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Abstract: Today’s automotive industry has focused its studies on electric vehicles (EVs) or hybrid
electric vehicles (HEVs) rather than gasoline-powered vehicles. For this reason, more investment has
been made in electric motors with high efficiency, high torque density, and high-power factor to be
used in both EVs and HEVs. In this study, an outer-rotor permanent-magnet-assisted synchronous
reluctance motor (PMaSynRM) with a new rotor topology was designed for use in an EV. The
design has a transversally laminated anisotropic (TLA) rotor structure. In addition, neodymium-iron-
boron (NdFeB) magnets were used in rotor topology. The stator slots were designed as distributed
windings, so torque ripples are minimized. At the same time, the maximum electromagnetic torque
was achieved. The analysis of the designed motor was carried out using the finite element method
(FEM). Optimal values of motor parameters were obtained by improving the rotor geometry of the
three-phase PMaSynRM in order to obtain maximum torque and minimum torque ripple in the
design. The motor is in a 48/8 slot/pole combination, a speed of 750 rpm and a power of 1 kW. The
simulation results showed that the design achieved maximum torque and minimum torque ripple.

Keywords: design; FEM; outer rotor; PMaSynRM; synchronous reluctance motor (SynRM)

1. Introduction

With the decrease in fossil fuels in recent years, new alternative energy sources have
been sought. One of the sectors using fossil fuels is the automotive sector [1]. In the
automotive sector, studies on electric vehicles (EVs) or hybrid electric vehicles (HEVs)
rather than gasoline vehicles have increased in number. With the achievement of high
performance in electric motors and the reduction of costs, studies on EVs in the automotive
industry have risen [2]. Features required for an electric motor to be used in an EV are to
obtain high torque at low speeds during start-off or when climbing a hill and at the same
time to obtain high power at high speeds while cruising. In addition to these, torque ripple
and acoustic noise must be minimal to achieve a good ride in an EV [3]. The motors used
in EVs have been designed with either an inner rotor or outer rotor. While mechanical
differentials and gear systems have been used in an internal rotor motor, the outer rotor
motor is mounted directly inside the wheel [1]. Induction motors (IMs), brushless DC
(BLDC) permanent magnet (PM) motors, surface mount permanent magnet motors (SPMs),
interior permanent magnet motors (IPMs) and switched reluctance motors (SRMs) have
been designed as in-wheel motors in both EVs and HEVs [4]. Features sought in these
motors include fast torque response and power density, wide speed range, high efficiency,
high reliability, and low cost [5]. PMs used in permanent magnet synchronous motors
(PMSMs) are preferred due to their high energy density, but the cost of PMs has created
a disadvantage [6]. IMs are suitable for use in traction vehicles due to their reliability,
robustness, and low maintenance. However, their efficiency and power coefficients are
small, the rate of inverter usage is low [7], and the battery duration is disadvantageous due
to the high starting currents [5]. SRMs have high efficiency, low cost, simple and robust
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construction, are simple to control, and can operate in a fixed power range. However, they
have high noise, vibration, and torque ripple [8]. BLDC motors have high efficiency and
high power density. However, since they operate in a fixed power zone, they limit the
extended speed ranges [7].

In recent years, many researchers have developed SynRM and PMaSynRM rotor
designs for HEVs and EVs [9]. If several flux barriers are placed per pole in the rotor
topology in the SynRM design, the structure of the rotor is simple and robust. It can also
work properly at low losses and high temperatures. However, SynRM has a disadvantage
due to its high torque ripple and low power factor [10]. PMaSynRM is obtained by placing
PMs in the flux barriers in the rotor topology to improve the low power factor and increase
the low torque density as well as efficiency [11]. Due to the partial placement of PMs in the
rotor flux barriers of SynRM, the cost will be lower than the cost of PM used in PMSMs.

The rotor topology of PMaSynRM is achieved by placing PMs on the rotor flux barriers
of the SynRM, thus indirectly increasing the difference between the inductances of this
machine [12]. Maximum performance is obtained in PMaSynRM when maximum Ld and
minimum Lq are obtained in the geometric design of the rotor of PMaSynRM. That is,
higher torque will be obtained with higher saliency ratio [2]. PMaSynRM generates both
magnetic torque and reluctance torque. These torques depend on the flux barrier shapes in
the rotor topology. Flux barrier shapes can be arc-shaped or rectangular [12].

PMaSynRM has received great attention from researchers in recent years. In the
literature, a new type of hybrid-PM-powered SynRM with a smaller amount of rare earth
PM to the Ferrite PM-powered SynRM has been proposed, and also the low-cost advantage
of ferrite material is preserved in [6]. In [13], a 3 hp, 4-pole PMaSynRM lab prototype
by placing ferrite magnets inside the rotor of a SynRM was designed and performed
experimental measurements under various loading conditions. In [14], using a macroscopic
design parameter based on the magnetic reluctance concept called the isolation rate along
the q-axis, a simple and fast design procedure of a SynRM was introduced, and then, the
performance increase of the motor was investigated by placing PMs on the rotor body.
A new topology for PMaSynRM to increase the use of magnetic flux of PMs, and also to
increase the full utilization of torque components (reluctance and magnetic) in PMaSynRM
was presented in [15]. In [16], the optimum five-phase rare earth free external rotor
ferrite-powered synchronous reluctance motor (EFaSynRM) as an alternative to internal
rotor SRMs and internal PM motors for traction applications such as EVs and HEVs was
proposed. A SynRM with or without PM for traction applications in electric vehicles was
analyzed and the effect of rotor design on SynRM performance with experimental test
results was demonstrated in [17]. In [18], a new five-phase external rotor ferrite permanent
magnet-assisted synchronous reluctance motor (Fe-PMaSynRM) with a high saliency ratio
was designed.

In this study, a three-phase outer rotor PMaSynRM with a power of 1 kW and a speed
of 750 rpm was designed. The stator and rotor geometric structures of the designed motor
were determined. The combination of slots/poles values of the motor was selected as
48 slots/8 poles. Its windings were designated as a distributed double layer winding and
the rotor structure were improved to achieve maximum torque and minimum torque ripple.
By performing the necessary magnetic analyzes, an efficiency of 91.30% was achieved.

2. Design Process

In this study, a three-phase outer rotor PMaSynRM was designed with a power of
1 kW to be mounted inside the wheel for use in lightweight electric vehicles. ANSYS
Maxwell software was used for design and analysis. Boundary conditions and all starting
characteristics of the designed PMaSynRM are given in Table 1.
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Table 1. Boundary conditions and starting characteristics.

Parameter Value

Number of phases 3

Rated power (W) 1000

Rated torque (Nm) 12.73

Rated speed (rpm) 750

Rated current (rms) (A) <13

Slot/pole configuration 48 slots and 8 poles

Rotor outer diameter (mm) 265

Stator outer diameter (mm) 193

Stack length (mm) 80

Air-gap length (mm) 1

Steel Material M470-50A

Magnet Material N35H

Frequency (Hz) 50

Phase Voltage (V) 36

Efficiency >90%

To design a three-phase outer rotor PMaSynRM motor with high torque and high-
power density, we first started by creating a good slot/pole combination. The PMaSynRM
stator structure is similar to the stator structure of an IM. In this study, the combination
providing optimized minimum torque ripple was chosen as 48 slots/8 poles. The quarter
section of the PMaSynRM is shown in Figure 1.
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The stator winding can be either distributed winding or concentrated winding type.
The distributed winding creates a more uniform magneto motor force (MMF) with less
harmonic content [19]. It also gives a lower torque ripple compared to concentrated
winding [20]. For these reasons, double-layer distributed winding was chosen as the
winding type. This motor was designed for use in lightweight electric vehicles. Therefore,
the disadvantages of distributed winding, such as the fact that it cannot be automated,
and therefore not competitive, were been considered. Only the low torque ripple value
was targeted.

The PMaSynRM with the outer rotor provides higher output torque at low speed. The
electromagnetic torque generated in Equation (1) depends on the number of poles (p), the
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number of phases (m), the PM flux link (λm), and the d-axis and q-axis components (isdisq)
of the stator winding input currents.

Te =
m
2

p
2
[
λmisq +

(
Ld − Lq

)
isdisq

]
(1)

At the same time, electromagnetic torque is generated by magnets and depends on
the difference between the d-axis inductance (Ld) and q-axis inductance (Lq). In the design,
it was necessary to keep the inductance in the d-axis, that is, the flux value in the d-axis,
at the maximum value, and keep the q-axis inductance value at a minimum. In order for
the d-axis flux value to be at the maximum value, the flux barriers were kept wide, but an
increase in the q-axis flux value is inevitable. It is the geometric parameters of the rotor that
affect the motor performance the most and it is extremely important to determine these
parameters in FEA [21].

In wheel-mounted direct drive applications, high output torque is often required
to achieve acceleration, deceleration, and high-load climbing. However, torque ripples
should also be considered. Therefore, output torque and torque ripples should be chosen
as optimization targets [22]. To obtain a good magnetic flux distribution, in other words
to provide a reduction in torque ripple, the position and number of rotor barriers are
important [23]. Torque ripple percentage can be calculated as follows.

Trip(%) =
Tmax − Tmin

Tavg
× 100 (2)

where Tmax and Tmin are the maximum torque and the minimum torque, respectively, and
Tavg is the average torque.

The main purpose of the PMaSynRM rotor design was to find an optimization process
according to the parameters such as the geometry of flux barriers, air/iron ratio, barrier
number, etc. While performing these processes, it was important to reach the rotor design
that gives appropriate torque, power factor, torque ripple, and efficiency values to obtain
the best performance values of the PMaSynRM. Some variables needed to be determined
for PMaSynRM rotor design optimization [24].

2.1. Improvement

PMaSynRMs are nonlinear motors due to their strong magnetic saturation. Therefore,
a significant effort was required to analyze these motors correctly [25]. In this process, the
rotor design of the motor was improved by performing parametric analysis to obtain the
desired high output torque and minimum torque ripple. Parameters of the rotor are shown
in Figure 2.
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During the design process, the barrier geometry was determined, and single barrier,
two-barrier, three-barrier, and four-barrier rotor topologies were prepared. The designed
rotor topologies are given in Figure 3.
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and (d) with four barriers.

Due to its shorter completion time, current analyzes have been made on 1/8 part of
each model over different values of rotor parameters. The lower and upper bounds of the
rotor parameters used in parametric analyzes are given in Table 2.

Table 2. Lower and upper bounds of the rotor parameters.

Design Variables Unit Lower Bound Upper Bound

α degree 16 20

B0 mm 3 6

Rb mm 3 7

Y0 mm 2.5 5

H mm 1.5 3

Here, improvement of H, Rb, B0, Y0 and α values for high output torque and minimum
torque ripple values after the selection of the stator and rotor parameters of the PMaSynRM
is performed. The rotor design improvement algorithm is given in Figure 4. The iteration
process was carried out until the desired optimal values were obtained.
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After the parametric current analysis, the results obtained from all rotor topologies
were evaluated and a three-barrier rotor topology was selected. Then, the voltage analysis
was made on the whole model of the three-barrier rotor topology. Thus, appropriate torque,
minimum torque ripple, and maximum efficiency values were obtained where possible
at the appropriate rated current value. Within the scope of this improvement process,
also the final values were obtained by changing the diameters and number of turns of the
conductors used in the stator windings.

In Table 3, output torque values and torque ripple values obtained from different
rotor topologies are given. As seen in Table 3, the minimum torque ripple was in the
three-barrier design.

Table 3. Output torque and torque ripple values.

Number of Barriers Output Torque (Nm) Torque Ripple

1 barrier 12.6467 22.93%
2 barriers 12.6446 12.88%
3 barriers 12.8717 6.96%
4 barriers 12.5851 9.01%

2.2. Efficiency

The most important feature of the designed outer rotor PMaSynRM is the absence
of windings in the rotor structure, and, at the same time, PMs were placed instead of
the windings. In this way, the efficiency of the motor was increased. After obtaining the
optimal values in the designed motor, the efficiency was also evaluated. The output power
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(Pout) of the motor at the speed of 750 rpm was achieved as 1.010 kW, and the efficiency of
the motor was obtained as 91.30% from Equation (3).

η =
Pout

Pout + Ploss
(3)

where Pout is output power of the motor, Ploss is the total loss power. Total power loss is
the sum of core loss, stranded loss, and other losses. Core losses are the iron losses and
include eddy current losses, hysteresis losses, and additional losses. Stranded losses are
ohmic losses in the windings. Other losses include friction losses and ventilation losses.
The losses of the motor are given in Figure 5. Core loss was 7.4153 W, the stranded loss
was 76.9017 W and other losses were 12 W.
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In traction applications, it is important to provide a wide range of constant power
speeds. The main characteristics of the motor at different speeds at constant power are
shown in Table 4. Torque, torque ripple, current, total loss, and efficiency values obtained
in different speed ranges at constant power are given in the Table 4.

Table 4. The main characteristics of the motor at constant power at different speeds.

Speed (rpm) 500 600 750 800 1000 1200 1500

Tork (Nm) 19.09 16.10 12.87 12.21 10.05 8.07 6.47

Tork Ripple 6.09% 6.69% 6.96% 7.99% 8.25% 10.52% 12.44%

Current (A) 13.49 12.13 10.95 10.92 10.61 9.99 10.06

Total Loss (W) 137.42 115.11 96.32 94.74 90.76 81.74 82.38

Output Power (W) 999.25 1011.25 1010.87 1022.53 1052.35 1014.03 1016.15

Input Power (W) 1136.67 1126.36 1107.18 1117.27 1143.11 1095.77 1098.53

Efficiency (%) 87.91% 89.78% 91.30% 91.52% 92.06% 92.54% 92.50%

2-D and 3-D views of three phase outer rotor PMaSynRM are illustrated in Figure 6.
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3. Simulation Results

In the simulation results of the designed PMaSynRM, the primary focus is on the
output torque generation of the motor and obtaining the minimum torque ripple. This
process is carried out during the optimization process. Figure 7 shows the torque behavior
produced by the designed motor. The designed motor produced 12.8717 Nm of torque,
and the torque ripple of the motor was 6.96%.
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In Figure 8, speed behavior of the PMaSynRM motor is shown. It is seen that the
designed motor reached the nominal speed in 0.34 s.
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In addition, the three phase currents that the designed motor draws from the stator
windings is given in Figure 9. The rms value of the currents drawn from the stator windings
was approximately 10.95 Amps.
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The distribution of the magnetic flux lines produced by the magnets and coils of the
designed motor on the stator and rotor core is shown in Figure 10.
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4. Conclusions

In this study, a three-phase PMaSynRM motor with the outer rotor was designed for an
EV. The dimensioning of the motor was made appropriately to be placed inside the wheel
of the EV to be used. After parametric analysis to obtain the desired torque value and low
torque ripple, a 48 slot/8 pole combination and three-barrier rotor topology were selected.
The motor was designed to operate at the speed of 750 rpm, with the power of 1 kW, and
to produce 12.87 Nm of torque. At the same time, the efficiency of the designed motor was
91.30% as a result of the analysis. Since the flux densities on the stator teeth and the rotor
lamination were within the desired values, the motor was operated at an operating point
close to the saturation zone. In this way, a high-efficiency value was obtained. Additionally,
torque ripples were minimized as far as possible with the distributed double layer winding,
and the suitability of the rotor flux barriers to the combination of the number of stator slots
and the number of poles were also considered in the optimization. Simulation results were
obtained by 2D FEA method. As can be seen from the simulation results, the designed
PMaSynRM motor provides the desired performance.



Energies 2021, 14, 3739 11 of 12

In future work, a PMaSynRM with a smaller size, different rotor topology, high power,
high torque, and low torque ripple values will be designed.
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