reflect best-guess starting points for general applications; often times even relating
directly to recommendations put forth by the literature which first marked their inception
(as seen in Section 2.3 with LOF’s contamination hyperparameter). Third, adequately
tuning algorithms can require immense computational complexity, especially so if the
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training dataset is large, and at 537 k × 553 (observations × features), the dataset at hand
in this Section can indeed be considered large [16].

To adequately tune hyperparameters, cross-validation is recommended to avoid
making conclusions about their effectiveness based on a narrowed-view of the dataset’s
interactions. Then, for example, if for a given estimator it was desired to tune 3 hyperpa-
rameters using a moderate 5-point range for each and to further validate the tuning using
10-fold CV, the process would entail 53 × 10 = 1250 iterations of training and testing. Such
an exhaustive search for the ideal set of hyperparameters is known as a cross-validated grid
search. This grid search performed for 6 different algorithms for 79 turbines at 3 different
scales and testing 2 different SCADA tag sets as features sets, further increases the number
of iterations needed to tune all models to 1250 × 6 × 79 × 3 × 2 = 3.555 × 106 iterations.
Last, the final goal of this project was not to determine a globally optimized NBM, but
rather to identify an efficient path towards the development of one to be used effectively for
the power performance analysis. Accordingly, it was decided to devote less effort to true
estimator-optimization in order to allow more time to assess the best estimator’s fitness as
a power performance analysis tool.

However, as aforementioned, high-level hyperparameters for ANN-based estimators
were subjected to a moderate tuning. This was performed for two reasons. First, unlike
the scikit-learn estimators, the Keras [18] front-end/TensorFlow [19] back-end-based ANN
models are relatively undefined in regards to recommended defaults to be used for general
application. This is less true for some hyperparameters than others, and thus the most
important yet undefined hyperparameters in this sense were chosen for a cross-validated
grid search to explore whether certain sets best equip the ANN models to perform the task
at hand. Second, as presented in Section 1, ANN represents the cutting edge in machine
learning regression applications, including those proliferating the wind energy industry.
Thus, as it is this project’s desire to also push the cutting edge, it serves benefit to pay an
added focus to the ANN estimators so as to ensure they have been adequately equipped to
perform on par with the other repressors being considered.

ANN-FF Tuning

Inexhaustive Searches. A CV grid search tests all possible combinations of input
ranges for select hyperparameters, and is thus referred to as an exhaustive search. Anything
less than this can then be referred to as inexhaustive. Considering the computational
expense of a CV grid search as previously described, it was desirable to first perform an
inexhaustive tuning of more general hyperparameters affecting model training and testing
performance. For ANN-FF, perhaps the highest level hyperparameter determining its
architecture is its number of layers. Through empirical tuning, it was decided that 2 hidden
layers provided adequate balance of performance and computational complexity across all
high level model permutations (i.e., scale and feature sets).

Other hyperparameters inexhaustively tuned were the batch size and epochs used in
the ANN-FF’s training. Batch size defines the number of observations to iterate over before
the model’s gradient is updated, while epochs defines the number of times the entire set of
the dataset’s observations are exposed to the model. Thus, both metrics have a direct effect
on the commonly used ANN training evaluation visualisation known as its learning curve.
An ANN’s learning curve plots the model’s training and validation error vs the number
of epochs over which it was trained. A learning curve is said to be “well fit” if it has both
training and validation curves’ error decreasing together over the epochs until either a
minima or flatline is reached. However, achieving this well-fit learning curve can require
some empirical tuning, and thus was made the goal of these two inexhaustive searches.

By incrementally increasing the batch size from the default of 32 observations, it was
found that a batch size of 300 observations offered significant improvement to the ANN-
FF’s learning curve. Furthermore, from inspection of the turbines’ learning curves, it was
observed that a minimum MAE is reached at approximately the 20th epoch. Thus, an epoch
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limit of 25 was used with a early callback option that terminated training if the epoch’s
validation error did not improve over 2 epochs.

Exhaustive Searches. The parameters for the ANN-FF estimator that were tuned
exhaustively using a cross-validated grid search were those defining the ANN’s neurons-
per-layer. Here, as opposed its employment in RFECV, a CV of k = 5 folds was used in
order to save computational expense. This was considered sufficient given the objective
of obtaining a general indication of preferred ANN architecture for the task at hand and
the fact that each architecture was tested over the entire wind farm of turbines, thereby
providing a layer of hyperparameter semi-validation in and of itself.

The range of neurons-per-layer that were grid searched over were 2, 5, 10, 20, 50 and
100 per layer. Thus, each combination of neurons allocated to each layer provided the ANN
a unique architecture. The grid search was performed for each turbine at each model scale
and feature set.

From inspection of the grid search, a number of observations were made. First, the
most repeatable apparent trend across model scales and feature sets is the decrease of
RMSE with an increase in neuron count in layer 2 (n2). This is a strong trend from n2 = 2
to n2 = 20, at which point the benefit of additional n2 counts is minimal. Next, it appeared
that when using wind speed as the feature set, the model scale performance hierarchy
is WFL > WF >> WT. When windspeed and wind direction are used as the feature set,
the hierarchy appears to be WFL > WT > WF. These were both surprising results as it
was originally hypothesised that WF would outperform the other two model scales for its
added information. Finally, it can be observed that across all scales, using a feature set of
only wind speed outperforms the use of a feature set using wind speed and wind direction.
This is also surprising given the important wake-centric carrying information of the wind
direction SCADA signal. It is hypothesised that the poor results were related to the wind
direction signal’s relatively high variability.

ANN-LSTM Tuning

The process used to tune the LSTM model was a similar combination of exhaustive
and inexhaustive searches over parameter ranges of interest. Inexhaustively, it was found
that the same batch size and epochs as determined effective for ANN-FF training were also
effective for LSTM model training: 300 observations and 25 epochs.

The following sequence outlines the iterative grid-searching process used to identify
suitable hyperparameters for the LSTM-based NBM:

(1) Layer architecture and preliminary lag search:
The first exhaustive tuning objective was twofold: identify a preferred layer architec-
ture and sequential-input-defining lag time. Here, in the TensorFlow nomenclature,
the lag time is equivalent to the number memory cells per block and a block is
equivalent to a neuron.
In order to search over both of these hyperparameters, a grid search using a range
of lag times 1, 5, 10, 20 and 30 s was implemented for two LSTM-containing ANN
architectures:

(a) 2-layer with an LSTM hidden layer
(b) 3-layer with an LSTM hidden layer connected to a fully connected, dense

feedforward-style hidden layer.

Though architecture (b) is less common, it was thought worthy to explore given
the anecdotal performance improvement of the utilization of 2-hidden layers in the
ANN-FF tuning. Further, as demonstrated in [20], such an architecture is particularly
capable of learning sequences that are conditional to constraints, such as a power
signal conditional to wind turbine operational constraints.
From inspection of the validation results between architectures (a) and (b) trained
using different lag times, two main observations could be made: First, it appears
that the LSTM + Dense network significantly outperforms the single LSTM layer
network, scoring a median min RMSE of approximately 150 kW across all turbines,
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while the single LSTM layer architecture scoring a median min of 350 kW. Second,
it was observed that for both architectures, performance improves with added lag
time; between 1 to 5 s for LSTM and apparently up to the range max of 30 s for
the LSTM + Dense architecture.
Based on these results, an extended lag study was performed using the LSTM + Dense
architecture for all scales to further investigate a best-suited value for this hyperpa-
rameter.

(2) Extended lag study using best layer architecture:
Here, a range of 1, 5, 10, 20, 30, 45 and 60 s were tested for each model scale, all at the
preferred LSTM + Dense architecture.
From inspection of this study’s results, a number of observations can be made. First,
it was seen that the WT scale model is the primary beneficiary of the extended lag
time tested in this search; with performance continuing to significantly improve up
until lag = 45 s. Next, it was seen that the WFL scale improves from 1 to 20 s, with no
significant change beyond this point (except perhaps an increase in variance between
20 to 60 s). These trends are also exhibited generally by the WF scale. Finally, it was
seen that all models achieve similar median min RMSE at their best lag, with the
minimum overall median score belonging to the WFL scale using lag = 20 s.
Thus, a lag of 20 s was selected as a balance of performance and computational
complexity.

(3) Neuron grid search for all scales using best lag time:
To check the ANN-FF-tuning-based assumption of 20 neurons being best, a grid
search was again performed to search over combinations of neurons for both the
LSTM and dense, feedforward layers. As in the ANN-FF grid search, here a 5-fold
cross-validation was used. Here, note that n1 corresponds to the number of neurons
in the LSTM layer, while n2 corresponds to those in the dense feedforward layer.
From inspection of this grid search’s results, a number of observations could be made.
First, the WFL was shown to outperform the WF and WT models; a surprising result
given the findings of the ANN-FF neuron grid search. Second, for the WT model, a
neuron set of n1 = 50, n2 = 50 proved best while n1 = 20, n2 = 20 proved best for WFL
and WF models. The fact that these results were monotonically decreasing with lower
neuron counts unto the minimum tested in this range motivated a follow-up grid
search representing neuron counts of even lower values.

(4) Lower range extended neuron grid search at best model scale (WFL):
Here, an extended neuron range of n1, n2 = 2, 5, 10 neurons was tested for only the
best performing model scale of WFL.
From inspection of this extended search, it was seen that a combination of n1 = 5,
n2 = 20 yielded the best performing model. Thus it is chosen as the neurons-per-layer
hyperparameter with which to train the final LSTM-based regression models.

Summary of Selected ANN-FF & ANN-LSTM Hyperparameters

Table 3 offers a summary of the selected ANN-FF and ANN-LSTM model parameters:

Table 3. Summary of the ANN-FF and ANN-LSTM model parameters selected through tuning.

Layer 1 Layer 2

Model Lag
[s] Type n Activ.

Func. Type n Activ.
Func. Optimizer Loss Batch

Size Epochs

ANN-FF NA dense 20 relu dense 20 relu adam MSE 300 25
ANN-LSTM 20 LSTM 5 - dense 20 relu adam MSE 300 25
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2.5.3. Comparison of Tuned Regression Model Performance

With hyperparameters established for all the regressors, it is now possible to compare
their performance in order to choose the one best suited for the power performance analysis
objective of this project. The performance metrics for this comparison were generated
using a 10-fold cross validation for each model. Such a metric thus serves to describe each
model’s generalised performance, i.e., that which it would exhibit when given hitherto
unseen observations. This is pertinent in this project as the test set (detailed in Section 2.2)
to be subjected to this project’s power performance analysis will not be exposed to these
regressors until the performance analysis itself. For this comparison’s 10-fold CV, each
regressor was trained at each model scale and using each feature set. As separate scripts
were written for separate models, seeding the randomness of the CV function ensured
models were evaluated over the same folds.

Table 4 offers a summary of the model comparisons.

Table 4. Model comparisons in which wind speed, and wind speed and wind direction, were used in the feature set. Values
represent medians across all turbines. Note that LSTM was not tested using the wind speed and wind direction feature set
as at time of its training, results strongly suggested wind speed only as the superior feature.

MAE [kW] RMSE [kW] Training Time [min]

Model Feature WT WFL WF WT WFL WF WT WFL WF

LR WS 173.8 155.7 165 226.7 209.5 218 0.0002 0.01 0.08
RFR WS 115.9 88.9 85.3 166 129 125.6 0.15 1.91 12

ANN-FF WS 117.5 94 86.8 166 135.3 124.3 2.75 2.7 2.7
ANN-LSTM WS 86.8 74.4 78.3 126.2 110.8 115.5 6.8 6.6 6.3

LR WS + WD 175.6 152.5 153.9 227.8 203 207.6 0.02 0.09 0.4
RFR WS + WD 140.7 92 95.5 198.8 131.7 132.8 0.3 4.3 14.7

ANN-FF WS + WD 123.8 97.8 113.7 172.3 132.8 155.3 2.9 2.9 2.8

As can be seen, RFR and both ANN variants far outperform the base LR reference
regressor across all scales, feature sets, and error metrics (RMSE and MAE). Next, it can be
seen that for all models, only using wind speed in the feature set provides better perfor-
mance than when wind speed and wind direction are used in the feature set. Finally, for all
regressor types other than ANN-FF, the WFL scale yields the highest performing models.

At the WFL scale using wind speed in the feature set, ANN-LSTM achieves the lowest
median MAE (across all turbine models) of 74.7 kW with the next closest model at this
scale (RFR) achieving a median MAE of 88.9 kW.

Thus, the ANN-LSTM WFL scale model using only wind speed in the feature set is
selected as the best model to use in the NBM with which to perform the power perfor-
mance analysis.

2.6. Trained Model Inspection
2.6.1. Definition of Residual

The definition of residuals used in this study’s power performance analysis aligns
with the following definition:

residual = yi − ỹi (2)

where yi is the actual value of the response variable at observation i and ỹi is the model’s
prediction at observation i. This precise definition aligns the residual signal intuitively
with the direction of abnormal performance—for a negative residual will correspond to a
suspect case of under-performance while a positive residual will correspond to a suspect
case of over-performance.
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2.6.2. Residual Inspection

Before embarking on using the now trained NBM’s in a power performance analysis,
it is important to inspect the trained models in an effort to inform the analysis. Specifically,
understanding the model’s levels of uncertainty and bias must factor in to any conclusions
made through the analysis. Further, when inspected in wind farm and power curve space,
they can offer insight as to how the turbines might behave in the test set and also where
the models struggled to capture the behaviour of the wind turbines in the training set. This
can then, for instance, serve to educate further training sessions if refinement of the final
power performance analysis on the test set is desired.

The residuals inspected in this section are of each trained wind turbine’s predictions
given the training set data used in its training. The distributions of these residuals for all
turbines individually were plotted and inspected. Additionally, in order to inspect the
range of uncertainties and biases at a higher level, the training residual means and standard
deviations are plotted in wind farm-space:

2.6.3. Bias Inspection

From observation of Figure 7a, it can be seen that the turbines exhibiting the highest
negative residual bias are located deep within the wind farm considering the predominant
wind direction in the dataset (230◦ with reference to Figure 3) while those exhibiting
the highest positive residual bias are along the outer perimeter without respect to the
predominant wind direction. In this project’s context, a negative bias indicates the model
has an innate bias to diagnose a wind turbine as underperforming while a positive bias
denotes a bias to diagnose as overperforming. Considering that the models used here were
at the WFL scale, in which other turbine’s wind speed SCADA data was used as model
features, it is possible that these biases correspond to the models’ struggle to model the
wake effect at play within the farm. For instance, consider WT12, which exhibits perhaps
the highest positive bias. From discussion in Section 2.4.3, it is known that its model uses
wind speed signals from neighbouring turbines to predict its own power. Considering that
the particular neighbours for WT12 are those that are both along the perimeter of the farm
and at the most upstream locations relative to the predominant wind directions, it is likely
that the models overly trusted these higher wind speed signals in predicting the power of
WT12; that is to say, the model underestimated the wake effect occurring between WT12
and its upstream neighbours. Applying a similar rationale, it conversely appears that the
WFL model for WT62 underestimates the wake effect between it and its neighbours. This is
perhaps for two reasons, both relating to the bimodal nature of the dataset’s wind direction
distribution. For at the predominant peak the wake experienced by WT62 should be among
the highest in the wind farm as its at an approximate downstream depth of six turbines.
However, at the distribution’s secondary peak (centred approximately at 320◦), the wake
effect experienced by WT62 should be among the lowest in the wind farm at a downstream
depth of 1 turbine. Thus, a model trained on such a bimodal data would indeed exhibit a
negative bias when tested on the same dataset.

2.6.4. Variance Inspection

In Figure 7b, the standard deviation of the wind turbines’ residuals is visualised
in wind farm space. Here, a trend can be observed in which the wind turbines located
mainly upstream relative to the dataset’s predominant wind direction show lower stan-
dard deviation than those downstream. This is likely directly related to the difference in
turbulent intensity in the wind field felt by upstream vs. downstream turbines as discussed
in Section 2.3.2. In the context of residuals, it is inferred that a model trying to describe
the nature of something possessing a higher level of variance is in turn likely to yield a
higher level of residual variance. In this figure, it can also be observed that WT51 seemingly
opposes this trend; possessing a lower standard deviation than its neighbours and wake-
related position would suggest. It is likely that the bimodal nature of the wind direction is
again at play, considering that at the distribution’s secondary peak (320◦), WT51 should ex-
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perience minimal wake effect and associated turbulent intensity and consequently should
exhibit minimal variation in its model’s residuals.

Figure 7. Contour plot of training residual means (a) and standard deviations (b) across the wind farm.

3. Results and Discussion
3.1. Test Set Power Performance Analysis

With the models trained and inspected, and analysis guiding control limits set, it
is now possible to employ the models in a power performance analysis on the hitherto
unseen test set discussed in Section 1. As a final step, the test set is filtered using filters
similar in definition to the operational filters applied to the training set but differing here
in their application’s intent.

3.1.1. Test Set Filtration

Whereas when applied to the training set the operational filters were used in an effort
to define normal turbine behaviour, here, the application to the test set serves to filter
out observations considered not-of-interest to the objectives of the power performance
analysis. Specifically, such observations can fall into two categories: those representing
false positives and those representing behaviour outside of the range of expected normal
behaviour.

(1) False positive here denotes observations that, given the model’s trained definition of
normality, would yield high indication of abnormality through high residuals, but yet
the nature of which is not of interest in the analysis. Here, instances of downregulation
would yield false positives and are thus filtered.

ActivePowerSP < 2000 kW (3)

(2) In filtering out observations representing behaviour outside of the nominal bounds
of normality, a similar such filter as applied to the training set is considered. How-
ever, here conditions are modified slightly in order to preserve observations that,
though outside of operational bounds, may indicative of instances of of under or
over performance.

(WindSpeed < 4 m/s)

OR

((WindSpeed < 4 m/s)AND(ActivePower < 66.6 kW))

OR

(WindSpeed > 25 m/s)
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With these filters established, they were applied to the test set corresponding to the
WFL scale model for each turbine which was then fed directly as input into each turbine
with which to generate test set predictions.

3.1.2. Mitigating Test Set Residual Uncertainty

With the NBM predictions made for the test set, it is now possible to analyse the time
series of their residuals. In order to increase the confidence in the signal, and thereby
increase confidence in conclusions regarding performance abnormalities, a rolling mean of
the signal was applied as in [2]:

eroll(i) =
1

2η + 1

2η

∑
j=0

e(i + η − j) (4)

where eroll(i) is the rolling mean error at time i, e is the raw error signal and η is the
window size defining the number of observations over which to calculate the mean for
observation i. A window size of η = 60 s was used as it aligns with conventionally used
time scales and was empirically found to work well for this project’s analysis task. With
the application of the rolling mean using this window size, the resultant residual signal
provides a more robust measure of performance without washing out the signal at high
frequencies. From inspection of the rolling means’ effect on residual distribution, it could
be seen that increasing the window size decreases signal uncertainty incrementally.

3.1.3. NBM Results

Finally, it is possible to analyse the signal of the NBM’s residuals in an effort to analyse
the power performance of the turbines over the course of time represented by the test set.
This section will first present a joint time series of all the wind turbines NBM’s residuals
with the wind farm-wide control limits superimposed for reference. Here, individual
select cases of abnormal performance are annotated then individually investigated in the
following sections.

The joint residual time series for all turbines over the test set is presented in Figure 8
with select cases annotated.

Proof of Concept—WT94

In this section, an abnormal event associated with gross under-performance of a wind
turbine, in which the turbine appears to be out of operation, is investigated. As it offers a
definitive case of under-performance, it is considered an easy proof of concept bench test
for the model as it is intended to function.

Figure 9 offers semi-continuous time series of the actual and predicted power output
of WT94 and their associated residuals. Note the four discrete plots correspond to the four
continuous time spans given by the raw dataset.

As can be seen in Figure 9, the wind turbine initially appears to be performing
normally as indicated by the rolling means maintaining itself generally about zero and
within the control limits. However, at approximately 10-21 01:00:00, the residual drops
sharply to a minimum of −2000 kW. By observing the plot of actual and predicted powers,
it becomes clear that the turbine has simply entered a state of non-operation while its model
continues to predict power as if it were still in operation. Considering that non-operating
state corresponds to a power output of 0 kW, the residual of −2000 kW suggests that
the turbine would have been likely producing power at its rated state if it were indeed
operational.

Under-Performance Case—WT25

In addition to the time series of predicted vs. actual power and the associated residuals,
the select case of abnormal power performance presented in Figure 8 was investigated from
two other perspectives. First, as the NBM’s residuals represent the degree of a turbine’s
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abnormality relative to its previously established normal behaviour, the abnormal event is
investigated in power curve space in which both the normal and abnormal traces of power
performance for the given turbine can be compared. Second, to investigate the event’s
degree of abnormality relative to other wind turbines in the farm, a contour snapshot of
the wind farm power output delivered at the observation of max abnormality is generated.
Here, arrows indicating the wind direction signal recorded at each wind turbine also offer
insights informing root cause hypotheses.

Figure 8. Four explicitly continuous time series of the NBM’s abnormality indicating residual signal, smoothed using a 60 s
rolling average. Labels indicate abnormal performance events to be explored further in this section; where green annotations
indicate instances of over-performance for the labelled turbine, blue annotations indicate instances of under-performance,
and red annotations indicate instances of gross under-performance.

Figure 9. Time series of actual and predicted power (top) and associated residuals (bottom).
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In Figure 10a, the investigated under-performance case for WT25 can be seen to occur
at approximately 11-10 11:00:00, at which point the rolling average residual signal surpasses
the turbine’s LCL of 3σ, reaching a minima of −909 kW in the 60 s rolling mean residual
signal. In the power time series itself, it appears the actual and predicted series drops
sharply from rated power to approximately 500 kW then returns sharply again to rated.

The under-performance event is investigated further in the turbine’s power curve
space in Figure 10b. Here, the time scale of the event is explored at a finer resolution,
where it can be seen that the abnormal event spanned approximately 1 min from 11:22
to 11:23 (tabnormal). The time-consecutive power curve observations within tabnormal are
indicated as orange scatter points, and they offer a trace of how the power changed within
tabnormal relative to WT25’s power curve observations for the rest of the test set (tall). This
trace shows that the within 1 min, the power rapidly decreased from slightly above rated
to approximately 300 kW, at which point the minimum raw residual of −1633 kW was
produced. By visual inspection, the gap between this minimum and WT25’s binned
average power curve at this wind speed is approximately 2000 − 300 kW = 1700 kW, which
aligns closely with the residual and its standard uncertainty (coverage factor k = 1) of
σtrain = 114 kW (as seen in Figure 10a’s legend).

Finally, the event is investigated in wind farm-space in Figure 10c. Here, it can indeed
be seen that WT25 is under-performing abnormally relative to the other turbines at the
timestamp of its minimum residual, with most other turbines producing over 1800 kW.
The wind farm-wide wind field as portrayed by the wind direction indicating arrows
is unique in that there appears two main directions flowing through the farm: One at
approximately 310◦ and the other at approximately 280◦. It should be noted here that, as
visible in Figure 10c, a number of turbines’ wind direction signals were repeatably found
to be offset relative to the majority, and are thus are assumed to be out of calibration for the
duration of the dataset used. Without venturing too deeply into root cause analysis, the
scope of which is beyond this project, it is postulated that this duality in wind direction
perhaps confused the turbine’s yaw controls so as to momentarily yaw to a sub-optimal
power producing position.

Over-Performance Case—WT62

In Figure 11a, the investigated over-performance case for WT62 can be seen to occur at
approximately 10-21 06:00:00, at which point the rolling average residual signal surpasses
the turbine’s UCL of 3σ, reaching a maxima of 670 kW in the 60 s rolling mean residual
signal. In the power time series itself, it appears the actual and predicted series rapidly
increase from 300 kW to rated then rapidly decrease back to an output of approximately
500 kW.

The over-performance event is investigated further in the turbine’s power curve space
in Figure 11b. Here, the time scale of the event is explored at a finer resolution, where it
can be seen that the abnormal event spanned approximately 6minutes from 06:24 to 06:30
(tabnormal). The time-consecutive power curve observations within tabnormal are indicated
as orange scatter points, and they offer a trace of how the power changed within tabnormal
relative to WT62’s power curve observations for the rest of the test set (tall). This trace
shows that the within 6 min, the power increased from 1250 kW to approximately 2000 kW,
at which point the maximum raw residual of 979 kW was produced. By visual inspection,
the gap between this maximum and WT62’s binned average power curve at this wind
speed is approximately 2000 − 1000 kW = 1000 kW, which closely aligns with the residual
value and its standard uncertainty (coverage factor k = 1) of σtrain = 118 kW (as seen in
Figure 11a’s legend).

Finally, the event is investigated in wind farm-space in Figure 11c. Here, it can indeed
be seen that WT62 is over-performing abnormally relative to the majority of turbines at the
timestamp of its maximum residual, though its immediate neighbours also seem affected.
Again, there appears to be a “streak” of over-performance, this time exhibited by the two
turbines due West of the investigated turbine. Due to these three turbines’ proximity to the
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out-of-operation WT32, it is possible that (though this snapshot’s wind direction vectors are
not in precise support) the wind speed reduction caused by the wake produced by turbines
upstream to these three over-performers has been able to recover over this open-fetch to
provide these three with an abnormally high wind speed given their location in the wind
farm and the wind direction vectors at this timestamp.

Figure 10. For WT = 25: (a) Time series of actual and predicted power (top) and associated residuals (bottom). (b) Power
curve trace over tabnormal relative to tall . (c) Contour of wind farm power production at timestamp of min residual.
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Figure 11. For WT = 62: (a) Time series of actual and predicted power (top) and associated residuals (bottom). (b) Power
curve trace over tabnormal relative to tall . (c) Contour of wind farm power production at timestamp of min residual.

4. Conclusions

This study has demonstrated an approach to wind turbine power performance analysis
using regression-based normal behaviour modelling.

In this approach, it was demonstrated that the WFL model scale, in which only turbines
correlated with the turbine to be modelled were sourced for SCADA tags, ultimately
provided results superior to single turbine-sourced scale (WT) and even the entire wind
farm-sourced scale (WF). Further, it was found that a uniquely structured machine learning
ANN regressor possessing both an LSTM and feedforward layer outperformed all other
algorithms in the power prediction objective, including models using ANN-FF and ANN-
LSTM explicitly. Finally, through the successful identification of instances of abnormal
performance as presented in the test set’s power performance analysis, this study’s 2-tiered
process of defining normality for each turbine is empirically validated.

Despite its demonstrated effectiveness, there are aspects of the proposed NBM that
can likely be improved. First, it is suggested that the abnormality–filtration sequence (used
to define normal behaviour for each turbine) be tied directly to the residual output of the
regression model. Such a combination of machine learning techniques is referred to as a
pipeline, and it is commonly used to tune the hyperparameters of upstream algorithms
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given the output of a downstream algorithm. In the context of this project, a proposed
pipeline might be to tune the LOF’s n-neighbours and contamination parameters so as to
minimize the training residual-based regressor model uncertainties. Another suggestion
for potential improvement to the NBM is to narrow the model’s range of focus with regards
to the power curve; namely excluding power above the threshold represented by rated
power. The inclusion of this range in this project conceptually enabled identification of
both under- and over-performance represented by this range, but in practice the NBM
struggled to model power production here, especially at higher wind speeds (as evinced in
Section 2.6). This led to a contamination of the residual signals’ meaningfulness; where
the model’s inability to accurately maintain rated power frequently manifested as false
under-performance events. Further, where this project identified singular model thresholds
and hyperparameters deemed suitable to the wind farm as a whole (for simplicity’s sake),
it is entirely possible that a purely data-driven tuning of models on an individual wind
turbine basis could provide even stronger NBM’s than those chosen as best in this study.
Finally, to provide a level of oversight and reliability, monitoring the model’s wind turbine
performance metric using a complexity indicator such as entropy could be implemented as
in [21].
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Abbreviations
The following abbreviations are used in this manuscript:

SCADA Supervisory Control and Data Acquisition system
NBM Normal Behaviour Model(ing)
ANN Artificial Neural Network
SHM Structural Health Monitoring
CM Condition Monitoring
PM Performance Monitoring
RFE Recursive Feature Elimination
OOB Out-Of-Bag
FE Feature Extraction
FF Feedforward
RFR Random Forest Regression
KNNR K-nearest Neighbours Regression
SVR Support Vector Regression
LR Linear Regression
GP Gaussian Process
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LSTM Long Short-Term Memory
GMM Gaussian Mixture Model
LOF Local Outlier Factor
CDF Cumulative Distribution Function
TI Turbulence Intensity
OEM Original Equipment Manufacturer (Here, the company producing the wind turbine)
WT Wind Turbine
WF Wind Farm
WFL Wind Farm Local (scale)
RFECV Cross-Validated Recursive Feature Elimination
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAE Mean Absolute Error
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