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Abstract: Transmission expansion planning (TEP), the determination of new transmission lines
to be added to an existing power network, is a key element in power system planning. Using
classical optimization to define the most suitable reinforcements is the most desirable alternative.
However, the extent of the under-study problems is growing, because of the uncertainties introduced
by renewable generation or electric vehicles (EVs) and the larger sizes under consideration given
the trends for higher renewable shares and stronger market integration. This means that classical
optimization, even using efficient techniques, such as stochastic decomposition, can have issues when
solving large-sized problems. This is compounded by the fact that, in many cases, it is necessary to
solve a large number of instances of a problem in order to incorporate further considerations. Thus,
it can be interesting to resort to metaheuristics, which can offer quick solutions at the expense of
an optimality guarantee. Metaheuristics can even be combined with classical optimization to try
to extract the best of both worlds. There is a vast literature that tests individual metaheuristics on
specific case studies, but wide comparisons are missing. In this paper, a genetic algorithm (GA),
orthogonal crossover based differential evolution (OXDE), grey wolf optimizer (GWO), moth–flame
optimization (MFO), exchange market algorithm (EMA), sine cosine algorithm (SCA) optimization
and imperialistic competitive algorithm (ICA) are tested and compared. The algorithms are applied to
the standard test systems of IEEE 24, and 118 buses. Results indicate that, although all metaheuristics
are effective, they have diverging profiles in terms of computational time and finding optimal plans
for TEP.

Keywords: transmission expansion planning (TEP); optimization algorithms; uncertainty; wind
farms; electrical vehicles (EVs)

1. Introduction

The increase in renewable power share and emerging elements, such as electric vehicles
(EV) or energy storage, have created new challenges for planners and operators [1,2]. One
of these key technologies is wind energy, which is growing steadily. However, wind power
plants are generally built far away from demand centers, which calls for the installation of
network reinforcements to be able to integrate this new production method. A transmission
system is also key to optimize the use of non-dispatchable generation in general, as it can
integrate systems across regions and supports efficient cross-border flows; transmission
expansion planning determines the location, features, and timing of new transmission lines
to supply system requirements. By considering load growth and demand forecasting, these
conditions aim to minimize the investment and operational costs as well as supply electrical
loads in the studied time period in a reliable and economical manner [3,4]. TEP becomes a
more challenging endeavor in the presence of highly renewable shares, and, in particular, of
wind energy [5–7], and the complexity of the problem grows [5,8].
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Some recent works include, for instance, a stochastic framework incorporating wind
and solar energy sources is presented in [9].

The main techniques applied to TEP are the following:

• Mathematical optimization generally finds the best expansion plan with an optimality
guarantee, which metaheuristics cannot offer [10]. These methods include LP [11–13],
NLP [14], MIP [15,16], DP [17], and Benders decomposition [18]. In this regard, Wang
et al. [19] proposed a multi-stage TEP based on the deep Q-network (DQN) algorithm,
by considering the construction sequence of transmission lines and using a prioritized
experience replay (PER) strategy. In the suggested method, the flexibility, reliability,
and economy of the expansion plans are mentioned, and the fault severity of the equip-
ment is molded by applying the Monte Carlo method on the IEEE 24-bus reliability
test system. The economic impacts of battery energy storage systems (BESS) in TEP
are modeled in [20], based on using a MIP to maximize the benefits and minimize the
operational restrictions of the power flow in a transmission system. The simulation
case study on the Garver 6-node test system is addressed through the suggested model
advantages. Han et al. [21] proposed MIP multistage stochastic programming for the
TEP in the presence of uncertain demand, using dual decomposition, and by applying
the branch-and-bound algorithm. The obtained results on the IEEE 30-bus network
were reported and investigated. In [22], the uncertainty in different scenarios of load,
fuel cost, and generation were modeled in TEP using the Kantorovich distance of
social welfare distributions. The U.S. Eastern and Western Interconnections were
selected as the case study, and the results were demonstrated.

• Heuristic and metaheuristic methods are based on the gradual evolution of a solution.
These methods usually provide better performance and solutions of a high quality in a
short computational time, albeit without an optimality guarantee. This has motivated
the application of metaheuristics to complex real-world problems that cannot be solved
using mathematical methods. Some specific examples that have been applied to TEP
are GA [23,24], TS [25], ICA [3], GRASP [26], SA [27], swarm intelligence (SI) [28],
ACO [29], DE [30], CHA [31], AIS [32], SFLA [33], SSA [34], AMOEA [35], and NSGA
II [36]. Although most cases have demonstrated a good performance, in some cases,
they have been shown to return local optima instead of the global optimums [37,38].

Although TEP is a design problem (and solved offline), it is important to solve it
quickly because of one main reason: it is not usually solved once, but rather it is solved
many times. First, as explained in [4], the usual practice involves readapting the problem
many times to avoid ACLF infeasibilities. Then, the sizes of the problems to solve in
the near future are expected to surge due to uncertainty (there are more scenarios) and
the integration of markets (there are more nodes). As soon as a problem grows, the
computation time increases exponentially. In this context, it becomes important to be
time efficient; as such, there has been a wide array of literature exploiting, for instance,
decomposition techniques applied to TEP problems (Reference [39] is recommended). This
is why choosing an efficient method can be vital for network studies and is the motivation
of this paper.

Some recent works include, for instance, a stochastic framework incorporating wind
and solar energy [9]. In addition, different approaches have been proposed for modeling
the wind, load, and EVs uncertainties in TEP problems. Some recent studies model the
effects of wind uncertainty, as well as EVs, by applying the response program to the
load [5], analyzing the effects of uncertainty in wind power and load [3,40–42], modeling
the load correlation using unscented transformation [43], and studying the uncertainties
in predicted load demand and N-K contingencies [44]. Wind and load uncertainties have
been modeled using the PDF method [3,6], the successive approximation method [45], the
probabilistic clustering method [37,40], and scenario reduction methods [41,44]. In addition
to the effect of wind and load uncertainty, the effect of other uncertainty factors, such as
the forced outage rate of transmission lines, generator, and wind speed correlation at wind
farms have also been modeled [42].
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Although a long list of metaheuristics has been applied to TEP in the literature,
this has happened in a disparate way and often using unfair comparisons that present
well-optimized methods against the most basic versions of existing ones. However, a
comparison of metaheuristics in a fair setting, on exactly the same case studies, with
similarly tuned parameters and on the same hardware was necessary. This comparison was
missing from the literature and is the main contribution of this work. In addition, many
emergent metaheuristics have not yet been tested on the TEP problem, and this paper
provides a novel application for them.

In addition, a version of the problem with uncertain wind energy, demand, and EVs is
considered. Then, a relatively long list of metaheuristics (GA, OXDE, GWO, MFO, EMA,
SCA, and ICA) for TEP is compared. Some of these metaheuristics, such as OXDE, GWO,
MFO, and EMA, have not been previously applied to TEP.

The paper is organized as follows: In Section 2, probabilistic modeling is discussed.
Section 3 deals with the probabilistic objective function. Section 4 presents the applied al-
gorithms, some of them being relatively little known. In Section 5, the results are presented.
Section 6 provides an analysis of results and the final section presents the conclusions.

2. Methods/Models

This section describes the model used to model wind power, EVs, and the optimization
of the TEP problem.

2.1. Power System Probabilistic Modeling
2.1.1. The Output Power of Wind Power Plant

The power generated by a wind turbine can be approximately modeled using Equa-
tion (1) [6,46]:

Pt =


0 0 ≤ V ≤ Vci

Pr

(
V−Vci
Vr−Vci

)
Vci ≤ V ≤ Vr

Pr Vr ≤ V ≤ Vco
0 V ≥ Vco

(1)

The wind turbine output distribution can be explained through Equation (2) [6,46]:

f (X) =


Fzero x = 0
g(x) 0 ≤ x ≤ Prate
Frate x = Prate
0 otherwise

(2)

In which g(x) is a fitted polynomial using discrete sampling.

2.1.2. Load Probabilistic Modeling in the Presence of EVs

The penetration of EVs at different hours of the day causes serious and adverse
changes to the system load curve and leads to an extra load in the system [1]. In this case,
some values are produced based on probabilistic distribution functions. Then, 10,000 sam-
ples are taken using Monte-Carlo simulation to evaluate each solution. The total average
weight of the output values can be obtained using Equation (3) as the best estimate of the
probabilistic load.

E(X) =
n

∑
i=1

xiPi (3)

2.2. Mathematical Formulation

In the proposed method, TEP is formulated as the minimization of the sum of the
investment cost in new lines (Equation (4)), which include generation costs and possibly
penalties for non-supplied energy (NSE). As in most applications of TEP using optimiza-
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tion [4], a DCPF is applied for implementation, which has been acknowledged as a good
balance between accuracy and computational complexity.

Constraints (5) to (9) add the demand balance and the DCLP laws, as well as the
capacity limits for transmission and generation [3,47,48]:

f (x) = Min
n

∑
i,j=1

(
ClijNij

)
(4)

s f + g = d (5)

fij − γij

(
N0

ij + Nij

)(
θi − θj

)
= 0 ∀(i, j) ∈ L (6)∣∣ fij

∣∣ ≤ (N0
ij + Nij

)
f ij ∀(i, j) ∈ L (7)

0 ≤ Nij ≤ Nij ∀(i, j) ∈ L (8)

0 ≤ g ≤ g (9)

Constraint (5) presents the power balance in each node. It models Kirchhoff’s current
law (KCL) in the equivalent DC network. Constraint (6) describes Ohm’s law for the equiv-
alent DC network by considering Kirchhoff’s voltage law (KVL). All of these equations are
nonlinear [3,47,48].

2.3. Proposed Algorithms

This section describes the applied algorithms, which are GA, ICA, OXDE, GWO, MFO,
EMA, and SCA. GA and ICA are considered widely known, so this section will focus on the
others algorithms. These descriptions will be very brief, but more information is available
to interested reader in the included references.

2.3.1. OXDE

OXDE is a method based on gradual orthogonal crossover combination to improve
the ability of the DE algorithm. DE was first proposed in 1995 [49,50]. This algorithm is
based on the evolution of a population of solutions and includes two stages of initialization
and evaluation.

The crossover operator in this algorithm is a discrete combination of a test vector Ui(t)
and parent vector Xi(t), which produces child X′i(t), as follows:

X′ i(t) =
{

Uij(t) i f j ∈ J
Xij(t) otherwise

(10)

In this equation, Xij refers to the i-th element of vector Xij(t) and J is a set of crossover
points that are changed. In this method, a lookup range was first created as per Relation (11)
by determining the minimum and maximum range of solutions.

li,j = min(ei, gi) +
j− 1

Q− 1
.(max(ei, gi)−min(ei, gi)), j = 1, . . . , Q (11)

For this purpose, a combination of QOX with DE was used in the OXDE algorithm [51].

The main difference between OXDE and DE lies in its random selection,
→
Xi,G. Thus, in each

generation, QOX is applied to
→
Xi,G to produce vector

→
v . In this case, the ability to lookup

for the optimal solution was strengthened.

2.3.2. GWO Algorithm

The GWO algorithm is a metaheuristic algorithm that models the hierarchical structure
and social behavior of wolves at the time of hunting [52]. This algorithm is based on an
initial population and four types of gray wolves α, β, δ, andω, simulating the leadership
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hierarchy in which three steps of hunting, searching for the bait, surrounding the bait, and
attacking the bait, are mimicked. Optimization is done using the movement pattern of
wolves α, β, and δ. Wolf α is the main leader of the algorithm, while wolf β and wolf δ are
also involved and the other wolves are considered their followers. Modeling the process of
surrounding the bait is done using Equations (12) and (13).

→
D =

∣∣∣∣→C .
→
Xp(t)−

→
X(t)

∣∣∣∣ (12)

→
X(t + 1) =

→
Xp(t)−

→
A.
→
D (13)

where, A and C are coefficients vectors, Xp is the bait location vector, X is the location
of each wolf, and t is the number of iterations. The vectors of coefficients A and C are
calculated as follows: →

A = 2
→
a .
→
r −→a (14)

→
C = 2

→
r 2 (15)

Component a reduces linearly from 2 to 0 during successive iterations, while r and
2r are random vectors in the range of (0, 1). In fact, wolves α, β, and δ estimate the bait
location. The other wolves update their location randomly around the bait.

2.3.3. MFO Algorithm

MFO was proposed in 2015 [53] and is based on the behavior of moths around a
candle light. In this algorithm, it is assumed that candidate solutions of moths are the
variables of their location in a lookup space. Thus, moths can move in a multi-dimensional
space by changing in their location vectors. The mechanism of updating the location
of a moth around the candle is considered as a logarithmic spiral. The starting point is
the moth and the ending point is the candle (as the optimal solution). This logarithmic
space was considered as the following equation so that moths do not exit the lookup space
while moving:

S
(

Mi, Fj
)
= Di.ebt. cos(2πt) + Fj (16)

where D shows the vector between moth I and candle j; b is a constant number to define the
logarithmic spiral; and t is a random number in the range of (−1, 1). Vector D is defined as:

Di =
∣∣Fj −Mi

∣∣ (17)

where Mi shows the i-th moth and Fj is the j-th candle. As value t in Equation (16)
approaches –1, the moth finds a better location than the candle (the optimal solution).

2.3.4. EMA

EMA is a new optimization algorithm introduced in 2014 [54]. It models the perfor-
mance of a stock exchange. The behavior of exchange market shareholders with their
high, average, and low asset values is evaluated and these characteristics are used in the
proposed algorithm. There are two market modes in iterations and, after each market mode,
the fitness of shareholders was studied to be ranked based on their assets value. After
the end of each market mode, the initial, middle and final shareholders of the population
were recognized as the shareholders of group 1, group 2 and group 3. The subjects of
group 1 had no tendency to exchange in any iteration while the shareholders of groups
2 and 3 exchanged stocks with separate relations. In the case of market balance mode,
the algorithm absorbs shareholders to the elite, and, in the case of market fluctuations
mode, the algorithm has the task of looking up for better solutions. This algorithm has
two operators (the shareholders of groups 2 and 3) of the absorber and two operators of
the searcher in the modes of markets including fluctuations and balance conditions. Some
useful descriptions regarding this algorithm can be found in [54].
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2.3.5. SCA Algorithm

The SCA algorithm was presented in 2015 [55]. In this algorithm, a mathematical
model based on sin and cos functions is used for minimizing a solution. This algorithm
begins by using a set of random numbers as the initial population. The location of particles
is expressed by Equations (18) and (19):

Xt+1
i = Xt

i + r1 × sin(r2)×
∣∣r3Pt

i − Xt
i
∣∣ (18)

Xt+1
i = Xt

i + r1 × cos(r2)×
∣∣r3Pt

i − Xt
i
∣∣ (19)

where Xi is the location of particles in the i-th dimension and j-th iteration. These two
equations are combined as:

Xt+1
i =

{
Xt+1

i = Xt
i + r1 × sin(r2)×

∣∣r3Pt
i − Xt

i

∣∣, r4 < 0.5
Xt+1

i = Xt
i + r1 × cos(r2)×

∣∣r3Pt
i − Xt

i

∣∣, r4 ≥ 0.5
(20)

where r1 determines the dimension of the lookup space (range of solutions); r2 determines
the range of movements towards the optimal solution; r3 presents the weight factors of
particles in moving towards the optimal point; and r4 describes the amount of displacement
between sin and cos in Equation (20). Since each algorithm should establish a balance
between the obtained solutions for finding the optimal point, in this algorithm, Equation
(21) was used to establish the balance between Equations (18) and (19).

r1 = a− t
a
T

(21)

In which t is the i-th iteration of the algorithm, T is the total number of iterations, and
a is a constant.

2.4. Problem Solving Flowchart

The general flowchart of the problem-solving process for the presented algorithms is
shown in Figure 1.

Figure 1. Problem solving flowchart.
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3. Simulation and Results

The case studies were solved using the proposed algorithms in MATLAB 7 with a
computer with 3.4 GHZ processor and 1.5 GB RAM applying DCPF. It was assumed that
systems will develop for the next 15 years on conditions of steadily increasing the load
up to 3× the initial value in a 15-year time horizon. This very steep increase in load was
assumed in order to force the problem of needing many reinforcements, which generally
means a higher computational burden. This means that the results will be more interesting
to extract conclusions applicable to cases with growing complexity that motivate this paper.

The system data are extracted from Reference [3]. The applied control parameter
data of the proposed algorithms are presented in Table 1. It should be noted that, in the
proposed strategy, the N-1 constraint, for line and generator outages, is applied using
Monte-Carlo sampling. This constraint means that no area will be islanded in the case
of failures.

Table 1. Control parameter data of the proposed algorithms.

Algorithm System Parameters

ICA

24-bus
zeta (ζ) (0.05), damp ratio (0.99), revolution rate

(0.2), number of empires (8), number of countries
(30), number of iterations (300)

118-bus
zeta (ζ) (0.05), damp ratio (0.99), revolution rate

(0.2), number of empires (5), number of countries
(50), number of iterations (300)

OXDE 24 and 118-buses
population size (20), orthogonal array (Q = 3,
J = 2), factor and crossover control parameter

(F = CR = 0.9), number of iterations (300)

GWO 24 and 118-buses number of search agents (30), number of
iterations (300)

MFO
24-bus number of search agents (30), number of iterations

(300)

118-bus number of search agents (500), number of
iterations (300)

EMA 24 and 118-buses

number of population (60), g1 = g2 = [0.1, 0.05],
number of population in group 1 in non-oscillation

mood (0.2 × number of population), number of
population in group 2 in non-oscillation mood

(0.3 × number of population), number of
population in group 3 in non-oscillation mood

(0.5 × number of population), number of
population in group 1 in oscillation mood
(0.2 × number of population), number of
population in group 2 in oscillation mood
(0.3 × number of population), number of
population in group 3 in oscillation mood

(0.5 × number of population)

SCA 24 and 118-buses number of search agents (100), number of
iterations (300)

Tuning parameters requires accurate knowledge of the algorithm and the random
search process of the problem-solving space at the time of problem-solving. In general,
there is no proven and recommended method for determining the optimal values of
parameters due to the random nature of the algorithms. Therefore, in this paper, in order
to determine the control parameters, an iteration-based method (30 repetitions for each
algorithm) and the Taguchi method [56] were applied.
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3.1. The Studied Systems

In this section, the proposed algorithms were implemented on standard IEEE-RTS
24-bus and IEEE118-bus systems at the base mode without considering the load and
wind uncertainty (including EVs). In these comparisons, the parameters of the proposed
algorithms were selected after several iterations and trials, such as the ones shown in
Table 1. The obtained results are presented in Tables 2 and 3. Figures 2 and 3 show the
convergence results of each algorithm. The total power and loads of the studied systems in
a 15-year time horizon equaled 10,215 and 8550 MW for the 24-bus system and 11,148 MW
and 1998.4 MW for the 118-bus system, respectively [3].

Table 2. The results for the IEEE-RTS 24-bus system.

From To GA ICA OXDE GWO MFO EMA SCA

3 9 - - - - - 1 -
3 24 1 1 1 1 1 - 1
6 10 2 1 1 1 1 1 1
7 8 1 2 2 2 2 2 2
9 12 1 - 1 - - 1 -
10 12 1 1 1 1 1 1 1
12 23 - 1 1 1 1 1 1
14 16 2 1 1 1 1 1 1
16 17 1 1 1 1 1 1 1
16 19 1 - 1 1 - 1

Lines 9 9 9 9 9 9 9
Cost (M$) 350 337 337 337 337 336 337

Length (Mile) 350 337 355 337 337 336 337
Time (sec) 22.3 24.9 10.40 8.90 8.47 59.28 14.79

Table 3. The results for the IEEE 118-bus system.

From To GA ICA OXDE GWO MFO EMA SCA

1 2 - - 2 - - 2 -
1 3 3 3 2 3 3 2 3
3 5 2 2 2 3 3 2 3
6 7 - - - - 2 - -
8 5 1 1 1 1 2 1 1
8 9 - - - - 2 - -
2 12 2 1 2 - 2 2 -
3 12 1 1 - - - - -
12 16 - - 1 - 2 - -
8 30 3 3 2 3 3 3 3
30 38 2 2 2 2 2 2 2
48 42 - - - - 2 - -
54 56 - - - - 2 - -
65 68 - - - - 2 - -
77 80 - - - - 2 - -

Lines 14 13 14 12 29 14 12
Cost (M$) 91.16 85.07 94.27 73.71 140.55 90.97 73.71

Length (Mile) 91.16 85.07 94.27 73.71 140.55 90.97 73.71
Time (sec) 491.5 473.38 55.60 52.28 794.85 206.65 225.14
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Figure 2. The convergence performance for the IEEE-RTS 24-bus system.

Figure 3. The convergence for the IEEE 118-bus system.

It should be noted that the investment cost of candidate transmission lines in all routes,
for all cases and scenarios, is considered to be 1 M$/mile. However, in the IEEE-RTS 24-bus
system, this parameter is considered to be equal to 2, 2, 4.23 and 2 M$/mile for lines 13-14,
14-23, 16-23 and 19-23, respectively [3].

In Table 2, regarding the optimal results for the 24-bus network, all of the algorithms
resulted in the same optimal solution according to the network conditions (this case is
provided as a criterion for the initial tests of the proposed algorithms). According to
these results, the initial parameters of all algorithms were well adjusted and the same
optimal results were proposed in terms of the number of candidate lines, their locations
and investments costs. Only in the obtained results from the OXDE algorithm was there a
difference with other algorithms in terms of the location of one of the new candidate lines,
but it was the same in terms of investment costs. These results showed the ability of all the
proposed algorithms to solve the TEP problem in the initial network conditions. However,
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this trend is different in Table 3, for the 118-bus network, due to the larger network size
and the increase in the number of decision variables of the algorithms.

As shown in Tables 2 and 3, the results indicate that all proposed algorithms had
a good performance in solving the TEP discrete problem in small-sized networks. In
comparison with the ICA algorithm in Reference [3], where the results were compared with
the results of other metaheuristic algorithms, similar results were achieved. However, the
GWO and SCA algorithms, and at the next stage OXDE algorithm, had better performances
when applied to larger and practical networks; the reason for this was the better global
search of these algorithms.

3.2. Considered Scenarios

The cases were studied for the following three scenarios.

• First scenario: The corrected system considering uncertainty in wind power plants.
• Second scenario: The corrected system considering uncertainty in the loads connected

to buses without generators due to load uncertainty, and EVs equal to 10% of the total
loads connected to the system.

• Third scenario: The corrected system considering uncertainty in the wind energy, load,
and EVs (in non-generation buses).

Then, the cases were implemented on the 24- and 118-bus systems to study the effects
of different operating conditions in addition to the system’s base mode. The corrected
IEEE-RTS 24-bus system is based on Figure 4. This system was corrected in buses 1 and 15,
adding 2 wind farms with capacities of 180 MW (with characteristics of Vci = 4, Vr = 10,
and Vco = 22 m/s at average wind speed of 5.4 m/s) [6]. The corrected IEEE 118-bus
system was changed for buses 36, 69, and 77, adding three wind farms with capacities
of 250, 180, and 100 MW, respectively [3,57]. In these systems it was assumed that EVs
in non-generation buses are connected and that the charges equaled 10% of the total
system loads.

Figure 4. The corrected IEEE-RTS 24-bus system.

3.3. Simulation and Results

The results obtained from optimizing the proposed algorithms are categorized and
presented in the studied scenarios on the 24- and 118-bus systems as follows:
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3.3.1. First Scenario

The results obtained from this scenario, applying the proposed algorithms, are pre-
sented in Tables 4 and 5. In addition, Figures 5 and 6 depict the convergence results of each
algorithm to solve the first scenario.

Table 4. The results for the IEEE RTS 24-bus system in the first scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 5 1 1 1 1 1 1 1
3 24 1 1 1 1 1 1 1
6 10 1 1 1 1 1 1 1
7 8 2 2 2 2 2 2 2
10 12 1 1 1 1 1 1 1
14 16 1 1 1 1 1 1 1
15 24 1 1 1 1 1 1 1
16 17 1 1 1 1 1 1 1

Lines 9 9 9 9 9 9 9
Cost (M$) 332 332 332 332 332 332 332

Length (Mile) 332 332 332 332 332 332 332
Time (sec) 20.56 25.99 8.54 9.08 10.54 74.72 35.58

Table 5. The results for the IEEE 118-bus system in the first scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 2 - - 1 - 1 1 -
1 3 3 3 2 3 2 2 3
3 5 2 2 2 2 2 2 3
4 5 - - - - 2 - -
8 5 1 1 1 1 1 1 1
9 10 - - - - 2 - -
2 12 2 1 1 1 2 1 -
3 12 1 1 - - - - -
23 24 - - - - - 1 -
8 30 3 3 2 2 2 2 2
30 38 3 2 2 2 2 1 2
34 36 - - - - 2 - -
34 37 - - - - 2 - -
60 61 - - - - 2 - -
64 61 - - - - 2 - -
77 78 - - - - 2 - -

108 109 - - - - 2 - -
114 115 - - - - 2 - -

Lines 15 13 11 11 31 11 11
Cost (M$) 96.56 85.07 69.78 64.03 112.476 69.03 68.67

Length (Mile) 96.56 85.07 69.78 64.03 112.476 69.03 68.67
Time (sec) 325.9 662.02 93.88 50.95 863.93 175.79 223.55
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Figure 5. The convergence for the IEEE-RTS 24-bus system in the first scenario.

Figure 6. The convergence for the IEEE 118-bus system in the first scenario.

3.3.2. Second Scenario

The results obtained from this scenario, applying the proposed algorithms, are pre-
sented in Tables 6 and 7. In addition, Figures 7 and 8 depict the convergence results of each
algorithm to solve the second scenario.
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Table 6. The results for the IEEE-RTS 24-bus system in the second scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 2 1 1 1 1 1 1 1
6 10 1 1 1 1 1 1 1
7 8 3 2 2 2 2 2 2
10 12 1 1 1 1 1 1 1
12 13 1 1 1 1 1 1 1
14 16 1 1 1 1 1 1 1
16 17 1 1 1 1 1 1 1

Lines 9 8 8 8 8 8 8
Cost (M$) 273 257 257 257 257 257 257

Length (Mile) 273 257 257 257 257 257 257
Time (sec) 24.32 21.65 8.31 15.53 10.80 47.38 23.44

Table 7. The results for the IEEE 118-bus system in the second scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 2 - - 2 - 1 2 -
1 3 3 3 2 3 2 2 3
3 5 2 2 2 2 2 2 3
8 5 1 1 1 1 1 1 1
9 10 - - - - 2 - -
11 12 - - - 1 2 - -
2 12 1 - 2 1 3 1 -
3 12 1 1 - - - - -
16 17 1 1 - - - - -
8 30 3 2 2 2 2 2 3
30 38 2 2 2 2 2 2 2
29 31 - - - - 2 - -
34 36 - - 1 - - - -
35 36 - - 1 - - - -
34 37 - - - - 2 - -
48 49 - - - - 1 - -
54 56 - - - - 2 - -
63 59 - - - - 2 - -
63 64 - - - - 2 - -
68 69 - - - - 2 - -

108 109 - - - - 1 - -
114 115 - - - - 2 - -
68 116 - - - - 2 - -

Lines 14 12 15 12 35 12 12
Cost (M$) 97.56 91.88 75.94 65.99 132.81 79.77 73.71

Length (Mile) 97.56 91.88 89.63 65.99 132.81 79.77 73.71
Time (sec) 311.4 933.74 149.10 105.74 721.44 173.25 184.44
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Figure 7. The convergence for the IEEE-RTS 24-bus system in the second scenario.

Figure 8. The convergence for the IEEE 118-bus system in the second scenario.

3.3.3. Third Scenario

The results obtained from this scenario, applying the proposed algorithms, are pre-
sented in Tables 8 and 9. In addition, Figures 9 and 10 depict the convergence results of
each algorithm to solve the third scenario.
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Table 8. The results for the IEEE-RTS 24-bus system in the third scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 5 1 1 1 1 1 1 1
6 10 1 1 1 1 1 1 1
7 8 2 2 2 2 2 2 2
9 11 1 1 1 1 1 1 1
10 12 1 1 1 1 1 1 1
14 16 1 1 1 1 1 1 1
16 17 1 1 1 1 1 1 1

Lines 8 8 8 8 8 8 8
Cost (M$) 260 260 260 260 260 260 260

Length (Mile) 260 260 260 260 260 260 260
Time (sec) 24.4 24.4 8.44 9.80 8.38 57.08 21.50

Table 9. The results for the IEEE 118-bus system in the third scenario.

From To GA ICA OXDE GWO MFO EMA SCA

1 2 - - 1 - 1 1 -
1 3 3 3 2 3 2 2 3
3 5 2 2 1 2 1 1 2
4 5 - - - - 2 - -
8 5 1 1 - 1 - - 1
8 9 - - - - 1 - -
9 10 - - - - 2 - -
2 12 - - 1 - 2 1 -
3 12 1 1 1 - - 1 -
12 14 2 - 2 - - 1 -
12 16 1 - 1 - - - -
14 15 - - - - 2 - -
15 17 - - - - 1 - -
16 17 - 1 - - - -
8 30 1 2 2 2 2 2 2
30 38 2 2 1 1 1 1 1
35 36 - - - - 3 - -
54 56 - - - - 2 - -
55 56 - - - - 1 - -
60 61 - - - - 1 - -
63 64 - - - - 2 - -
68 69 - - - - 2 - -
68 81 - - - - 1 - -

108 109 - - - - 2 - -
114 115 - - - - 2 - -
68 116 - - - - 2 - -

Lines 13 12 12 9 35 10 9
Cost (M$) 93.43 91.88 73.98 52.47 141.426 73.98 52.47

Length (Mile) 93.43 91.88 89.39 52.47 141.426 73.98 52.47
Time (sec) 389.2 656.89 96.19 49.99 849.88 173.85 205.30
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Figure 9. The convergence for the IEEE-RTS 24-bus system in the third scenario.

Figure 10. The convergence for the IEEE 118-bus system in the third scenario.

4. Empirical Results

The performances of the proposed algorithms are categorized as follows:

4.1. The Number of Iterations

As metaheuristics are affected by the random evolution of an algorithm, case studies
have been solved for a series of simulations. For this purpose, each optimization algorithm
was implemented, separately, several times. Based on the results, it can be stated that
OXDE, GWO, and EMA obtained the optimal solution in at least five separate iterations.
However, the MFO algorithm, and in particular SCA, obtained the optimal solution in at
least 10–15 separate iterations.
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4.2. Convergence in Finding Optimal Solution

In the IEEE 24-bus system, it can be stated that OXDE, GWO, MFO, and EMA algorithms
converged to the optimal solution. However, in the 118-bus system, this was not true. Only
GWO and SCA converged to the optimal solution. This is depicted in Figures 11 and 12.

Figure 11. Total costs of optimal solutions for the 24-bus system.

Figure 12. Total costs of optimal solutions for the 118-bus system.

4.3. In Terms of Implementation Time

Figure 13 shows the implementation time related to the 24-bus system and Figure 14
shows the 118-bus system. The GWO and OXDE algorithms have higher speeds in obtain-
ing optimal solutions (while being applied to different systems) than the other proposed
algorithms.
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Figure 13. The implementation time for the IEEE 24-bus system.

Figure 14. The implementation time for the IEEE 118-bus system.

4.4. Wilcoxon Signed-Rank Test

Some statistical analyses were performed on the obtained results using simulations
to measure the performance of different algorithms, OXDE, GWO, MFO, EMA and SCA.
For this purpose, the Wilcoxon signed-rank test was used. This test is used to examine two
dependent samples or to match two samples to determine the significant differences of
different algorithms. If an algorithm establishes a statistical significance by providing suffi-
cient evidence against the null hypothesis, then it will be considered a strong algorithm [58].
In the Wilcoxon signed-rank test, a probability (p-value) less than 0.05 indicates the reality
of the observed difference and is considered as a difference due to chance, randomness, or
sample error. The statistical significance shows the extent to which statistical findings may
be the result of chance and accident. If the data are in the range of 95% of the samples and
the null hypothesis is correct, then the statistical samples are not significant at the 5% level
and the null hypothesis is not rejected. If the data sample are at the outer 5% range of the
samples, then the sample does not seem to support the null hypothesis. In this case, the
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opposite hypothesis is usually accepted, the null hypothesis is rejected, and the statistical
findings are meaningful [58,59].

Figure 15 depicts this concept, in which the blue line is the probability distribution
for the test statistics, the critical region is the set of values to the right of the observed data
point and the p-value is highlighted.

Figure 15. The probability chart of statistical analysis [60].

Table 10 presents the p-values obtained using the Wilcoxon signed-rank test with a
marked rank. As is clear from the results, the p-value obtained was much less than the
desired value of 0.05 and proves the statistical significance of the obtained results.

Table 10. The results of the p-value in the Wilcoxon signed-rank test.

Test System Scenario ICA OXDE GWO MFO EMA SCA

IEEE 24-bus
system

1 1.272 × 10−64 4.7131 × 10−55 2.4524 × 10−58 7.8016 × 10−54 3.3153 × 10−59 6.7927 × 10−54

2 4.1495 × 10−52 4.3037 × 10−56 1.2041 × 10−58 5.1854 × 10−51 1.6555 × 10−52 2.1612 × 10−51

3 4.1875 × 10−52 1.118 × 10−56 6.4352 × 10−58 2.266 × 10−51 9.1537 × 10−56 1.9928 × 10−51

IEEE 118-bus
system

1 7.0049 × 10−52 4.1162 × 10−51 5.4061 × 10−53 6.0229 × 10−51 5.2716 × 10−52 2.0449 × 10−54

2 8.8571 × 10−56 5.1188 × 10−51 2.934 × 10−52 6.0497 × 10−51 3.8101 × 10−51 8.3324× 10−58

3 1.5863 × 10−55 2.4559 × 10−51 9.7787 × 10−54 6.0266 × 10−51 2.7647 × 10−52 8.6361 × 10−53

5. Discussion

This paper compared the performance of several metaheuristics, OXDE, GWO, MFO,
EMA, SCA, and ICA [3], in solving TEP problem in the presence of uncertainty in power
generation by wind power plants, as well as demand and EVs, as one of the consumers
with higher uncertainty.

All the metaheuristics studied were able to find the optimal solution as identified
by classical optimization (MIP). According to the obtained results, the performances of
GWA and OXDE were remarkably robust. The exploration factor indicated the generality
of the search area and the extraction parameter described the ability to find better solutions
around a specific solution. The exploration operation searches for new, better solutions.
Extraction follows small and important changes to the current solution. This theorem
was well defended in the case of the OXDE algorithm for the two case studies, using
the IEEE 24 and 118 buses, in which the algorithm was able to achieve higher-quality
solutions, regardless of the number of problem variables. The remaining algorithms were
considerably slower across the case studies, with ICA and EMA performing considerably
worse. Of course, the important factor about metaheuristic algorithms is that they do
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not provide completely definite results for use, an issue that needs to be improved by
other researchers.

6. Conclusions

The exercise carried out in this paper has allowed to compare several metaheuristic
algorithms when solving TEP in terms of variability, convergence, and computation time.
Most metaheuristics were acceptable in terms of both total cost and computation time, with
some exceptions, such as ICA and MFO, which performed worse in the large case studies.
The rest of the algorithms performed acceptably well, with OXDE, for instance, displaying a
robust performance across case studies, consistently avoiding local optima. Metaheuristics
can be a good additional tool in the arsenal for solving TEP problems, even when combined
with mixed-integer programming or heuristic methods. When solving complex problems,
having a diversity of tools is key, and considering metaheuristics increases the options for
solving the TEP problems effectively and efficiently.
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Abbreviations

TEP Transmission expansion planning
EVs Electrical vehicles
OXDE Orthogonal crossover based differential evolution
GWO Grey wolf optimizer
MFO Moth–flame optimization
EMA Exchange market algorithm
SCA Sine cosine algorithm
ICA Imperialistic competitive algorithm
LP Linear programming
NLP Nonlinear programming
MIP Mixed integer programming
DP Dynamic programming
GA Genetic algorithm
TS Tabu search
GRASP Greedy randomized adaptive search procedure
SA Simulated annealing
SI Swarm intelligence
ACO Ant colony optimization
DE Differential evolution
CHA Constructive heuristic algorithms
AIS Artificial immune systems
SFLA Shuffled frog leaping algorithm
SSA Social spider algorithm
AMOEA Adaptive multi-operator evolutionary algorithms
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Nomenclature
Pt Wind turbine active power output variable
Pr Turbine power
Vci, Low outage speed
Vr Nominal outage speed
Vco High outage speed
Fzero Probability of wind turbine zero power output
Frate Probability of wind turbine rated power output
g(x) Continuous probability density distribution of wind turbine between 0 and Pr
E(X) The expected value of the variable
xi The value of the take
Pi The probability value
Clij Cost of a line added to the right-of-way
n Number of nodes
s Node-branch confluence matrix
f The vector of real current power in lines
g The vector of real power generated in buses
g The vector of maximum power generated in buses
d The vector of forecasted consumption for buses
γij Susceptance of a line between nodes i-j
fij The current power in branch i-j
Nij Number of lines added to the right-of-way
fij The limit of current power in branch i-j
N0

ij The number of branch initial line
Nij The number of lines added to the route i-j
Nij The maximum number of new lines for adding to branch i-j
θi The voltage angle of bus i
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