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Abstract: The ventilation system plays a crucial role in every building. Proper design and optimiza-
tion of its operation increase the comfort of users due to efficient air exchange and at the same time
control its velocity in the rooms. The aim of this paper is the analysis of the effect of plenum box
entry on the velocity profile concerning the diffuser face panel. This issue may sometimes be ignored
at the design stage but can significantly affect the airflow from the diffuser and consequently increase
the risk of draft. The results of the PIV experimental measurements and numerical simulations
concerning various entries of the plenum box (top and side) were investigated in this study. The mea-
surements were used to develop the mathematical and numerical models, which were then used
to assess the effect of localization of the spigot of the plenum box on its operation. The numerical
analysis was carried out on plenum boxes with the air diffuser with a face panel composed of square
grid perforations. Analyses show that the entries significantly affect both the way of air distribution
inside the plenum box and the profile of the airflow and its velocity under the simulated air diffuser.

Keywords: forced ventilation; plenum boxes; air distribution; PIV; CFD

1. Introduction

The main task of any ventilation and air-conditioning system in rooms is to maintain
suitable air quality and ensure optimum conditions for the occupants. Depending on the
function of the building and the activity of people inside, the supply air parameters are
determined to guarantee the thermal comfort of users. Thermal comfort is defined as condi-
tions in which people do not feel excessively cool or hot. In addition to the basic parameters
of temperature and humidity, many other aspects determine the satisfaction of occupants
concerning the ambient conditions. These include air velocity, asymmetries of temperature
distribution in the room, and thermal radiation of surfaces [1–3]. The first two factors are
directly related to the ventilation system used, the air distribution, and the diffusers used.
Since the air motion in a room is influenced by a balance of inertia, buoyancy, and viscosity,
the air velocity has the most impact. Depending on the diffuser type, a distinction can
be made between axisymmetric, flat, radial, and vortex airflow. The selection, location,
number, and types of supply diffusers are essential to achieve suitable air quality and
optimal thermal condition in the ventilated space [4,5].

The most important role of the ventilation system includes avoiding drafts and uncom-
fortable local turbulence and ensuring a uniform temperature distribution. Air velocities
in the occupied zone should not exceed the design values, providing the comfort of users.
In the literature, many recommendations for maximum velocity can be found. Accord-
ing to the American Society of Heating Refrigerating and Air-Conditioning Engineers
(ASHRAE) [6], air velocities in the occupied zone should remain below 0.25 m/s, assuming
that the occupied zone is any place where there are people. In general, the occupied
zone is defined as the volume of the room between floor level and 1.8 m above the floor.
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In heating, ventilation, and air-conditioning (HVAC) systems, it is recommended to limit
the air motion in the occupied zone to less than 0.2 m/s to minimize the risk of draft [1].
In ventilation system design practice, this velocity is usually treated as a limit value.

Air is usually supplied to a room through diffusers located on the ceiling or wall.
The way air is distributed into the room is closely related to the construction of the air
diffuser. A number of research studies on air distribution from diffusers can be found in
the literature [7,8], including those using a numerical calculation [9,10]. Yao and Lin [11]
analyzed the effect of air terminal types on the performance of stratum ventilation with
four types of air terminals devices using experimental and numerical methods. The study
showed that the type of diffuser has little impact on the temperature distribution in the
room but significantly affects the airflow in the room. The results of experimental and
numerical studies were also compared by the authors Martinez-Almansa et al. [12], where a
wall diffuser was analyzed. The method proposed by the authors made it possible to
obtain a very accurate model reflecting the real conditions. On this basis, the characteris-
tic parameters, throw and drop of the diffuser, as well as pressure drop of the terminal
device used in the design ventilation systems, were determined. On the other hand,
Noncente et al. [13] performed the optimization of diffuse ceiling ventilation. The study
included different configurations, a full ceiling panel distribution, and a chessboard distri-
bution. Jaszczur et al. [14] used experimental and numerical methods to study the flow
characteristic from a four-way square ceiling diffuser. Authors have shown the relation-
ship between the range of the stream defined as the distances in which the air velocity
is 0.5 m/s and the volume flow of supply air by the diffuser. The analysis of the vortex,
round, and square ceiling diffusers conducted by Aziz et al. [15] showed that the velocity
decay coefficient of the vortex diffuser is 2.6 times smaller than that of the other types.
Therefore, vortex diffusers are recommended for high buildings as well as require less
energy input to the fan. In the literature, many studies can be found that investigated
vortex diffusers, which properties provide a very unusual air distribution in the room.
Srebric and Chen [16] demonstrated that the distance at which the vortex airflow loses
its tangential component depends on the velocity of the flowing air and the geometry
of the diffuser. In similar studies, Shakerin and Miller [17] showed that isothermal flow
from vortex diffusers rotates at the outlet, but at a distance of three diffuser diameters,
the air disperses in a radial direction. In [18,19] Borowski et al. presented a comparison of
experimental results obtained using PIV measurements with numerical results. The authors
studied the air distribution for different Reynolds numbers. The topic of vortex diffusers
was also addressed by Sajadi et al. [20]. The results show that the efficiency of the diffuser
and the resulting distribution of the airflow in the rooms depend to a large extent on the
angle of the blades. According to the analysis, the optimum blade angle is 32 degrees,
and when changing the angle in the range of 30–35 degrees, very large differences in flow
distribution are observed.

The diffusers are usually connected to the installation by using a plenum box. Both
plenum boxes with side and top entry (see Figure 1) are widely used. The plenum boxes are
equipped with perforated panels, which should ensure proper and uniform distribution of
the air stream.

When designing ventilation systems, designers usually follow the technical data of air
terminals devices, which are provided by manufacturers. Among the available information,
one may find data on the range of the diffuser, but very often, there is no information
on how to mount the diffuser for which properties are valid. One of the factors which
significantly affects the distribution of the velocity of the air flowing through the diffuser is
the type of plenum box used. The experimental analysis presented by Hongze et al. [21]
showed that the airflow from the plenum box with side entry is highly asymmetrical.
The elements that significantly affect the shape of the stream flowing out of the diffuser are
the blades, their shape, and their placement. The work carried out by Villafruela et al. [22]
focuses on the effect of plenum box on airflow from vortex diffusers. The authors presented
the results of both experimental measurements and numerical simulation. The study
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showed that simulations of a simplified plane in place of the plenum box with an air
diffuser, where the velocity components and the position of the slots are determined by a
specified boundary condition, properly reflect the results obtained using simulations of the
full diffuser geometry including the plenum box. In addition, an analysis of the airflow
from the diffusers using both types of boxes has been carried out. It has been found that the
velocity distribution from the diffuser is uniform for the top entry plenum box, while for
the box with the side entry, asymmetry is visible. Numerical simulations were carried
out using ANSYS Fluent software. During the analysis, the authors used three plenum
box models, with side entry, top entry, and modeled as a simplified plane and applied
the RNG k-ε turbulence model. Smoljan and Balen [23], on the other hand, show that in
both boxes with and without perforations, the airflow is asymmetric, but in the case of a
diffuser with a perforated panel, the symmetry of the airflow is improved. An extensive
analysis of the effect of plenum boxes and their geometry was presented in the paper of
Vasic et al. [24]. The authors proposed additional perforated alignment surfaces mounted
inside the box at an estimated angle. Optimization included panels with different clearance
surfaces, including those with air guidance blades. The investigation has shown that the
use of an air guidance blade solution ensures greater airflow uniformity and symmetry of
the airflow coming out of the diffuser. At the same time, the proposed solution does not
increase the pressure drop compared to a typical perforated panel.
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Figure 1. Plenum box with (a) side entry; (b) top entry.

As shown in the literature, the impact of the plenum box on ventilation system
operation has been mainly investigated using numerical analysis. Furthermore, there are
no results of experimental measurements presenting the velocity distribution inside the
plenum box that might facilitate the verification of the numerical analyses. Therefore, in this
work, the airflow inside the plenum box is presented. The differences in the airflow on the
diffuser panel using a plenum box with a side and top entry are determined and assessed.
In addition to the experimental measurements using the PIV method, the numerical model
is investigated and validated. The paper is divided into five Sections, which describe the
procedure and the results obtained. This Section was intended to introduce the subject of
numerical simulations used for the evaluation and optimization of ventilation systems and
previous research on plenum boxes. Section 2 describes the methodological approach both
during the experimental investigations and during the numerical calculations. Section 3
presents the results obtained, which are then analyzed in Section 4. Section 5 presents the
main conclusions.

2. Materials and Methods
2.1. Experimental Measurement

In order to determine the distribution of velocity components in the test plenum box,
the particle image velocimetry method by means of 2D PIV was selected. This method is
used to measure the air velocity field and is an optical and non-invasive research method.
In this method, a tracer is injected into the flowing air, and its movement is recorded using
a fast dual-CCD 2048 × 2048 pixels camera (see Figure 2). The camera was equipped with
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a Canon lens with a focal length of 50 mm and a minimum aperture value of 1.8. During
the calculations, the size of interrogation windows that exhibit satisfying results was set to
64 × 64–32 × 32 pixels. On the basis of statistical analysis, at least 250 uncorrelated dual
images of the same exposure were taken at specific time intervals in order to evaluate proper
accuracy for the velocity magnitude and direction of air motion. The velocity measurement
is performed in the whole plane illuminated by the double-pulse YAG:Nd laser by Litron
Lasers of energy of about 60 mJ per pulse. Images were recorded with a frame rate of
4 Hz, which resulted in an overall time of one measure of around 1 min. Time ∆t between
two subsequent frames varied from about 100 to 500 µs depends on flow velocity. Before
performing the measurements, it is necessary to carry out a calibration of the measurement
system to avoid optical distortion. During this calibration, using special calibration panels,
the distance between the control points is determined, which facilitates establishing the
scale factor necessary to determine the velocity [25,26]. The PIV measurement system has
been manufactured by LaVision company. The frame analysis and post-processing were
performed using Davis software, version 7.2.
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Figure 2. Diagram of the measurement section used for the measurements.

A photo of the test stand, including the calibration plate, is shown in Figure 3a. Tests were
conducted for a plenum box with a side entry. The dimensions of the box were: 370 mm ×
370 mm × 330 mm, as shown in Figure 3b. The spigot was 200 mm in diameter, and its axis
was located at the central point of the box width, 120 mm from the top edge of the plenum
box. Inside the plenum box, 50 mm from its outlet, a mounting bracket designed for installing
the diffuser in the box was fixed. To evaluate the velocity field inside the box, it was made of
transparent material. Polymethylmethacrylate plexiglass was used.
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The tests were carried out for the measuring plane passing through the axis of the
plenum box connection, conventionally designated as Z-Y (Figure 3b). As the 2D PIV
method was used for the measurements, it was decided to select the plane where the
highest intensity of movement in the direction of the analyzed axes was expected, i.e.,
Z and Y. Based on preliminary analyses, it was concluded that for this plane the movement
along the X-axis can be considered as not relevant. The measurement was carried out for
isothermal conditions for a velocity at the spigot of 2.3 m/s, i.e., for a flow rate equal to
260 m3/h. Assuming that the characteristic dimension is the diameter of the plenum box
connection, it gives the Reynolds number around 30 530. For pipes, this value of Reynold
number indicates the turbulent flow.

2.2. Numerical Analyses

Fluid flow was modeled based on three-dimensional, steady-state continuity and
momentum equations. The RANS (Reynolds-averaged Navier–Stokes equation) equation
for the incompressible fluid can be written as [27,28]:

∂Ui
∂xi

= 0 (1)

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂P
∂xi

+
∂

∂xj

(
νt

∂Ui
∂xj

− uiuj

)
(2)

− uiuj = νt

(
∂Ui
∂xj

+
∂Uj

∂xi

)
− 2

3
ρkδij (3)

where U—velocity, ρ—density, P—pressure, νt—turbulent viscosity, k—kinetic energy,
and δij—Kronecker delta.

Considering the importance of the turbulence models for numerical simulations and
the accuracy of the obtained results, three different turbulence models were tested, namely
SST k − ω, k − ε RNG, and k − ε Realizable [29,30].

νt =

{
Cµ

k2

ε k − ε models
α∗ k

ω k − ω models
(4)

where ω is dissipation per unit turbulence kinetic energy, ε is dissipation rate, Cµ and
α∗ constant.

In this research study, numerical simulation of the airflow inside the plenum box was
carried out using the CFD modeling method and the ANSYS Fluent solver. The carried out
calculations were divided into two stages. The first was to verify the mathematical and
numerical model, and the results obtained from the calculations were compared with the
measurements. The experimental measurements were used to verify the computational
model. The second stage was the calculations, with the setup developed at the earlier stage.
The numerical model was used in a comparative analysis between a plenum box with side
and top entry.

2.2.1. Verification of Computational Models

For the numerical calculations, a 3D geometry was prepared using Design-Modeler.
The computational domain comprised the plenum box with its side entry and its surround-
ings area formed by a 2000 mm × 2000 mm × 1000 mm cuboid (Figure 4). The dimensions
of the plenum box were an accurate representation of the box used in the current mea-
surements. Inside it, an accurate representation of the mounting bracket was also created.
In the analysis carried out, the plenum box was located in the central part of the ceiling.
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The spigot of the plenum box, which was given the condition velocity inlet on the two
opposite side walls pressure outlet, was set at 0 Pa. The dimensions of air outlets from the
room were 200 mm × 200 mm. They are located 900 mm below the outlet from the plenum
box and halfway along the wall, as shown in Figure 4. As the determination of the shape
of the entry airflow into the room was not the focal point of the analysis, the assumed
dimensions of the surroundings were taken as sufficient to consider the lack of influence of
the walls and outlets on the results of the analyzed parameters. The connection, plenum
box walls, and room walls, including the ceiling and floor, were given the condition wall.
The coordinates (0, 0, 0) were assumed for the center of the connection to the plenum box
at the point of contact with the box wall. Positive Y-values indicate heights above the
center line of the plenum box spigot, and negative values indicate heights below. Positive
Z-values represent the displacement from the spigot to the plenum box wall.

The simulation began with mesh sensitivity analysis, starting with a very general com-
putational network, improving it gradually to find the best balance between accuracy and
computational effort. Simulations were performed for six different meshes. The summary
for meshes is presented in Table 1.

Table 1. Summary for meshes used in analysis.

Sign Number of Cells Plenum Box Entourage

M1 65,948 Body size 0.100 m Body size 0.100 m
M2 423,068 Body size 0.050 m, face size on the cross bar 0.002 m Body size 0.050 m
M3 966,655 Body size 0.025 m, face size on the cross bar 0.002 m Body size 0.025 m
M4 5,081,680 Body size 0.025 m, face size on the cross bar and wall 0.002 m Body size 0.025 m
M5 1,285,344 Body size 0.010 m, face size on the cross bar 0.002 m, and wall 0.005 m Body size 0.025 m
M6 3,679,285 Body size 0.005 m, face size on the cross bar 0.002 m, and wall 0.005 m Body size 0.025 m

For all simulations, the mesh was generated using tetrahedral cells. The growth rate
factor was set as 1.2. The curvature normal angle was set at 10◦. The view of variants of
the computational networks used is shown in Figure 5.
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An analysis for different turbulence models was performed in the next stage. The tur-
bulence models used were: k − ε RNG, k − ε Realizable, and SST k − ω. The simulations
were performed for the solver setup shown in Table 2.

Table 2. Solver setup and fluid properties used in the analysis.

Parameter Selection

Solver Pressure based
Steady-state simulations

Fluid material Air, Viscosity 1.7894−5 kg/(m·s),
Density 1.225 kg/m3

Solution Methods

Scheme: SIMPLE
Gradient: least squares cell-based

Pressure: second order
Momentum: second order

To avoid any uncertainty concerning the assumed mesh density for the target analysis,
due to the use of a diffuser during their calculations, the calculations were performed again,
taking into account the diffuser panel in the discretization but modeling it as an interior.
An additional edge sizing equal to 0.0015 m was applied to the diffuser panel.

2.2.2. Comparative Analysis for Plenum Box with Side and Top Entry

The calculations were carried out for the model developed for the setup verification.
In the case of the analysis for the plenum box with a top entry, the dimensions of the box
were maintained. Only the location of the entry was changed to central at the top of the
box (Figure 6). The dimensions of the room, where the air is supplied, do not directly affect
the airflow in the plenum box. However, to allow the free outflow from the diffuser, it is
necessary to provide the appropriate height of the room. The dimensions of the room have
been selected to allow both efficient calculations with high accuracy and the comparison of
the air distribution below the diffuser.

The analysis was carried out for plenum boxes with the air diffuser with a perforated
face panel with 10 mm square meshes, uniformly distributed over the diffuser surface with
20 mm spacing between the meshes (Figure 7). The selection of this geometry was dictated
by the need to assess the influence of the different locations of the plenum box entry on
the airflow while minimizing the influence of the diffuser itself. According to the authors,
the type of diffuser and its design is very sensitive to the differences in the spigot location
in the plenum box. The design of the diffuser may limit the influence of the location of the
plenum box connection spigot. The purpose of the study was to determine whether the
location of the connection duct impact significantly flow distribution.
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The mesh used for the calculations concerning the discretization method was as
described for M6, with identical densities on the surface of the diffuser, as was the case
when the setup was verified. The models, including the diffuser with plenum box with side
and top entry each, had about 5 million cells. The solver setup was as shown in Table 2.

3. Results
3.1. Experimental Results

The measurement results for the plenum box with side entry show that air entered the
box at the highest velocity along its axis. Figure 8 shows the air velocity vector field in the
plenum box in the plane passing through the center of the spigot. As one might see in the
figure, that the high-velocity air reaches the wall of the plenum box opposite to the spigot.

As the air hits the wall, it begins to flow over the surface of the wall, and some air
also flows toward the top of the plenum box. A recirculation zone is created in its top
corner. The resulting air motion affects the change of position of isotach. At a height
of approximately Y = −160 mm, a line of change in airflow direction can be observed.
At this point, the air flowing along the box wall hits the mounting bracket and, losing
velocity, flows along with a distance of about 200 mm. The results of the measurements also
facilitated the determination of the average velocity in the cross-section of the analyzed
plenum box (Figure 9).
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Figure 9. Averaged air velocity field in the plenum box from air motion along the Y-axis and Z-axis
in the Z-Y plane passing through the center of the plenum box spigot.

The highest average velocity magnitude from the analyzed Z-Y plane might be noted,
as in the case of the velocity vector field, in the outlet of the spigot. An increase in average
velocity might also be observed due to the formation of turbulence in the corner of the box
as well as at the mounting bracket.
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3.2. Numerical Analyses
3.2.1. Verification of Computational Models

The validity was established by comparing the results from the numerical analyses
to the experimental results. The key point was the comparison of the results for two lines
Y = 0 mm (along the axis of the spigot) and Z = 350 mm, as shown in Figure 10.
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(b) Z = 350 mm.

Figure 11a,b presents the results of the numerical analysis for the six variants of
the computational meshes and compared them to the experimental results. Among the
meshes used for the analysis, two of them, M1 and M2, have resolutions that did not allow
for an accurate representation of the flow velocity inside the plenum box. Based on the
comparison of the results for the M4 and M5, it was concluded that for the case under study,
it is more important to increase the density of the mesh across the plenum box domain
than the local increase in density at the wall surface.

Based on the calculations carried out, it was found that for the purposes of further
analysis, the mesh resolutions of M5 and M6 are sufficient. This decision was issued based
on the most accurate convergence from the meshes analyzed but also by the computation
time and the convergence levels obtained during the computation. Further calculations
were performed using only the M5 and M6 to select the remaining model setup. Further
calculations were more accurate (solver setup shown in Table 2).

Based on the analyses with different turbulence models for meshes M5 and M6, it was
found that satisfactory convergence and results were obtained for the k − ε Realizable tur-
bulence model. Figure 12 presented the results for mesh M5 for different turbulence models.
The k − ε RNG and SST k − ω models achieved a worse agreement with experimental
results than k − ε Realizable. For the M5 mesh, the results obtained for convergence 10−4

and 10−5 were compared. The model accuracy for both of the convergence was similar.
Therefore, for further analysis, a sufficient level of convergence at 10−4 was assumed.

For the k − ε Realizable turbulence model using M5 and M6 meshes, the analysis was
repeated with increasing the density of the mesh as in the analysis with the air diffuser.
In this investigation, the diffuser had no wall condition. Better convergence, including
the air diffuser, was achieved for the model with the M6; hence, it was selected for the
comparative analysis. Visualizations of the distribution of velocity components in the X, Y,
Z directions in the plane passing through the center of the plenum box with side entry for
the analysis with the air diffuser as the interior surface are shown in Figure 13.
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A comparison of the results for the final model setup in reverence to the experimental
research is shown in Figure 14. The results are presented in corresponding sections for the
verification of the computational mesh M6.

In the Z direction for Y = 0 mm, the velocity components obtained from experimental
measurements in the distance 50–250 mm from the spigot outlet, on average, is about 7%
higher than that from numerical analysis. For the larger distance, the results from measure-
ments and simulations are very similar. In the Y direction for Z = 350 mm, the velocity
obtained from experimental measurements differs only for the distance Y = −120 mm to
the plenum box outlet and is higher than that estimated using numerical analysis by about
0.4 m/s. The simulation results obtained were found to be satisfactory, and a further step
was taken.

3.2.2. Comparative Analysis for Plenum Box with Side and Top Entry

Figure 15a,b shows a comparison of the numerical results for the plenum box with top
and side entry. The results show the distribution of the average velocity in the cross-section
X-Z and plane of the perforated panel of the diffuser mounted to both types of the plenum
box. The average velocity in the outlet plane of the diffuser is about 2.6 m/s. In the case
of the plenum box with side entry, the velocity is distributed asymmetrically. For this
type of plenum box, the air, after reaching the wall opposite to the spigot, flows down its
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surface, which results in the highest velocity on the diffuser panel in the vicinity of this
wall. The lowest velocity occurs on the panel near the spigot. In the case of the plenum box
with a top entry, the velocity from the spigot flows evenly over the diffuser panel.
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the Y direction for Z = 350 mm.

The results shown in Figure 16a–d further emphasize the lack of symmetry in the
diffuser’s operation due to the location of the spigot. The air flowing out of the plenum box
with side entry directs the air so that it is discharged in the direction of the spigot. The use
of a perforated panel should ensure airflow toward the floor without any side direction
being imparted. The diffuser panel used for the analysis should, with an adequate inflow
of air onto its surfaces, set the direction of the airflow as for the plenum box with top entry.

The location of the spigot in the plenum box has a significant impact on the air
discharge profile of the air diffuser. In the case of the plenum box with side entry, the airflow
on the surface of the diffuser panel is uneven. The dimensions of the plenum box do not
allow for leveling velocity profile inside the box. The use of taller plenum boxes with side
entry should be considered. The comparison of the distribution of velocity components
in the Z direction for Y = 0 mm for a plenum box with side entry without the air diffuser,
obtained using experimental measurement and numerical simulation in the same plenum
box but with the air diffuser applied, is shown in Figure 17.
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As the figure shows, the value of the velocity component vz for the plenum box with
the air diffuser is slightly lower. Comparing the results of numerical simulations and
experimental measurements for a box without the air diffuser, it is noticeable that the
differences are particularly apparent for a distance of 200 mm from the spigot toward the
opposite wall of the plenum box.
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4. Discussion

This paper presents numerical simulations of plenum boxes with top and side entry
equipped with a perforated face panel. Based on the analysis and comparison of the airflow
inside the plenum box with top and side entry, one might see the differences and the
key role of the plenum box inlet configuration due to the asymmetric airflow after the
diffuser in the case of the plenum box with side entry. As shown by the comparison of
numerical and experimental results, the proposed model describes the real conditions
with sufficient accuracy. The model validation is based on the results of experimental
research carried out with the PIV method on a plenum box with side entry. The numerical
modeling carried out was divided into two stages, the validation of the model in regard to
the measurement data obtained and the airflow analysis using different methods of plenum
box entry, respectively. As mentioned in the previous section, the 2D PIV method for the
experimental measurements in the Z-Y plane was used. The selection of this approach
was based on the secondary importance of the velocity component vx for the presented
analysis. The numerical simulation results show that the flow in the X direction can be
neglected. As presented in Figure 13, the velocity component vx in the X direction is
very low. The numerical results prove that for the analyzed problem and analyzed plane,
the measurement method was selected correctly.

The numerical model used in the calculations was verified concerning the velocity
distribution in the cross-section along the plenum box axis. Verification was performed
along two lines crossing the aforementioned plane: along the axis of the air supply connec-
tion and along a vertical section 20 mm from the opposite wall to the plenum box spigot.
Figure 11 shows the results carried out for six different meshes. Mesh M5 and M6 with
1,285,344 and 3,679,285 number of elements, respectively, were used as the most accurate.
Three turbulence models were used in numerical analysis: k − ε RNG, k − ε Realizable,
and SST k − ω. The simulations carried out for the M5 and M6 with these three turbulent
models showed that the results similar to the experimental ones can be obtained using
mesh M6 and the k − ε Realizable turbulence model. Such a setup was implemented in
further analysis.

Figure 15 shows the velocity distribution in the plane of the face panel for both the
plenum box with side and top entry. As can be seen, the top entry ensures more regular
airflow, mainly in the central part. The side entry, on the other hand, is characterized by
asymmetry, and the highest velocities in this plane are obtained at the edge of the wall
opposite to the plenum box spigot. The asymmetry of the airflow is clearly visible in
Figure 16, where the airflow into the room domain is shown. Based on the analysis and
comparison of the airflow inside the plenum box with top and side entry, one might see
the differences and the key role of proper installation method due to highly asymmetric
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airflow on the diffuser in the case of the plenum box with side entry. As shown by the
comparison of numerical and experimental results, the presented model reflects the real
conditions with sufficient accuracy.

5. Conclusions

Test results show that the plenum box entry has a very significant effect on the dis-
persion of the air flowing out of the air diffuser. A plenum box with a top entry has a
more symmetrical discharge pattern, but due to space constraints, designers prefer plenum
boxes with side entries. However, fluid flow asymmetry can be compensated by using
perforation panels inside the boxes. The diffuser used for the simulation resembles the
perforations that some manufacturers install in plenum boxes parallel to the diffuser panel
to even out the airflow. The results obtained may suggest that the use of perforations in
the plenum box may help to slow down the velocity vz, but this effect may not be fully
satisfactory. Surely, the location of such a perforation and its clearance is not without
significance. It should also be emphasized that the use of additional elements, e.g., deflec-
tors or plates, can increase pressure drop as well as generate additional noise. Prepared
mathematical and numerical models can be successfully used to extend the analysis for
other dimensions for the plenum boxes. The authors consider extending the scope of the
analysis to determine the influence of the height of the box with side entry on the alignment
of the flow concerning the air diffuser.
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