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Abstract: Electric machines with high torque density are needed in many applications, such as
electric vehicles, electric robotics, electric ships, electric aircraft, etc. and they can avoid planetary
gears thus reducing manufacturing costs. This paper presents a novel axial-radial flux permanent
magnet (ARFPM) machine with high torque density. The proposed ARFPM machine integrates
both axial-flux and radial-flux machine topologies in a compact space, which effectively improves
the copper utilization of the machine. First, the radial rotor can balance the large axial forces on
axial rotors and prevent them from deforming due to the forces. On the other hand, the machine
adopts Halbach-array permanent magnets (PMs) on the rotors to suppress air-gap flux density
harmonics. Also, the Halbach-array PMs can reduce the total attracted force on axial rotors. The
operational principle of the ARFPM machine was investigated and analyzed. Then, 3D finite-element
analysis (FEA) was conducted to show the merits of the ARFPM machine. Demonstration results with
different parameters are compared to obtain an optimal structure. These indicated that the proposed
ARFPM machine with Halbach-array PMs can achieve a more sinusoidal back electromotive force
(EMF). In addition, a comparative analysis was conducted for the proposed ARFPM machine. The
machine was compared with a conventional axial-flux permanent magnet (AFPM) machine and a
radial-flux permanent magnet (RFPM) machine based on the same dimensions. This showed that the
proposed ARFPM machine had the highest torque density and relatively small torque ripple.

Keywords: axial-radial flux permanent magnet (ARFPM) machine; permanent-magnet machine;
halbach-array permanent magnets; 3D finite-element analysis (FEA); comparative analysis; high
torque density

1. Introduction

As an important component of an electric powertrain system, electric machines are
welcomed widely in electric vehicles, electrified aircraft, robots, and so on [1–3]. The
radial flux permanent magnet (RFPM) machine is a major subject in research and has wide
applications. The development of the RFPM machines is very mature. However, in many
applications, mechanical gears are necessary to improve the torque, while they increase
the manufacture and maintenance cost, as well as the system volume [4–6]. In order to
avoid the mechanical gears, the axial flux permanent magnet (AFPM) machine has recently
attracted much attention from scholars [7–9]. The high aspect ratio gives them many
advantages such as compactness, high torque density, and good heat dissipation [10,11],
which makes AFPM machines very suitable for direct-drive systems [12].

There are many topologies of AFPM machines designed for direct-drive systems. The
large aspect ratio contributes to space saving in many applications. Vernier permanent
magnet (PM) topologies can also be adopted in AFPM machines [13]. They can improve
torque density in AFPM machines as in RFPM machines. Halbach-array PMs can be applied
in AFPMs to improve the amplitude and reduce the harmonic distortion of the air-gap flux
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density waveform [14]. In order to make full use of material, double-sided structures are
usually adopted, which also reduces the occupied room, so some AFPM machines comprise
a stator and two rotors [15,16]. The stator with toroidal windings or drum windings is
sandwiched between two rotors [17,18]. The two kinds of structure have different merits.
For example, YASA machines with drum windings can eliminate stator back iron, which
can reduce material and volume [19,20]. As for the topologies with toroidal windings, they
have the same length of winding ends for concentrated windings and distributed windings.
Besides the double-side AFPM machines, the multi-disc AFPM machine is also proposed
to increase the electromagnetic torque for a propulsion system [21].

However, these structures cannot avoid problems such as ending effect and copper
loss brought about by winding ends. Another drawback of the AFPM machine is that
the axial force on the rotor is very large, which may cause rotor tilting and deforming.
Robustness is a very important standard to evaluate whether an electric machine can be
applied in industry. The rotor tilt is the major reason for the eccentricity fault in an AFPM
machine, which can result in unbalanced back electromotive force (EMF) [22,23]. The
large axial force is also a large burden for bearings. Under large loads, bearings are more
susceptible to damage, which will lead to the breakdown of electric machines and increase
the cost of maintenance. In addition, there will be large harmonics in the air-gap magnetic
flux density when the rotor PMs are too close to the stator. The typical case is that slots
on the stator are rectangular, while PMs on the rotor are fan-shaped. It will deteriorate
the air-gap flux density. Reference [24] proposes an AFPM machine with sinusoidal rotor
segments. The sinusoidal rotor segments can provide variable gaps to reduce the harmonics
in the air-gap flux density, but this has high requirements for materials. It has to be made
of a special material with easy machinability and high magnetic permeability. Due to the
protruding part of rotor segments, the equivalent air-gap length is relatively large, which
will reduce the air-gap flux density.

This paper proposes a novel axial-radial flux permanent magnet (ARFPM) machine
with Halbach-array PMs to solve the above problems. The proposed ARFPM machine
integrates the axial flux and radial flux with two axial rotors and one radial rotor. This
article is organized as follows. Section 2 discusses the structure and operational principle
of the ARFPM machine. The parametric study and optimization of the ARFPM machine
are performed in Section 3. In Section 4, 3D finite element analysis (FEA) is conducted
to compare the performances of the proposed ARFPM machine with those of the AFPM
machine and RFPM machine. Finally, the conclusion is drawn in Section 5.

2. Structure and Operational Principle
2.1. Structure of Axial-Radial Flux Permanent Magnet (ARFPM) Machine

As shown in Figure 1, the proposed ARFPM machine is composed of one stator, two
axial rotors, and one radial rotor. Because the end of drum windings is useless, the machine
adopts toroidal windings, which are wound around the stator core. Figure 2 shows the
shape of toroidal windings applied in the ARFPM machine. The exterior components of the
windings are utilized to reduce half of the ends. Thus, the stator is equipped with opening
slots on three faces. PMs are mounted on the surface of rotors. Due to the toroidal windings,
North–North (NN) type axial rotors are adopted. The radial rotor is fixed and aligned with
two axial rotors, which can avoid the tilt of axial rotors and keep the same phase of air-gap
flux density. A classical pole-slot combination, 20-pole-24slot configuration, is adopted
in the ARFPM machine. Compared with integer-slot concentrated winding machines,
fractional-slot concentrated winding machines can enhance flux-weakening capability and
reduce cogging torque [25,26].
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Figure 1. Topology of the axial-radial flux permanent magnet (ARFPM) machine. 1—Stator core, 
2—Windings, 3—Radial PMs, 4—Radial rotor back iron, 5—Axial PMs, 6—Axial rotor back iron. 
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Figure 2. Toroidal windings in the ARFPM machine. 

In order to suppress the harmonics of air-gap magnetic flux, the PMs are arranged as 
a Halbach array [27,28]. It can also intensify the magnetic flux density in the air gap. The 
magnetization direction of PMs is related to the number of segments per pole pair. As 
shown in Figure 3a, in case the PMs are too narrow to be manufactured, each pole pair is 
divided into six segments, so the magnetization direction of each segment varies by 60° in 
turn. Figure 3b shows the schematic diagram of the normal and tangential residual 
magnetization distribution of each segment. By contrast with the conventional arranged 
PMs, the normal residual magnetization distribution of Halbach-array PMs is not a 
square waveform, and the tangential residual magnetization distribution is also smaller. 
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Figure 3. Halbach-array permanent magnets (PMs) in the ARFPM machine: (a) magnetization 
pattern; (b) magnetization distribution. 

  

Figure 1. Topology of the axial-radial flux permanent magnet (ARFPM) machine. 1—Stator core,
2—Windings, 3—Radial PMs, 4—Radial rotor back iron, 5—Axial PMs, 6—Axial rotor back iron.
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Figure 2. Toroidal windings in the ARFPM machine.

In order to suppress the harmonics of air-gap magnetic flux, the PMs are arranged
as a Halbach array [27,28]. It can also intensify the magnetic flux density in the air gap.
The magnetization direction of PMs is related to the number of segments per pole pair. As
shown in Figure 3a, in case the PMs are too narrow to be manufactured, each pole pair is
divided into six segments, so the magnetization direction of each segment varies by 60◦

in turn. Figure 3b shows the schematic diagram of the normal and tangential residual
magnetization distribution of each segment. By contrast with the conventional arranged
PMs, the normal residual magnetization distribution of Halbach-array PMs is not a square
waveform, and the tangential residual magnetization distribution is also smaller.
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2.2. Operational Principle of ARFPM Machine

According to Figure 1, the ARFPM machine combines a double-sided AFPM machine
and a RFPM machine. The active windings contain three parts that correspond to three
rotors. Figure 4 is a schematic diagram of the magnetic flux paths in the ARFPM machine.
In order to simplify the diagram, conventional arranged PMs are drawn in Figure 4. There
is no apparent difference in the magnetic flux paths between Halbach-array PMs and
conventional arranged PMs. The magnetic flux paths in the machine are mainly divided
into two parts. The first part is caused by the radial rotor. The magnetic flux generated by
the radial PMs goes from the radial rotor to the stator in the radial direction. It flows in a
2D plane. The second part is related to the axial rotors. The magnetic flux generated by the
axial PMs goes through the air gap from one axial rotor to the stator in axial direction. Then
it travels in the stator in the circumferential direction and goes back from the same side of
the stator to the corresponding rotor. Hence, there are radial, axial, and circumferential
components of magnetic flux in the stator core. This means that the total magnetic flux
flows in a 3D plane.
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Due to its combination of an AFPM machine and a RFPM machine, the ARFPM
machine has a very similar operational principle to them. Because the expressions of
back EMF for AFPM machines and RFPM machines are the same [29], the back EMF and
electromagnetic torque of the ARFPM machine can be expressed as (1) and (2), respectively.

E =
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60a

Φavn (1)

Tem =
pN
2πa

Φav I (2)

where p is the number of pole pairs, a is the number of parallel branch pairs, Φav is the
average magnetic flux per pole, N is the number of coils, n is the rotor speed, I is the current
in coils. Φav is determined by the average air-gap flux density Bav and the air-gap areas per
pole, so it can be defined as:

Φav =
Bav
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4

(
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where Do and Di are the outer and inner diameter, respectively, l is the axial length of the
stator. The average magnetic flux per pole shows that the areas in the ARFPM machine are
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enlarged by the radial rotor. Hence, the back EMF and electromagnet torque will also be
improved.

The ampere turns NI can also be defined as:

NI = AJ (4)

where A is the cross-sectional area of slots, J is the current density. The cross-sectional
area of each rectangular slot is the product of the width and depth of the slot. Hence, if
the width of the slots is enlarged, the ampere turns NI will also be increased. Then, the
cross-sectional area A is determined by the inner diameter Di when the depth of slots is
constant. However, the width of the slots cannot be too long because the sum of the width
of all the slots cannot exceed the inner circumference of the stator.

When (3) and (4) are substituted for (2), the electromagnetic torque of the ARFPM
machine can be derived as:

Tem =
pAJ
2πa

Bav

2p

(π

4

(
D2

o − D2
i

)
+ πDol

)
(5)

when the inner diameter Di is reduced, the item in the bracket of (5) will be increased, but
the cross-sectional area of slots A will be reduced. In addition, the average air-gap flux
density Bav is greatly affected by the air-gap depth, which can influence the back EMF
and electromagnetic torque directly. The large air-gap depth will lead to small air-gap
flux density, but a small air-gap depth will cause many harmonics in the flux density. It
is hard to determine the trend of the electromagnetic torque Tem, so a detailed discussion
is needed.

3. Parametric Study of ARFPM Machine

The magnetic flux in the stator contains the axial, radial, and circumferential compo-
nents. It cannot be transformed into a 2D linear machine to be optimized as in. Thus, a 3D
finite element analysis (FEA) is conducted to obtain an optimal geometry of the ARFPM ma-
chine. Due to the very large computational burden, this paper adopts a parametric study to
optimize the geometry. A 3D model of the ARFPM machine is built with the finite element
software JMAG-Designer. In order to reduce the number of meshes and computational
time, a partial model is constructed. Figure 5 shows a 1/8 model of the ARFPM machine.
The partial model contains 2,897,124 numbers of 3D mesh. According to the operational
principle of the proposed machine, the effects of PM arrangement and air-gap depth for
back EMF and electromagnetic torque are consistent because they both affect the average
air-gap flux density directly when other dimensions are kept constant. Thus, the PM
arrangement and air-gap depth can be optimized firstly in order to reduce the harmonics.
Then the inner diameter can be optimized to obtain the largest electromagnetic torque.
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3.1. Study on Air-Gap Flux Density and Back Electromotive Force (EMF)
3.1.1. Impact of Permanent Magnet (PM) Arrangement

The arrangement of PMs has a direct influence on the air-gap flux density. Conven-
tional arranged PMs are all magnetized in the axial direction, which will produce a square
waveform of air-gap magnetic flux density. This means that many high-order harmonics
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are contained in the air-gap flux density. This will distort the back EMF when the air-gap
depth is too small. However, Halbach-array PMs can alleviate the problem. Different
magnetizations can reduce some harmonics. The normal air-gap magnetic flux densities
produced by conventional PMs and Halbach-array PMs are shown in Figure 6.
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Figure 6. Normal air-gap magnetic flux density produced by PMs: (a) conventional PMs; (b) Halbach-array PMs.

The PMs are mounted on the axial rotor produce axial magnetic flux density, while the
radial rotor PMs produce the radial one. As seen from Figure 6, the amplitudes of normal
air-gap flux density generated by the axial and radial rotors are the same, although the
directions are different. The air-gap flux density produced by the Halbach-array PMs is
more similar to a sinusoidal waveform, which may lead to fewer harmonics in the back EMF.
Figure 7a,b show the tangential air-gap magnetic flux density generated by conventional
PMs and Halbach-array PMs, respectively. As seen from Figure 7a, the tangential flux
density near the center of a PM is 0 because the PM is axial magnetization. The waveform
of air-gap flux density in Figure 7b shows the Halbach arrangement. The peak value is
smaller than that in Figure 7a. The tangential flux density cannot be utilized. Thus, this
means that there is less flux leakage in the air gap. The troughs are caused by the axial
magnetized PMs and slots on the stator.
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The no-load back EMF of machines with conventional PMs and Halbach-array PMs is
shown in Figure 8a. The amplitude of back EMF in the machine with conventional PMs
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is larger, which is also proved by the fast Fourier transform (FFT) in Figure 8b. Figure 8b
shows that the amplitudes of the fifth harmonic are smaller in the ARFPM machine with
Halbach-array PMs, while that of the third harmonic is larger.
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Figure 8. Back electromotive force (EMF) with different PM arrangement: (a) back EMF of U-phase; (b) fast Fourier
transform (FFT) of back EMF.

Due to the star connection of windings, the third harmonic will be eliminated. Except
for the fifth harmonic, the amplitudes of higher harmonics are too small to be considered.
Hence, primary attention should be paid to the fifth harmonic. The amplitude ratio of
the fifth harmonic to the fundamental component in the machine with conventional PMs
is 3.98%, while that in the machine with Halbach-array PMs is 2.03%. The conventional
PMs can lead to two times the percent of fifth harmonic compared to that in Halbach-
array PMs. Furthermore, it is hard to eliminate the fifth harmonic in the machine control,
which can cause large torque ripples. Then, the Halbach-array PMs are necessary for the
proposed machine.

3.1.2. Impact of Air-Gap Depth

The depth of the air gap is also the main factor affecting the performance of machines.
When the air gap is small, the ARFPM machine will have less flux leakage between the
stator and rotor, so the air-gap magnetic flux density can be increased. Figure 9a,b show
the axial and radial air-gap magnetic flux density, respectively. The magnetic flux densities
at different depths of air gaps are compared. As seen from Figure 9, the shapes of axial and
radial flux densities at different air-gap depths are the same. It means the shape of normal
air-gap magnetic flux density has nothing to do with the depth of the air gap.
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It is shown in Figure 9 that the amplitude of air-gap flux density increases with the
decrease of air-gap depth. The larger air-gap flux density will lead to larger back EMF.
However, a smaller air gap will cause more harmonics in the back EMF. Figure 10a shows
the back EMF of the ARFPM machine with different air-gap depths. The FFT of the back
EMF is shown in Figure 10b.
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When the depth of the air gap is 0.5 mm, the amplitude of back EMF is the largest,
but that of harmonics is also the largest. Due to the star connection of windings, only the
fifth harmonic is considered. The amplitude ratio of the fifth harmonic to the fundamental
component is 2.99% when the depth of the air gap is 0.5 mm. The ratio decreases with the
increase of the depth of the air gap. The amplitudes are too small when the depths are
2.0 mm and 2.5 mm, although the ratios are only 0.39% and 0.17%. The percents of the
fifth harmonic reach 2.03% and 1.04%, respectively, when the air-gap depths are 1 mm and
1.5 mm. Thus, in order to obtain a relatively large back EMF with fewer harmonics, the
depth of the air gap in the ARFPM machine is determined to be 1 mm.

3.2. Study of Axial Force

Due to a large number of planar PMs, the rotor of AFPM machines bears a strong
attracted force towards stator when working. The attracted force may lead to distortion
and tilt of the rotor, which will affect the performance of the machine. The axial force on
the axial rotor on one side is calculated when the air-gap depth is 1 mm in the ARFPM
machine.

Figure 11a,b show the axial forces on three PM segments per pole with and without
load, respectively. Due to different magnetization directions, the PM segments bear differ-
ent axial forces. The negative sign means the axial force points towards the stator. The axial
force on the axial magnetized PM segment is the largest, which means the Halbach-array
PMs can reduce the axial force on axial rotors. Figure 11b shows that there is an axial
electromagnetic force when the ARFPM machine works on load. It affects the amplitude of
the axial force on each PM, but the maximum axial force on a single PM segment is still
near 400 N.

Figure 12 shows the total axial force applied on an axial rotor. When the machine works
without load, the axial force fluctuates from 2935 N to 2940 N. The axial electromagnetic
force on the axial rotor makes the fluctuation larger when the machine works on load.
The maximum axial force on the axial rotor is near 2947 N. Thus, the deformation of
the axial rotor and single PM segment is analyzed. Considering the worst condition,
the axial forces applied on the PM segment and axial rotor are set as 400 N and 2947 N,
respectively. Figure 13 shows the deformation of the single PM segment and axial rotor
during operation.
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As shown in Figure 13a, the deformation of the PM segment is so slight that it can be
neglected when the axial force is 400 N. However, Figure 13b shows that the deformation
of the axial rotor is relatively serious when the total axial force is 2947 N. The axial rotor
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will bend toward the stator, which will affect the performances of the machine and even
cause faults. The condition is the most serious at the outer ring when the inner ring is fixed
with a shaft. In the AFRPM machine, the radial rotor supports the outer rings of the two
axial rotors and is fixed with them, so the deformation can be prevented by the radial rotor.
This can avoid the faults caused by deformation. In addition, the axial force acting on two
axial rotors can be balanced. Thus, the whole rotary component is zero, which prevents the
large axial force causing axial rotor tilting.

3.3. Study of Electromagnetic Torque

The goal of the study on electromagnetic torque is to find the largest torque with the
same outer diameter. As shown in (5), the electromagnetic torque is related to the inner
diameter in addition to the depth of the air gap, but the relationship is not monotonous.
Hence, the electromagnetic torque at different inner diameters is calculated.

Figure 14 shows the electromagnetic torque of the ARFPM machine with different
inner radius. According to the comparison, the electromagnetic torque will be reduced
when the inner radius is too small or too large. The ARFPM machine can obtain the largest
electromagnetic torque when the inner radius is 50 mm. The average electromagnetic
torque is 39.93 Nm.
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Figure 14. Electromagnetic torque.

With the chosen dimensions, the torque characteristic of the ARFPM machine is
studied. Figure 15 shows the average torque versus root mean square (RMS) current. The
average torque is nearly proportional to the phase current, although the increase of torque
becomes a little slow when the current is more than 16 A. It shows that the increase of
current will not lead to serious saturation in the machine, which means that the ARFPM
machine has a strong overload capability.
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4. Comparative Analysis of ARFPM Machine

In order to verify the performances of the proposed ARFPM machine, it is compared
with a conventional AFPM machine and a RFPM machine. Aimed at a fair comparison,
some dimensions, such as outer and inner diameters and axial length, of the three machines
should be the same, although these dimensions may not be optimal for another two
machines. In addition, toroidal windings are also adopted in the AFPM machine and
RFPM machine. The topologies of the AFPM machine and the RFPM machine are shown
in Figure 16. The dimensions of the three machines are listed in Table 1.

Energies 2021, 14, x FOR PEER REVIEW 12 of 17 
 

 

The three machines are compared through FEA. The magnetic flux path of the RFPM 
machine is in a 2D plane, so a 2D finite element model is enough to simulate the machine. 
As for the AFPM machine and the ARFPM machine, 3D FEA has to be conducted due to 
the 3D magnetic flux. The mesh structures for the three machine models are shown in 
Figure 17. This shows that the RFPM machine model has the minimum meshes. The 
simulation results of the three machines are shown in Figure 18. The magnetic flux den-
sity at the edge of the slot and tooth tips is large, which results in local saturation. 
Moreover, Figure 18 shows that the AFRPM machine has the highest utilization of material. 

 
(a) (b) 

Figure 16. Topologies of two machines: 1—Stator core, 2—Windings, 3—Radial PMs, 4—Radial 
rotor back iron, 5—Axial PMs, 6—Axial rotor back iron: (a) AFPM machine; (b) RFPM machine. 

 
(a) (b) (c) 

Figure 17. Mesh structures of three machines: (a) ARFPM machine; (b) AFPM machine; (c) RFPM machine. 

 
(a) (b) (c) 

Figure 18. Magnetic flux density distribution of three machines: (a) ARFPM machine; (b) AFPM machine; (c) RFPM ma-
chine. 
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back iron, 5—Axial PMs, 6—Axial rotor back iron: (a) AFPM machine; (b) RFPM machine.

Table 1. Specifications of three machines.

Parameter ARFPM Machine AFPM Machine RFPM Machine

Pole pairs 10 10 10
Slot number 24 24 24

Outer diameter of
the machine 200 mm 200 mm (include

length of ends) 200 mm

Inner diameter of
the machine 100 mm 100 mm 100 mm

Width of slot 7.86 mm 7.86 mm 7.86 mm
Depth of slot 12 mm 12 mm 12 mm

Thickness of PM 4 mm 4 mm 4 mm
Axial length of the

machine 60 mm 60 mm 60 mm (include
length of ends)

Air-gap depth 1 mm 1 mm 1 mm
Turns in every slot 65 65 65

Current density 5 A/mm2 5 A/mm2 5 A/mm2

Rotary speed 600 rpm 600 rpm 600 rpm

The three machines are compared through FEA. The magnetic flux path of the RFPM
machine is in a 2D plane, so a 2D finite element model is enough to simulate the machine.
As for the AFPM machine and the ARFPM machine, 3D FEA has to be conducted due
to the 3D magnetic flux. The mesh structures for the three machine models are shown
in Figure 17. This shows that the RFPM machine model has the minimum meshes. The
simulation results of the three machines are shown in Figure 18. The magnetic flux density
at the edge of the slot and tooth tips is large, which results in local saturation. Moreover,
Figure 18 shows that the AFRPM machine has the highest utilization of material.
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4.1. Air-Gap Magnetic Flux Density

According to the analysis above, the air-gap magnetic flux density is one of the factors
of magnetic flux. In different topologies, the direction of active air-gap magnetic flux
density is different. In particular, the active air-gap flux density in the ARFPM machine has
to be considered in two directions separately. The normal components of no-load air-gap
magnetic flux density in the three machines are compared in Figure 19.
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As seen from Figure 19, the normal components of air-gap magnetic flux density
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in different machines are very similar, which means that it has nothing to do with the
direction. The waveform of the air-gap magnetic flux density is determined by the pole-slot
configuration, PM arrangement, and depth of air gap. Hence, the normal component of
air-gap magnetic flux density is not the key factor causing different performances in the
three machines.

4.2. No-Load Back EMF

No-load Back EMF is affected by the air-gap magnetic flux density and dimensions.
The waveforms of the normal air-gap flux density in the three machines are the same, but
the cross-sectional areas that air-gap magnetic flux flows through are different, resulting
in different back EMF in the ARFPM machine, AFPM machine, and RFPM machine. The
no-load back EMFs of the three machines are calculated when the rotary speed is 600 rpm.
The comparison is shown in Figure 20.
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Due to the different air-gap areas, the ARFPM machine has the largest back EMF,
while the RFPM machine has the smallest back EMF. It shows the same rules as analyzed
in Section 2. However, the back EMF of the ARFPM machine is distorted most seriously.
Figure 20b shows the fast Fourier transform of the back EMF. The back EMF in the ARFPM
machine contains the most harmonics. The total harmonic distortion (THD) of the back
EMF in the ARFPM machine is 9.47%, while those in the AFPM machine and RFPM
machine are 1.32% and 1.90%, respectively. The largest harmonic of back EMF in the
ARFPM machine is the third harmonic, which may be caused by the flux leakage at the
vertexes and edges of the stator. In fact, the third harmonic can be ignored due to the star
connection of the windings, so the distortion will not affect the operation of the ARFPM
machine obviously.

4.3. Electromagnetic Torque

Electromagnetic torque is one of the most important performance factors in a machine.
A machine with large electromagnetic torque does not need planetary gears when it is
applied in a propulsion system, which reduces the manufacture and maintenance cost.
Due to different structures, the proposed ARFPM machine, AFPM machine, and RFPM
machine have different electromagnetic torques. The electromagnetic torques of the three
machines are calculated when the current density is 5 A/mm2.

Figure 21 compares the electromagnetic torques of the three machines. With the same
current density, the ARFPM machine has the largest electromagnetic torque. The average
torque of the ARFPM machine is 39.93 Nm, while those of the AFPM machine and the
RFPM machine are 27.33 Nm and 17.74 Nm, respectively. This means the ARFPM machine
has the highest torque density because the volumes of the three machines are the same.
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However, the torque ripple of the ARFPM machine is 14.3%, which is not the smallest.
The AFPM machine has the minimum torque ripple, which is only 5.0%, while that of the
RFPM machine is 17.8%. The result shows that the radial air gap may lead to a larger torque
ripple than the axial air gap. Thus, due to the combination of axial rotors and a radial rotor,
the torque ripple of the ARFPM machine is larger than that of the AFPM machine and
smaller than that of the RFPM machine.

4.4. Cogging Torque

Cogging torque is one of the reasons for the torque ripple. It is mainly caused by
the interaction between the PMs and stator teeth, so it is determined by the structure
of the machine. The cogging torque can be reduced by skew PMs and teeth in many
machines [30,31]. In the paper, all the stator slots are rectangular, so the RFPM machine
has rectangular teeth, and the AFPM machine has triangular skew fan-shaped teeth. The
ARFPM machine has both kinds of teeth. The cogging torques of the three machines are
compared in Figure 22.
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Due to the same pole-slot configuration, the cogging torque of the three machines has
the same period. Equipped with triangular skew fan-shaped teeth, the AFPM machine has
smaller cogging torque than the RFPM machine. The smallest cogging torque is 0.83 Nm,
while the cogging torque of the RFPM machine is 3.18 Nm. The ARFPM machine has three
rotors, so the cogging torque is the sum of those of the three rotors. It has the largest cogging
torque, which is 3.60 Nm. The large cogging torque leads to a relatively large torque ripple,
but the expense is acceptable considering the increase of electromagnetic torque.
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The performance comparison of the ARFPM machine, AFPM machine, and RFPM
machine is summarized in Table 2. Compared with the AFPM machine and the RFPM
machine, the ARFPM machine improves the electromagnetic torque and back EMF at the
same volume and current density with the expense of relatively large number of PMs,
harmonics, and cogging torque. The torque-to-PM volume ratios of the three machines are
listed in Table 2. The ratio of the ARFPM machine is the smallest, but the differences are
not very large compared with the increase of torque. Considering the aim to increase the
torque density of the machine, this drawback is not very critical. In addition, The main
part of harmonics in the back EMF is the third-order harmonic, so the THD can be reduced
through the star connection of windings. The comparison shows that the ARFPM machine
is very suitable for direct-drive systems such as industrial robotics.

Table 2. Performances of the three machines.

Performance ARFPM Machine AFPM Machine RFPM Machine

Back EMF 256 V 161 V 105 V
THD of back EMF 9.47% 1.32% 1.90%

Electromagnetic torque 39.93 Nm 27.33 Nm 17.74 Nm
Torque-to-PM volume 170.47 Nm/L 194.18 Nm/L 189.75 Nm/L

Torque ripple 14.3% 5.0% 17.8%
Cogging torque 3.60 Nm 0.83 Nm 3.18 Nm
Current density 5 A/mm2 5 A/mm2 5 A/mm2

5. Conclusions

In this paper, a novel ARFPM machine with Halbach-array PMs was designed and
analyzed. A parametric study was performed to optimize the geometry of the machine
for optimal performances. A radial rotor was applied in the ARFPM machine to balance
the large axial force and prevent the tilt and deformation of axial rotors. Compared with
conventional arranged PMs, Halbach-array PMs can make the back EMF contain fewer
fifth harmonics, which is only 2.03% of the fundamental component. The electromagnetic
torque of the ARFPM machine achieved 39.93 Nm. Also, it had a strong overload capability.

Then, a comparative analysis was conducted. The proposed ARFPM machine was
compared to an AFPM machine and a RFPM machine under the same volume. The back
EMF amplitude of the proposed ARFPM machine was the largest. Moreover, the major
harmonic in back EMF can be eliminated by the star connection of three-phase windings.
The cogging torque of the ARFPM machine was the largest. This led to a relatively large
torque ripple, which was smaller than that of the RFPM and larger than that of the AFPM.
Thus, the cogging torque has to be optimized in future work. In addition, the comparison
also showed that the proposed ARFPM machine had the largest electromagnetic torque
when the current density was the same. This proved that the proposed ARFPM machine
with Halbach-array PMs can be applied in direct-drive systems.
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