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Abstract: The possibility of the application of an unmanned aerial vehicle (UAV) in search and rescue
activities in a deep underground mine has been investigated. In the presented case study, a UAV is
searching for a lost or injured human who is able to call for help but is not able to move or use any
communication device. A UAV capturing acoustic data while flying through underground corridors
is used. The acoustic signal is very noisy since during the flight the UAV contributes high-energetic
emission. The main goal of the paper is to present an automatic signal processing procedure for
detection of a specific sound (supposed to contain voice activity) in presence of heavy, time-varying
noise from UAV. The proposed acoustic signal processing technique is based on time-frequency
representation and Euclidean distance measurement between reference spectrum (UAV noise only)
and captured data. As both the UAV and “injured” person were equipped with synchronized
microphones during the experiment, validation has been performed. Two experiments carried out in
lab conditions, as well as one in an underground mine, provided very satisfactory results.

Keywords: UAV; acoustic signal processing; Euclidean distance; underground mine; search and rescue

1. Introduction

The biggest underground mines look like underground cities. They consist of many
“streets” and “street crossings”. Unfortunately, each mining void looks very similar to the
other. Due to the complexity of the underground corridors network, localization of an
injured person or any other incident, if not reported on an emergency line, is complicated
and time-consuming. It imposes a serious danger in the cases, in which rapid contact with
works supervisors or rescue units is crucial. The complex structure of an underground
mine makes getting lost in it much more complicated to solve and serious than in the
case of an accident on the ground level. Another important issue is related to extremely
harsh environmental conditions. An example of an emergency situation caused by them
can be given, like one of the co-workers in a pair or small group fainting. In such a case,
the presence of a drone sent to the area in which worsened environmental parameters have
been reported can significantly shorten the time needed to reach the victim and others
at risk.

There are many natural hazards or unfavorable environmental factors, that can impose
a significant risk to any humans performing work underground, such as spontaneous
combustion of coal, rock bursts, methane ejections, water hazard, high dustiness [1–4].
According to the State Mining Authority, only in 2019 did Polish mine rescue units take
part in 32 rescue operations in mining plants [5]. Most of them were related to roof/wall
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collapse or fire occurrence. In case of such an extreme situation in the conditions of an
underground mine, it is not difficult to imagine a situation in which it is necessary to search
for workers. As a result of the risks present in the mining environment, such as lack of
oxygen, presence of fire fumes or other harmful gases, leading to loss of consciousness,
as well as other injuries, the miner may not be able to evacuate from the hazardous area.
Furthermore, a person may get trapped due to a rock collapse or a fire occurring in the
evacuation route. The scale of the problem can be seen in the example of the activity
of Polish mining rescue units. Considering that mining rescue activities are not limited
to Polish underground mines, it can be stated that on a global scale the issue of human
location in emergency situations is a considerable challenge. As the area to search is large,
consists of many corridors and time is a critical issue, there is a need for a quick method of
finding victims of accidents.

In the paper, it is proposed to use an unmanned air vehicle (UAV) for audio signals
acquisition for human voice detection. In the article, we propose a drone equipped with a
microphone, capable of registering human voice and distinguishing it from the propellers’
noise, to be used for detecting emergency situations in underground mines. A method
using time-frequency decomposition of the signal is presented, together with the full
procedure of separating the human voice and background noise. It is assumed that the
person is not able to move, but can call for help by shouting. Practically, the mission may be
performed using several drones searching corridor by corridor and using acoustic signals
to find the location of the human.

From a signal processing perspective, the problem is related to voice detection in
presence of time-varying noise with complex structure. Due to the spinning of the pro-
pellers, some deterministic and random components are present in the acoustic signal.
Unfortunately, the energy of the voice signal captured by a microphone mounted below the
drone is rather small and the high energy of the acoustic signal emitted by the drone makes
the voice detection problem complicated. In the paper, a procedure for voice detection in
presence of UAV noise is proposed. Our informative signal is in fact a human voice, but lim-
ited to specific words only like “help”. So, we called it specific acoustic signal. We limit
our research for “help” only, however we believe also other words might be detectable-but
for sure not all. “Help” is the most intuitive in crisis situation. The experiments have
been carried out in the lab as well as in the real mining corridor to test and validate the
proposed procedure.

2. State of the Art

Voice activity detection (VAD), being a natural context for our sound detection method,
is an inherent stage of any real-world application of speech processing. There have been
numerous publications concerning various methods on this subject; however, formerly,
emphasis was placed primarily on detecting voice messages between long periods of silence
or low magnitude noise. If the background noise has lower energy than any material speech
occurrence, then a simple thresholding criterion enables a recording or communication
system to save energy, computational memory, and network bandwidth. Traditional VAD
and noise estimation methods are used in VOIP (Voice over Internet Protocol), as well as
various speech-based applications. Along with de-noising and feature extraction, it would
be a stage of any speech recognition or voice control system [6].

More sophisticated methods were developed to deal with lower SNR (signal-to-noise
ratio). Among more recent work on VAD methods, some were based on combining
spectral analysis and statistical methods [7,8]. Closely related to them are the noise re-
duction techniques, which allow subtracting the noise to increase the intelligibility of the
speech signal [9]. Extracting preliminary information from speech signals may include
voiced/unvoiced speech classification [10]. Speech detection and de-noising were also
considered in the context of the so-called cocktail party problem where audio sources
(i.e., speech and noise) are separated through a binaural system consisting of two micro-
phones [11].
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The background noise has considerably high energy in the case of recording nearby
UAV equipped with a multi-rotor propulsion system. It contains the sound of its engine
and mechanical parts, such as the propellers, which cannot be damped in its natural
operating mode. The methods of dealing with high-level background noise conditions are
widely discussed in literature concerning acoustic measurement on machines with rotating
elements such as turbochargers [12–14] among many other examples. The ego-noise of
a small-size multi-rotor drone itself has been investigated by many researchers in recent
years. It was thoroughly examined at static thrust [15]. Some recent research considers
tracking change in noise characteristics under realistic flight conditions based on position
and noise measurement of a moving drone using both camera and a multiple microphone
system (which is called microphone array) [16].

There are some publications about de-noising methods concerning mainly a hovering
drone. The azimuthal direction of sound arrival was analyzed (using both supervised and
unsupervised methods) in [17,18] based on a microphone array mounted on a hovering
drone. Though at static thrust drone was enabled to track moving sound sources. Analyzing
the sound emitted by a UAV has recently acquired interest also in the detection of illegal
drone activity [19], where the dynamics of a quadrotor drone was taken into account.

In our experiment, as the drone is moving from one point to another, the background
noise is both high-energy and non-stationary. It originates from the variable mode of
operating of a UAV and air response but also from air turbulences. We only use one
microphone at a sound source, thus physical direction or distance cannot be tracked,
but the distance is changing (in an approximately monotonous way) during our records.

When analyzing a non-stationary process, it is essential to perform some sort of time
segmentation of the data [20]. Therefore, transformations preserving (to a certain extent)
original time structure are very useful. One of the primary methods is representing a signal
in the time-frequency domain via Short-Time Fourier Transform (STFT) [21].

To characterize the time intervals containing voice we adopt a method based on STFT
which was discussed before in a context of cyclic impulse anomaly detection (local damage
in driving units of a belt conveyor) based on calculating distance (metric) between spectral
densities [22]. It was stated that informative frequency band selection may strongly affect
the analysis based on the time-frequency map. To deal with it we perform both band-pass
filtering and spectrogram normalization.

The application of robotics in mining industry and especially in missions related to
rescue and search of the victims of an accident victims is well established and constantly
developed since the beginning of the third-millennium [23–31]. The use of UAVs as a
support for the search and rescue (SAR) operations has been presented among others
in [32], where some significant considerations are included, such as energy limitations,
the quality of sensors, and the exchange of information between UAVs and rescue teams.
An example of a fixed-wing UAV-system capable of detecting accident victims employing
real-time imaging, on-board processing, and assigning coordinates of the detected target
can be found in [33]. Both-UAV’s hardware and identification algorithm with a self-
adjusting threshold were exhaustively described providing a valuable overview of the
current technical tools valuable for SAR purposes in superficial conditions. A remote-
controlled drone, presented by [34], is an example of how the technology of this type
can not only prevent mining production obstructions but also increase safety on-site.
The UAV used by the authors carried an analog thermal infrared video camera, digital
video recorder, an RGB spectrum digital video camera, and a small battery power source.
This solution based on commercially available devices allowed evaluation of the sub-
surface temperatures in a flexible and low-cost way, nevertheless, the system was able
to perform only short missions-lasting up to fifteen minutes due to the limitation of
batteries weight. The character of sub-surface mining workplaces and accidents that
take place there created a big demand for the introduction of urban SAR robotics in
underground applications and their adaptation to solving similar problems in new-more
demanding conditions. Together with maintenance-purpose robots, this technology will
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allow the limitation of human involvement in the most hazardous areas, contributing
to the transformation of the mining sector [27,35]. The vast majority of underground
mining-related applications of aerial vehicles’ proposed by researchers nowadays are
aimed at mapping, localization of discontinuities, and general reconnaissance of sub-
surface areas [36–40]. The aforementioned are undoubtedly valuable examples of how
robotics can facilitate arduous and time-consuming processes, providing information about
some available tools. However, recent development and increased accessibility of robotics
in the raw materials sector is also aimed at increasing the safety of underground workers
and providing quick and effective help in case of an accident. The detection of a human in
an underground environment can be based on a video recording transmitted in real-time
to an operator [41], automatic detection of humans with the use of image recognition
algorithms [28], or, what we propose in this article—human voice detection. Three recent
reviews of the usage of unmanned aerial vehicles [42–44] give an exhaustive insight into
the spectrum of possible applications of them in both underground and open-cast mines,
including rescue operations. Nonetheless, in most of the cases in which a UAV is considered
to be applied in this area, the sensors in which it is equipped are the image-capturing ones.
To the best authors’ knowledge, the problem of voice detection and its extraction from the
drone background noise have not been approached in the context described in this work
(underground mining rescue action).

3. Theoretical Background of the Novel Procedure

We propose a procedure involving time-frequency decomposition of a signal. A time-
frequency map (spectrogram) of a signal is generated using Short-Time Fourier Transform
(STFT). The STFT of a vector of observations x0, ..., xN−1 is a function of discrete valued
time and frequency. It is a DFT of a signal multiplied by a shifted window selecting the
observations close to a given time point (equivalently in terms of filtering it is a discrete
convolution of a frequency shifted signal with the window function) [45] which is given by
the Equation

STFT(t, f ) =
N−1

∑
k=0

wt−kxke−j2π f k/N . (1)

Both for further analysis and for plotting a spectrogram we will consider squared
absolute value of the STFT and refer to it as a power spectral densities (PSD) matrix of size
T × F containing values

PSD(t, f ) = |STFT(t, f )|2. (2)

Its columns (time slices) we name power spectral densities and its rows (slices for
given frequency) we name subsignals. There arises a problem of informative frequency
band selection (see also [46–48]).

Hidden determinism associated with the motion of the drone propellers is present in
the background noise. It was stated that such a character of data appears with high-energy
low-frequency bands. To avoid the necessity of further investigating (see advanced filter
design discussed among others by Wodecki [49]) and selecting the band of interest, we
decided to use a data-driven method which proved very efficient in the context of cyclic
anomaly detection. Reducing the impact of the hidden determinism involves sub-signals
normalization. As a norm, we use the sum of the values of a sub-signal:

PSDnormalized(t, f ) = PSD(t, f )/ ∑T−1
u=0 PSD(u, f ). (3)

The main part of the presented method is calculating the measure of dissimilarity for
every spectral density (time slice of the matrix) with a referential spectrum. Euclidean
metric is used defined for power spectral densities p( f ) and q( f ) as follows:
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D(p, q) =

√√√√F−1

∑
f=0

(
p( f )− q( f )

)2
. (4)

The sound emitted by the drone is assumed to contain a notable noisy component.
To increase SNR we do band-pass filtering in the frequency domain. According to the fact
that the informative part of the human voice does not exceed 4 kHz, this value is used as
a cutoff frequency. We also add a lower boundary at 0.2 kHz. Therefore, we modify the
Equation (4) to obtain

D(p, q)band-pass =

√√√√ Fupper

∑
f=Flower

(
p( f )− q( f )

)2
. (5)

where Flower = 0.2 kHz, Fupper = 4 kHz. For the sake of the visualization of results, we will
also filter signals in the time domain.

As the referential, the mean power spectrum calculated from a reference interval
(usually a few starting seconds depending on a particular sound signal) is assigned. It is
assumed that in this time interval only the background noise containing the sound emitted
by the drone is present. Thus for every time slice t on a spectrogram we obtain

Dt = Dband-pass
(

PSDnormalized(t, ·), PSDre f (·)
)
. (6)

where for a given reference interval I we have

PSDref( f ) =
1
|I| ∑t∈I

PSDnormalized(t, f ). (7)

To discriminate between the human voice and the drone noise we set a threshold on
Euclidean distance. Beforehand, we apply moving mean smoothing (with parameter M)
on the calculated metric:

D̃t =
1
M

u+bM−1
2 c

∑
k=u−bM

2 c
Du. (8)

As the threshold, the value of mode + standard error was chosen where the mode
is read from the kernel smoothed empirical PDF (probability density function) as the
argument of the maximum value. Values greater than the threshold are associated with the
human voice therefore corresponding time interval is assigned to the voice-present cluster
and marked with 1. Otherwise, a time interval is assigned to a voice-absent cluster and
marked with 0. Final processing of the received output includes filling gaps (changing too
short series of 0 to 1) and subsequent deleting immaterial voice (changing too short series
of 1 to 0). It is accordingly necessary to beforehand define tolerance values Tol0 and Tol1
for both steps of this operation. Voice intervals merged by that means are marked with
red color on the plots. At once, the detected intervals are exported to the output audio file.
They are delimited with 1-second pause to distinguish between one another, that is, data
that would be then sent by the drone to report emergency. The outline of our algorithm is
as follows:

1. Calculating STFT of a signal and then its squared absolute value to obtain PSD(t,f)
matrix;

2. Normalization of the subsignals (rows of the PSD matrix) in time domain and restric-
tion of the frequency domain;

3. Defining of the referential spectrum;
4. Calculating Euclidean metric at every time interval of PSD matrix and using moving

mean smoothing filter;
5. Setting a threshold on Euclidean metric;
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6. Assigning voice-present (1) and voice-absent clusters (0) to the original signal,
7. Changing clusters in too short time intervals;
8. Visualisation of the voice detection results on a band-pass filtered signal.

As a standard-setting, we use STFT with Kaiser window of order 5 and length 1024
which is also the number of FFT (Fast Fourier Transform) algorithm points. Other parame-
ters which are needed to be set are the number of overlapping points in STFT, the start and
end of the reference interval, the number of points in the moving mean filter, and tolerances
(in seconds) for binary merging in final processing.

4. The Experiment

In the experiment, a manually controlled drone, DJI Mavic Mini was used. It is a
small, commercially available quadrotor, weighing 249 g, using 4 pairs of light, 119 mm
diameter propellers. This model was chosen for our case study as it represents well the
wider class of micro aerial vehicles (MAV), which are, due to their small size and fairly
good battery life, the most suitable type of unmanned vehicle to be used in an emergency
situation in an underground mine. During a normal performance, its brushless motors are
operating in the frequency range of 9000–15,000 RPM (150–250 Hz). Since the experiment
was realized in indoor conditions, the propeller guard (provided by the UAV manufacturer)
was mounted on the drone to avoid damage in case of the drone colliding with the walls.

To evaluate the possibility of the application of a microphone-equipped unmanned
aerial vehicle in the detection of humans, two experiments have been performed. The first
was a preliminary test performed in the corridors of a building (Figure 1), roughly ap-
proximating realistic conditions. Another took place in a slant of an inactive underground
mine (Figure 2). In both experiments, a UAV with a microphone located underneath has
been approaching a person laying in the side pit of the main corridor and calling for help.
In the preliminary experiment, an additional microphone has been used, which was placed
near the help-caller. The person was located behind the corner, loudly repeated the words
‘HELP, HELP’. In the experiment performed in realistic conditions, a deep niche in the
corridor has been selected as the ‘victim’s’ location. The volume of help-calling, as well as
the speed of the drone, were kept as constant as possible throughout the whole experiment
given the technical and organizational capabilities. Some minor variations in both speed
and volume of acoustic emission could be caused by a human factor, as well as variations
in the speed of airflow in underground excavations.

Figure 1. Drone flight path during the first experiment.
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Figure 2. Drone flight path during the second experiment.

5. Results
5.1. Overground Sounds

Data acquired during the first (overground) experiment consist of sounds recorded at
the same time with two microphones located at different places: first, located nearby the
UAV (’next-to-drone’ record); second, nearby the person who was making voice calling
for help (’next-to-victim’ record). The length of the signals differ (they are 62 s and 66 s
long respectively) and their real-time starting moments are shifted relative to each other.
Both were recorded with a sampling frequency equal to 48 kHz. The procedure presented
above was applied separately to each of the records. Time waveforms of both raw sounds
are presented in Figure 3. As we can see, the first of them seems a noise-like signal while in
the case of the second signal the time intervals containing human voice are clearly visible.

(a) (b)
Figure 3. Raw signals of the sound recorded overground in the first realisation: (a) ‘Next-to-
drone’ record, (b) ‘Next-to-victim’ record.

STFT was calculated with 80% overlapping. The resulting time-bin length is 4.3 mil-
liseconds. Spectrograms of the raw signals which are presented in Figure 4 are records
from both microphones. They illustrate the time-frequency decomposition of the sounds in
terms of the log-scale PSD.

As it was stated the analysis of the data is based on the normalized spectrogram. This
type of spectrogram is showed in Figure 5. It should be noted that frequencies in this
case are restricted to the band 200–4000 Hz because, according to band-pass filtering of
the data, we cut PSD to 0 outside of this band. In the case of the ’next-to-drone’ record,
we can distinguish particular moments in the evolution of the power spectrum only after
normalization, the changes are visible mostly in a frequency bin located around 550–800 Hz.
In the spectrograms based on the ’next-to-victim’ recordings, on the other hand, the changes
are by far more evident in numerous bands and valuable as the noise arises only in the
ending part.

We visualize band-pass filtering in the time domain in Figure 6. In the case of the ‘next-
to-drone’ record, this processing step makes the shape of the waveform more informative
compared with the waveform of the raw signal presented before.
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(a) (b)
Figure 4. Spectrograms of the raw signal from Figure 3: (a) ‘Next-to-drone’ record, (b) ‘Next-to-
victim’ record.

(a) (b)
Figure 5. Normalized and band-pass filtered spectrograms of the signals from Figure 3: (a) ‘Next-to-
drone’ record, (b) ‘Next-to-victim’ record.

(a) (b)
Figure 6. Band-pass filtering of the sounds from Figure 3: (a) ‘Next-to-drone’ record, (b) ‘Next-to-
victim’ record.

The referential power spectral density was defined as a mean from 5 first seconds.
Euclidean metric as a function of time is showed in Figure 7. The Euclidean metric smoothed
with 20 samples moving mean is highlighted in green. The red line stands for the threshold
which we obtain as mode + standard error value from the empirical distribution of our
metric on the whole time domain. The empirical density is presented in Figure 8.

In Figure 9 the detected intervals of the found voice are highlighted as a part of the plot
of the band-pass filtered signal. Tolerances Tol0 and Tol1 in final processing were both set
to 0.25 s. The output comprises six voice-present regions selected from the ‘next-to-drone’
record which correspond to the analogous segments present in the ‘next-to-victim’ record.
The last four of them can be heard in the original raw ‘next-to-drone’ record.
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(a) (b)
Figure 7. Smoothed Euclidean metric calculated from normalized spectrograms from Figure 5 as a
function of time: (a) ‘Next-to-drone’ record, (b) ‘Next-to-victim’ record.

(a) (b)
Figure 8. Empirical PDF of Smoothed Euclidean metric from Figure 7: (a) ‘Next-to-drone’ record,
(b) ‘Next-to-victim’ record.

(a) (b)
Figure 9. Detected voice time intervals extracted from filtered signals from Figure 6: (a) ‘Next-to-
drone’ record, (b) ‘Next-to-victim’ record.

5.2. Underground Sounds

Data acquired during the second (underground) experiment include only sounds
recorded nearby the drone with the sampling frequency equal to 25.6 kHz. From several
sounds recorded, two were chosen for the analysis.

First, we analyze a short signal with a frequent and clearly audible human voice.
The signal is 34 s long and we present it in Figure 10. Its spectrogram is presented in
Figure 11. Spectral structure is dominated by the noise from the drone; showever, some
voice related signature is detectable so it could be a basis for automatic signal processing.

Figure 10. Raw signal of the first sound recorded underground.
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Figure 11. Spectrogram of the raw signal from Figure 10.

Since the voice regions are frequent in this realization of the experiment, this time we
used lower overlapping equal to 50% so as not to blur the results. The time moments at
which the voice was heard can be seen at the spectrogram, even more clearly after filtering
and normalization (Figure 12).

Figure 12. Normalized and band-pass filtered spectrogram of the signal from Figure 10.

A particularly nonstationary behavior of the drone alone in the ending time interval
(which is also audible from the record) was successfully removed due to band-pass filtering
as it can be noted at the plot visualizing band-pass filtering of the raw sound (Figure 13).

To determine the time intervals which correspond to the rescued person calling we
calculate Euclidean metric as before. This length of the time bin is 20 ms resulting from
the parameters of the STFT computation. The referential spectrum is calculated as a mean
PSD from only first 2 seconds (so as to catch an interval without voice). Calculated metric
and the determined threshold is presented in the time domain and on a kernel-smoothed
density (Figures 14 and 15). Moving mean smoothing parameter was again set to 20.
In both figures the chosen threshold equal to mode + standard error is shown. The detected
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voice time intervals (Figure 16) are fully consistent with all seven calls for help, which are
audible from the raw sound (using Tol0 and Tol1 equal to 0.5 s).

Figure 13. A band-pass filtering of the sound from Figure 10.

Figure 14. Smoothed Euclidean metric calculated from normalized spectrogram from Figure 12 as a
function of time.

Figure 15. Empirical PDF of Smoothed Euclidean metric from Figure 14.

Figure 16. Detected voice time intervals extracted from filtered signals from Figure 13.
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The second sound signal is 90 s long and has a low signal-to-noise ratio (Figure 17).
The way of approaching the rescued person was similar to that which was performed in
the overground experiment (the background noise though differ due to the underground
environment and other microphone used).

Figure 17. Raw signal of the second sound recorded underground.

STFT is computed with 80% overlapping. Its time-frequency characteristic is very
volatile though harmonics, i.e., horizontal lines can be distinguished (Figures 18 and 19).

Figure 18. Spectrogram of the raw signal from Figure 17.

Figure 19. Normalized and band-pass filtered spectrogram of the signal from Figure 17.
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The signal even after filtering has still a very noise-like shape (Figure 20). Only some
slow changes in mean magnitude (corresponding also to the power) are visible.

Time bins for calculation of spectral metric are 8 ms long. Smoothed (with 20 samples
moving mean as before) Euclidean metric referring to a mean power spectrum from first
5 s is particularly high in the ending seconds (Figure 21). The threshold was in this case set
using mean value instead of mode value. Kernel-smoothed PDF is presented in Figure 22.

In the set of the marked intervals no clear pattern can be seen (Figure 23). Nevertheless,
audition of the detection output and comparing it with the input raw sound allows us to
state that all audible voice is detected (included in 4 last intervals). Parameters of Tol0 and
Tol1 were again fixed to 0.5 s.

Figure 20. A band-pass filtering of the sound from Figure 17.

Figure 21. Smoothed Euclidean metric calculated from normalized spectrogram from Figure 19 as a
function of time.

Figure 22. Empirical PDF of Smoothed Euclidean metric from Figure 21.
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Figure 23. Detected voice time intervals extracted from filtered signals from Figure 20.

6. Validation Experiments

To evaluate the efficiency of the presented method, several lab condition experiments
have been performed. We investigated the impact of the drone’s flight conditions on the
performance of our algorithm. During the validation experiments, we have additionally
tested two other drones of different sizes (see Figure 24) to evaluate how the noise generated
by the rotors of different power they are equipped with, will mask informative components
related to a human voice.

(a) (b) (c)
Figure 24. Drones used in the experiments: (a) small drone used both in mine and lab experi-
ments, (b) medium size drone used in validation experiment, (c) large size drone used in validation
experiment.

The second drone used for validation purposes is, similarly to the one used in the
original experiment, a commercial quadcopter-DJI Phantom 4 Advanced, dimensions of
which are 350 × 350 mm (the dimensions of Mavick Mini are 160 × 202 mm). The third one
was a custom UAV, designed according to predefined specifications. The rotors’ spacing is
900 mm. All sounds presented in this section were recorded using the same microphone
with sampling frequency equal to 25.6 kHz.

First, almost stable flight conditions have been kept (see spectrogram in Figure 25). It
means that the drone’s ego-noise spectrum is more or less constant.

We intentionally introduced maneuvers during the flight to assess the variability of
acoustic signal parameters. As we predicted, change of flight parameters will modify the
spectrum significantly, including AM/FM modulations in the signal (see spectrogram in
Figure 26).

The introduced changes in flight parameters cause that human voice activity detection
is way more difficult to be achieved. When the drone’s flight parameters are approximately
constant, the effectiveness of the algorithm used is very high (see Figure 25). As can be
seen in Figure 26 the proposed method faces segmentation problems while the drone is
performing the additional maneuvers. First of all, not every voice activity has been detected.
Secondly, the noise generated by the drone is incorrectly detected as a human voice.
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(a) (b)
Figure 25. Example of a segment of the acoustic signal with almost constant flight conditions and
neglectable spectral content fluctuation: (a) a raw spectrogram, (b) correct voice detection.

(a) (b)
Figure 26. Example of a segment of the acoustic signal with highly variable flight conditions and
significant spectral content fluctuation: (a) a raw spectrogram, (b) incorrect voice detection.

To simplify the problem, for two new drones (medium size and large size) we decided
to analyze segments with stable flight conditions ignoring those with rapid maneuvers,
i.e., strongly time-varying spectrum. The justification of this approach is the fact that
in underground mines’ conditions the dimensions of underground corridors are limited,
hence the possibility of performing complex drone maneuvers during a flight is significantly
limited. To reduce the risk of a situation in which the drone could be damaged as a result
of a collision with excavation walls or other elements in the excavation area, the drone’s
flight speed must not be too high or variable, and the maneuvers should not be sudden.
This translates into the type of recorded noise, the energy of which will not be high and
the spectrum will not be highly variable in time. The above factors, although they have an
impact on the effectiveness of the proposed method, will not occur often in real conditions
in which the method is to be applied.

Results of additional experiments (focused on validation of the concept) are presented
below in Figures 27 and 28. In Figure 27a, raw signal is presented. Only part of the
signal plotted in black is analyzed using the proposed algorithm. Figure 27b presents
the spectrogram of the analyzed signal, where a significant change in spectral content is
clearly visible at ca. T = 5, 10, 15, 22, and 27 s. Figure 27c presents the Euclidean distance
estimated for each spectrum. The threshold resulting from the PDF of such a measure
is also plotted as a red line. Based on the proposed decision-making scheme, the final
picture with detection results is presented in Figure 27d. All voice activities have been
successfully detected.
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(a) (b)

(c) (d)
Figure 27. Results obtained with the medium size drone: (a) Original signal with segment selected
for analysis, (b) normalized and band-pass filtered spectrogram selected for analysis, (c) estimated
distance from reference spectrum with estimated threshold, (d) detection results.

By analogy, the same procedure has been applied in the third case (Figure 28). In
Figure 28a a raw signal within the selected segment is presented. One may notice that
for signals above T = 40 s its amplitudes are much higher; we did not select this part for
further analysis. The max power of the drone and noise level were significantly higher
resulting in lower SNR. We ignored this segment since in an underground mine, a drone
ought to be steered very carefully and one should not risk flying with such parameters.
The spectrogram (Figure 28b) for the 3rd case (selected part) is clear enough and allows
detection of voice activities (Figure 28c). Final detection result visualization is presented in
Figure 28d.

The results achieved in this case can raise concerns regarding the utility of the pre-
sented method when using bigger UAVs, nonetheless, taking into consideration the spatial
restraints in underground mines, such drones are not recommended in this specific en-
vironment (bigger UAVs are much more cumbersome to be steered and can not reach as
many locations as smaller ones).

One may conclude that based on the obtained results, the signal having its origin in
a human voice is detectable in each case. Three different noise characteristics have been
considered. During maneuvers (turning left/right, acceleration, etc.) the structure of drone
ego-noise is time-varying and indeed it makes voice detection much more complicated.
Given the aforementioned, we decided to skip the highly non-stationary segments during
the detection procedure.
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(a) (b)

(c) (d)
Figure 28. Results obtained with the large size drone: (a) raw sound recorded in the presence
of a medium-size drone, (b) normalized and band-pass filtered spectrogram selected for analysis,
(c) estimated distance from reference spectrum with estimated threshold, (d) detection results.

7. Discussion and Conclusions

A conception of drone usage for rescue operations in underground mines has been
presented with the assumption of a situation in which an accident victim (being unable to
rescue oneself from the accident’s location) is capable of calling for help. Since the main
problem to be solved in order to ensure human detection with the use of a microphone-
equipped UAV was the distinction of a characteristic sound in the presence of heavy,
time-varying noise, obtaining the automatic signal processing procedure is a valuable
achievement, not only from the point of view of a rescue operation.

Our method used for voice detection tends to capture long phrases wholly, while
a simple word /help/ is perceived mostly as /he/ or /e/. Hence high-energy voiced
speech is better detected than low-energy noise-like unvoiced speech which is covered
by the background noise. An improvement of the presented method can be sought in
detecting voiced speech components having a harmonic structure. It should be noted
that any source of the acoustic signal that is characteristic for a given situation and easily
separable from drone-induced noise can be used to identify the event of interest. Taking
this into consideration, future work will be conducted with the focus put on identifying
other event-informative and distinguishable-from-noise sound sources, together with
generalizing the signal processing technique presented. Such signals can be emitted by,
for instance, electronic devices carried by underground workers. Characteristic spectral
content obtained this way would be easier to detect than the human voice. The detection
of human voice would then state a backup scenario in case of a lost or faulty sound
emitting device.

The core of this research work—the procedure proposed in the article—is relatively
simple, as it hinges on the usage of typical time-frequency representation of the registered
signal and comparison of its instantaneous spectrum with a reference spectrum that is
known to not contain the signal sought, but only drone’s sound. It alludes directly to the
novelty-detection approach, namely, if a spectrum emerges in the analyzed signal of an
unknown or not expected structure, there is a high probability that it is related to an event
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of interest. Taking into account that during a rescue action, the presence of various noise
sources is limited (due to the stopped machinery activity for instance), the abovementioned
assumption can be found as legitimate. It should be underlined that what is of the highest
importance is not a detected and distinguished specific human voice or a phrase, but rather,
a quick and reliable segmentation of useful data (containing more than just a drone’s noise)
from a big dataset created with the use of a team of microphone-equipped UAVs.

Several laboratory experiments and the one conducted in realistic underground mine
conditions proved that the developed procedure gives satisfactory results, and is a promis-
ing basis for the development of a useful aid tool for rescue operations. Nonetheless, its
usage can be also extended to other cases in which drone-aided inspection would be safer
or more efficient, which is a common case in underground mining.

The presented study is a preliminary test of a concept to be further developed, and sub-
jected to evaluation in various use-case scenarios in different conditions. The method was
tested with the use of various drones having different engine powers emitting noise of
various levels. One of the key issues is the identification of drone noise. In general, it is ex-
pected that noise from the flying drone will be a non-stationary signal with a time-varying
structure, especially when flight parameters are changing. At this stage, to simplify the
signal processing procedure, the flight condition was as stable as possible. No maneuvers,
except take-off and landing, have been considered. During the flight, the flight speed
was relatively slow (noise is smaller too) and stable as much as possible. Its ultimate
autonomous flight could be stabilized by the algorithm so the variability of speed will be
neglectable. It simplifies the structure of the instantaneous spectrum and makes detection
easier. The speed has not been measured directly, but from the spectrogram, it can be seen
that it is nearly stable (frequencies related to rotor speed are not changing too much).

Even though the method can be described as ’self-calibrating’ (due to the automated
calculation of the referential spectrum), repeating the experiment numerous times could be
beneficial since it would allow examining the method’s response and accuracy giving very
significant information regarding the so-called ’false alarm ratio’. In this research, we were
not able to estimate the relation between signal to noise ratio and probability of detection;
hence, this is assumed to be the basis of future work. Implementation of the proposed
method in a real-case scenario of rescue action conducted in an underground mine must be
aware of possible detection of some signal something that is not expected voice-related
source. According to the specific procedures concerning rescue actions, during such a
situation, all activities in the mine are supposed to be stopped until the end of rescue
action. There is nearly no chance to record other noise than from the drone’s operation and
potential human calling for help. In addition, any false detections in such a situation are of
poor probability, since the proposed method is intended to support rescue teams, so every
potential detection will be verified.

Another more complicated issue is the lack of detection due to poor SNR of the
acquired signal. This could be minimized by decreasing the distance between the sound
source and the drone. It has been shown that if the drone is closer to the source, the signal is
more visible in the noise. The task here is not to detect all signatures, so classical measures
in detection efficiency analysis are not relevant. The main target is to provide data by the
drone before the rescue team will be able to realize the rescue action.

Employing an autonomous UAV should be considered to obtain the benefit of re-
duction of the human presence in the most dangerous places as much as it is possible. It
should be also stated that detection ability is related to several factors: drone noise level,
human voice source level, the distance between the voice source and the drone with a
microphone, etc. One could expect precise information on how close a drone should be to
detect a human voice based on acoustic signals. It can be determined experimentally on
the basis of many experiments in the mine. It is important to say that voice propagation in
the tunnel may be slightly different due to tunnel geometry and surface properties.
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