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Abstract: Voltage source converters (VSCs) are self-commutated converters able to generate AC
voltages with or without the support of an AC connecting grid. VSCs allow fast control of active
and reactive powers in an independent way. VSCs also have black start capability. Their use
in high-voltage direct current (HVDC) systems, comparative to the more mature current source
converter (CSC)-based HVDC, offers faster active power flow control. In addition, VSCs provide
flexible reactive power control, independent at each converter terminal. It is also useful when
connecting DC sources to weak AC grids. Steady-state RMS analysis techniques are commonly
used for early-stage analysis, for design purposes and for relaying. Sources interfaced through
DC/AC or AC/DC/AC converters, opposite to conventional generators, are not well represented
by electromotive forces (E) behind impedance models. A methodology to include voltage source
converters (VSCs) in conventional RMS short-circuit analysis techniques is advanced in this work.
It represents an iterative procedure inside general calculation techniques and can even be used by
those with only basic power electronics knowledge. Results are compared to those of the commercial
software package PSS®CAPE to demonstrate the validity of the proposed rmsVSC algorithm.

Keywords: short-circuit analysis; voltage source converters; HVDC; SCR; short-circuit contribution

1. Introduction

Voltage source converters (VSCs) are used to connect high-voltage AC and DC systems.
VSCs maintain DC voltage polarity for their building blocks (for the two-level or three-level
converter), as well as for “modules” forming a Modular Multi-Level Converter (MMC).
In VSCs, the direction of the DC current controls the direction of the active power flow
(P). Compared to the more mature current source converters (CSC-HVDC), VSCs offer
faster active power flow and independent reactive power controllability, allowing for easy
integration in multi-terminal high-voltage DC systems (VSC-based HVDC).

VSCs have evolved from the basic two-level or three-level neutral point clamped
(NPC) configurations. The three-level active NPC, two-level with optimum pulse width
modulation (OPWM), cascaded two-level converter (CTL) and modular multi-level con-
verter (MMC) have been discussed throughout recent years. MMC is the latest and most
advanced technology used for HVDC transmission, and differentiates further into the
so-called half bridge type and full bridge type MMC [1]. The MMC is becoming dominant
in the AC/DC conversion for offshore HVDC grids. Its ability to reverse the power flow by
DC current reversal instead of the DC voltages, its modularity and scalability, as well as
its inherent capability of storing energy internally in the converter, make it advantageous
compared to other VSC topologies [1].

Electrical power systems are usually dominated by large synchronous generators with
large inertia, high current capacity and slow frequency/voltage regulators. Generators are
usually represented by constant electromotive forces (E) behind convenient impedances,
according to the relevant sub-transient, transient or permanent fault period. VSC-HVDC is
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being proposed to connect offshore large wind generation to onshore AC grids, either in a
point-to-point or in a multiterminal configuration [2–4]. While for classic HVDC solutions
it is considered that they do not contribute to short-circuit currents, due to the risks of
commutation failure, and VSCs can remain connected. VSCs are able to operate even in
very low voltage scenarios and can connect to weak or isolated grids [5]. Although they
have limited overcurrent capacity, even for extremely low voltage scenarios, an effective
contribution to steady state short-circuit currents is expected because of the large VSC-
HVDC capacity.

Methodologies to include VSC interfaced sources into SC analysis have been inves-
tigated by different authors. Fischer and Mendonca [6] performed short-circuit analysis
considering Thevenin’s equivalent. They assumed wind energy converters (WECs) with
full AC/DC/AC VSCs were injecting purely inductive constant currents, and that all the
network elements were purely reactive. Yan and Zhe [7] considered VSCs as constant
current sources, in which the maximum current was 150% of its nominal current. The equiv-
alent reactance was analytically calculated assuming all impedances as purely reactive.
Goksu et al. [8] have considered an arbitrary reactive current injection, neglecting the VSC
behavior. Gautam and Joseph [9] show an extension of classical fault analysis techniques
to form “fault coefficients”, which are used along with the Newton–Raphson technique to
find current contributions of voltage source converter (VSC)-based wind turbines. In this
work, a methodology to include VSC in steady-state RMS short-circuit analysis is proposed,
extending the classical (matrix-based) short-circuit calculation techniques to include a VSC
generic model. Referred as rmsVSC, the technique can be easily included into short-circuit
analysis, both for symmetrical and unsymmetrical short circuits.

After this introduction, this paper has four sections and a conclusion. Section 2
addresses the control and modelling of voltage source converters, and Section 3 recalls RMS-
based short-circuit analysis techniques. Section 4 shows the proposed rmsVSC technique to
include a VSC (and evaluates its impacts) in short-circuit currents and voltages evaluation.
In Section 5, steady-state RMS short-circuit analysis application examples are shown, and
results are compared to those obtained with PSS®CAPE, a commercial RMS-based software
package used extensively in protection design and analysis.

2. Control and Modelling of Voltage Source Converters Connected to the Grid

Figure 1 shows a voltage source converter, including AC filtering and a step-up
transformer. The current through the series R-L branch depends on the voltage difference
between uv and the shunt filter voltage uf. The shunt filter current can be neglected
for RMS-based analysis because it aims to eliminate high frequencies to get the desired
sinusoidal current output. Thus, it can be assumed that the current from the converter
and the current in the step-up transformer are the same. The current flowing into the AC
network can be controlled by way of the voltage uv.
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2.1. General Control of a VSC

VSCs have 6 possible control modes: frequency, AC voltage, active power, reactive
power, DC voltage and AC current control [10]. There is a natural connection between DC
voltage control, active power control and frequency control, as well as between AC voltage
control and reactive control [5]. The AC voltage control regulates the magnitude of the AC
voltage by modifying the DC capacitor voltage (direct control) or the modulation index
(vector control). The active power flow is controlled by regulating the phase angle of the
converter-generated AC voltage. The capacitive/inductive reactive power is controlled
by the AC voltage through the control of the modulation index. DC voltage is controlled
through the active power balance, charging or discharging the DC capacitor. The AC cur-
rent control is usually integrated as an intermediate step in the control of other parameters.
The DC voltage controller regulates the active power flow. Reactive power is controlled by
each converter in an independent way.

Usually, there are two levels of control. Outer controllers receive measured quantities
(voltage/current, active/reactive power or DC voltage) and compare it to reference signals,
producing output (error) signals which are passed to inner controllers to define the on-off
state of individual switches. “Vector control”, “dual vector control” and “vector control
with LCL filter” and other control strategies can be found [5]. Vector control is one of the
most frequent options [9] and will be assumed.

A phase-locked loop (PLL) algorithm is used to get a reference frame for the AC
quantities of the converter [11,12]. Voltage and currents are transformed from time domain
quantities (sa-sb-sc) to a d-q-0 rotating reference frame, according to Equation (1) (Park
transformation), where θ = ω.t is the angular position, in radians, of the dq0 rotating frame
relative to the stationary frame [13]. sd

sq
s0

 =
2
3

 cos θ cos
(
θ − 2π

3
)

cos
(
θ + 2π

3
)

− sin θ − sin
(
θ − 2π

3
)
− sin

(
θ + 2π

3
)

1
2

1
2

1
2

·
 sa

sb
sc

 (1)

Considering the dq0 rotating frame aligned with phase a axis at t = 0, then θ = 0 and
Equation (1) transforms into Equation (2).[

sd sq s0
]T

=
[

sa 0 0
]T (2)

For per-unitization purposes, the voltage, current and power base quantities should
be chosen according to [13], in order to have a correct correspondence between abc and
dq0 reference frames.

2.2. Steady-State Power Flow Control

Assuming, as per usual, the per-unit system based calculation, then active and reactive
powers injected by the VSC can be calculated using d- and q-current components, according
to Equations (3) and (4), respectively.

Ppu = Vpu
d ·I

pu
d (3)

Qpu = −Vpu
d ·I

pu
q (4)

In a normal operation, knowing the voltage at a given bus, active/reactive power set
points lead to d-q current calculation through Equations (5) and (6), respectively.

Ipu
d =

Ppu,sp

Vpu
d

(5)

Ipu
q = −Qpu,sp

Vpu
d

(6)
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All operation points should, at least, respect the maximum current defined for the
converter [14]. √

(Id)
2 +

(
Iq
)2 ≤ Iconv

max (7)

Individual limits can be imposed to the active power from the AC to the DC sides
of the converter, avoiding DC overvoltage, and to the reactive power in capacitive mode,
particularly when grid voltages become high (low load scenarios, for example).

2.3. VSC Behavior under Low-Voltage Scenarios—rmsVSC Model

Assuming that VSC is operating with given active/reactive power setpoints (PSP
and QSP), voltage variations lead to inverse current variations. Larger voltage reductions
may result in current limitations and, consequently, in active/reactive power limitations.
In addition, even if current limits are not reached, yet any other condition is met (volt-
age below/above a defined level, for example), currents may need to change. In the
proposed rmsVSC model, kd and kq multiplying coefficients are defined to obtain, accord-
ing to Equations (8) and (9), the effective active and reactive power setpoints (Plim

SP and
Qlim

SP , respectively).
Plim

SP = kd·PSP (8)

Qlim
SP = kq·QSP (9)

The kd and kq coefficients, which are equal 1 when current limits are not violated, will
be modified according to the control strategies adopted. Three fundamental strategies will
be discussed, but others can also be considered in the same way:

– To maintain a fixed power angle, reducing both (active and reactive) power setpoints
(mode PQ);

– Prioritizing the active power injection, reducing the reactive component as necessary
(mode P);

– Prioritizing the reactive power injection, reducing the active power as necessary
(mode Q).

2.3.1. Mode PQ—Constant Power Angle

The active and reactive power coefficients are equally reduced, if necessary, according
to Equations (10) and (11).

kd = kq = min
{

1, kPQ
}

(10)

kPQ =

√
V2

d ·I2
max

P2
SP + Q2

SP
(11)

2.3.2. Mode P—Priority to the Active Power Injection

Priority is given to the active current (power), reducing reactive power, if necessary.
First, the active power reduction coefficient is determined, according to Equation (12).

kd.P = min
{

Vd·Imax

|PSP|
, 1
}

(12)

If the active current is below the maximum allowed current, the remaining capacity is
used to inject the reactive current. The available reactive current is given by Equation (13),
and the effective multiplier is determined by Equation (14).

Imax
q.P

=

√
I2
max −

(
kd.P·

PSP
Vd

)2
(13)

kq.P = min

{
Vd·Imax

q.P

|QSP|
, 1

}
(14)
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2.3.3. Mode Q—Priority to the Reactive Power Injection

Priority is given to the reactive power being delivered by the VSC. The reactive power
delivered is maximized and the active component reduced, if necessary. The reactive
current component coefficient is calculated by Equation (15).

kq.Q = min
{

Vd·Imax

|QSP|
, 1
}

(15)

The remaining current capacity, if any, is used to inject the active current, according to
Equations (16) and (17).

Imax
d.Q

=

√
I2
max −

(
kq.Q·

QSP
Vd

)2
(16)

kd.Q = min

{
Vd·Imax

d.Q

|QSP|
, 1

}
(17)

2.4. VSC Modelling under Short-Circuit Condition: Main Assumptions

Although considering kd and kq limited to the unity, in the identified modes of opera-
tion, it is also possible to implement particular “fault ride through” type algorithms, where
kq could be higher than one to support network voltages. Nevertheless, once the maximum
converter current is reached, the results are equal to those of mode Q.

Regarding the active power, limitations on the maximum active power being injected
in the faulted network may lead to DC overvoltage. It was assumed that HVDC networks
can fully control the DC voltage, even if no active power can be in the AC grid. Different
strategies are described in the literature, depending on the DC network characteristics.
Large DC choppers can be considered, for the HVDC networks, to protect converters from
DC overvoltage. Other strategies can be adopted, such as those related to the active power
generation reduction, by sending signals that lead to the active power reduction [15].

3. RMS-Based Short-Circuit Analysis

Symmetrical AC short-circuit currents can be computed from steady-state network
models, combining phasor analysis and symmetric components, and an adequate per unit
system when different voltage levels are present. This approach is also considered adequate
in IEC 60909 standard [16].

For large networks, network information (source, lines and transformer impedances)
is stored in the form of a representative matrix (ZBUS or YBUS, depending on the net-
work elements chosen characteristic—impedance or admittance, respectively), allowing
calculation of maximum/minimum short-circuit currents and voltages [17–19].

Main network busbars are used as electrical nodes where a short-circuit can be sim-
ulated using data from the corresponding row/columns of those matrices. Considering
the voltage of the faulted bus, immediately before the fault, the Norton equivalent current
injection IZBUS

k is given by Equation (18).

IZBUS
k = −

V0
k

ZBUS
kk + R f (18)

To obtain the total short circuit current at bus k the last current is added to the current
being injected at the same node immediately before the fault I0

k according to Equation (19).

I f
k = I0

k + IZBUS
k (19)

If the prefault currents and voltages are unknown, then it is common to consider
an unloaded network, where prefault voltages are all equal, in magnitude and phase. If
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unitary prefault voltages (1.0 p.u.) are considered, then the total current being injected into
the network is given by Equation (20).

I f
k
∼= IZBUS

k = − 1.ei0◦

ZBUS
kk + R f (20)

The previous methodology can be extended to any short-circuit and network config-
uration [20], both for symmetrical and asymmetrical faults. If a symmetrical three-phase
fault is to be considered, a single-phase equivalent can be used. If unsymmetrical faults are
to be studied, sequence components must be used [17–19].

Voltages at non-faulted buses, as well as fault currents flowing through transmission
lines, can be calculated. Equation (21) is the equivalent form of Equation (19), where the
injected current due to the fault is a vector where only the faulted bus position (fault bus)
has a non-zero value, as in Equation (22).[

I f
]
=
[

I0
]
+
[

IZBUS
]

(21)

[
IZBUS

]
=
[

0 · · · IZBUS
k · · · 0

]T
(22)

Multiplying each element of (21) by the system’s ZBUS matrix, as in (23), we can
identify pre-fault voltages

[
V0] and fault voltages

[
V f
]

as well as bus voltages variation

due to the fault current injection
[
∆V f

]
.

[ZBUS]
[

I f
]

︸ ︷︷ ︸
[V f ]

= [ZBUS]
[

I0
]

︸ ︷︷ ︸
[V0]

+ [ZBUS]
[

IZBUS
]

︸ ︷︷ ︸
[∆V f ]

(23)

4. Using rmsVSC Model in the Evaluation of VSC Impacts in Short-Circuit Currents
and Voltages

Adding or removing sources to/from a network impacts short-circuit levels. The high-
est impacts occur for a local fault, but some impacts can also be expected for neighboring
network nodes (busbars).

4.1. Local Impacts Evaluation

The short-circuit current for the usual approach of an unloaded network is given
by Equation (24), assuming only conventional sources. Under the usual assumption of a
resistive nature for electrical arcs, it is necessary for the fault voltage phasor to have the
same phase angle of the current.

Igrid
m =

1.ej0◦

ZBUS
mm

=
∣∣∣Igrid

m

∣∣∣.e−j·φ (24)

The VSC current can be expressed in the d-q frame by Equation (25), where (lim) refers
to the effective current components. Each current limit is set according to the pre-fault
setpoints and to the control modes. The resulting current may (or not) be the maximum
converter current.

IVSC
m = I(lim)

d + jI(lim)
q (25)

Both current contributions must be added under a common reference to get the total
fault current. The phase angle of the VSC contribution is adjusted according to the bus
voltage phase (which corresponds to the new fault current phase angle). It is assumed
that the VSC is always operating as a generator, imposing a positive d-current compo-
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nent. The short-circuit current shows magnitude, as well as phase variation, according to
Equation (26).

χ·
∣∣∣Igrid

m

∣∣∣e−j·(φ+∆φ) =
(

I(lim)
d + jI(lim)

q

)
.e−j·(φ+∆φ) +

∣∣∣Igrid
m

∣∣∣.e−j·φ (26)

Regarding the magnitude of the full short-circuit current, we can derive Equation (27).

χ·
∣∣∣Igrid

m

∣∣∣ = √(I(lim)
d +

∣∣∣Igrid
m

∣∣∣. cos(∆φ)
)2

+
(

I(lim)
q +

∣∣∣Igrid
m

∣∣∣. sin(∆φ)
)2

(27)

Using the VSC active power as the reference for per-unitization, the short-circuit
current before connecting the source equals the short-circuit ratio (SCR). Using Imax as the
maximum source current, for the same reference, the short-circuit current variation, χ, is
given by (28).

χ =

√√√√√√1 +
(

Imax

SCR

)2
+

2·I(lim)
d · cos(∆φ)

SCR
+

2·I(lim)
q . sin(∆φ)

SCR
(∗)

(28)

Considering the reactive part of the VSC current (q-current component), it is negative
and ∆φ is positive for the inductive case, while a capacitive current has a positive q-current
component and a negative ∆φ.

For both cases, the term (*) is always negative, and then the maximum possible current
variation is given by Equation (29) relating to the case where the VSC current is fully active
with null reactive component.

χmax =

√√√√1 +
(

Imax

SCR

)2
+

2·I(lim)
d · cos(∆φ)

SCR
(29)

Replacing the reactive current component by zero in Equation (29) we obtain Equa-
tion (30), showing that ∆φ cannot be different from zero. The maximum variation χmax is
given by Equation (31).

(χ·SCR− Imax)︸ ︷︷ ︸
scalar

.e−j·(φ+∆φ) = SCR.e−j·φ (30)

χmax = 1 +
Imax

SCR
(31)

For a fully inductive/capacitive current
(

I(lim)
q = ±Imax

)
, the short-circuit current

variation is given by Equation (32) and can be negative (that is, χ < 1) if condition Equa-
tion (33) becomes true.

χ =

√
1 +

Imax

SCR

(
Imax

SCR
− 2· sin(|∆φ|)

)
(32)

Imax

SCR
< 2. sin(|∆φ|) (33)
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For a fully reactive current, sin(|∆φ|) depends on the maximum VSC current and
on the SCR, according to Equation (34). After substitution, the current variation can be
calculated directly from Equation (35).

sin(|∆φ|) =

∣∣∣I(lim)
q

∣∣∣∣∣∣Igrid
m

∣∣∣ =
Imax

SCR
(34)

χ =

√
1−

(
Imax

SCR

)2
(35)

It is clear from the last expression that a full reactive (inductive or capacitive) VSC
current always represents a short-circuit current reduction.

4.2. Remote Impacts Evaluation

With all VSCs disconnected from the network, an initial injected currents vector
[
I0]

is obtained. With the bus voltages information, the current being injected by each VSC
is calculated, and the initial currents are updated according to Equation (36). Non-zero
values in Equation (37) are VSC current injections (at bus m and at bus n).[

I(it)
]
=
[

I0
]
+
[
∆Ivsc(it)

m

]
(36)

[
∆Ivsc(it)

m,n

]
=
[

0 · · · Ivsc1(it)
m · · · Ivsc2(it)

n · · · 0
]T

(37)

VSC currents are calculated based on the last known values of the voltage at bus m,
according to Equation (38).

IVSC(it)
m =

(
k(it−1)

d · PSP

V(it−1)
d

− jk(it−1)
q · QSP

V(it−1)
d

)
V(it−1)

m∣∣∣V(it−1)
m

∣∣∣ (38)

Then, prefault voltages are updated according to Equation (39), resulting in the short-
circuit current variation expressed by Equation (40).[

∆V0,vsc(it)
]
=
[

ZBUS
]
·
[
∆Ivsc(it)

m,n

]
(39)

∆Ivsc(it)
k = −

∆V0,vsc(it)
k

ZBUS
kk + R f (40)

The injected fault current variation originates bus voltages variations, according to
Equation (41). 

∆V f ,vsc(it)
1

...
∆V f ,vsc(it)

k
...

∆V f ,vsc(it)
p


=



Z1k·∆Ivsc(it)
k

...
Zkk·∆Ivsc(it)

k
...

Zpk·∆Ivsc(it)
k


(41)
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For each iteration, post-fault voltages considering all contributions, including the VSC
influence, are calculated by Equation (42).

V f ,(it)
1

...
V f ,(it)

k
...

V f ,(it)
p


=



V0
1
...

V0
k
...

V0
p

+



∆V0,vsc(it)
1

...
∆V0,vsc(it)

k
...

∆V0,vsc(it)
p


+



Z1k·I
ZBUS
k

...
Zkk·I

ZBUS
k

...
Zpk·I

ZBUS
k


+



Z1k·∆Ivsc(it)
k

...
Zkk·∆Ivsc(it)

k
...

Zpk·∆Ivsc(it)
k


(42)

With the new voltage at VSC connection buses, a new iteration is run until the conver-
gence condition is met. The convergence test can be performed by comparing, between
successive iterations, the fault current variation due to the VSC, ∆Ivsc(it)

k .

5. Steady-State RMS Short-Circuit Analysis

Figure 2 represents the EPRI 9-bus test system [21] modified to include a VSC-HVDC
connection. A large synchronous generator was connected at bus 2. Remote generation
(Rem G) was connected to the sending end converter (SEC), and the receiving end converter
(REC) was connected to bus 8.
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Figure 2. EPRI 9-bus test case with a VSC-HVDC connection at bus 8.

For the VSC connected to bus 8 (REC), it was considered that current components (d,
q) were both limited to 0.75 p.u. on the system’s MVA, while the total current was limited
to 0.825 p.u. (10% over the VSC nominal current).

Three-phase short circuits were considered: F1, close to bus 8 (where the VSC is
connected); F2 at bus 6 (considered, relative to the VSC, a remote fault); and F3, at bus 3,
closer to the VSC than bus 6. The first case is discussed analytically, while for the other, the
rmsVSC methodology is applied and results are compared to those of PSS®CAPE.

5.1. Three-Phase Short Circuit at Bus 8

As the voltage reduces to zero, for a solid fault (F1) close to the VSC, the reference
angle for the VSC current definition becomes indetermined, leading to mathematical non-
convergence problems. Therefore, this case was analytically discussed. Results are shown
in Figure 3.

A VSC operating under P-mode represented large short-circuit current contributions
for low SCR connections. For an SCR equal to 6, the short-circuit current increased 18%, and
for SCR = 4, the variation was 27.5%. In reactive power mode, for low SCR, the short-circuit
current reduction can be large, but for SCR equal to 8 or higher, it becomes almost zero.
Any other operating condition for a given SCR will represent a current variation between
the two limiting curves.
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Figure 3. Short-circuit current (relative to the non-VSC value) considering a VSC connected at the
faulted bus, for different SCR values and for two different operating modes.

Although solid faults should be interpreted as null fault resistance, an extremely low
resistance was applied in simulation. Therefore, the fault voltage phasor was aligned to
the very inductive fault current. Under active power priority, the converter current aligned
with the fault voltage phasor and, consequently, with the fault current, was fully added to
it. For a fully inductive current, the VSC injection is 90 degrees lagging from fault voltage
and, then, will also be in quadrature to the short-circuit current.

5.2. Three-Phase Short Circuit at Bus 6

For a three-phase fault at bus 6 (F2), two cases were defined regarding the VSC
operating points: case 1 refers to 60MW/20MVAr setpoints, while case 2 considers a
higher reactive power setpoint (40 MVAr). For both cases, the three VSC control strategies
discussed before were considered.

Results are shown, respectively, in Tables 1 and 2, and compared to those obtained by
PSS®CAPE [22]. For reference, the SC and bus voltages before the VSC connection were
2.037 and 0.795 per unit, respectively.

Table 1. Comparative results for case 1 (60 MW/20 MVAr).

Tool Mode Isc Ivsc Vd P/Q

PSS®CAPE PQ 2.067 0.7087 0.8845 59.35/20.16
PSS®CAPE P or Q 2.069 0.7041 0.8874 58.92/20.78

rmsVSC PQ, P or Q 2.066 0.7159 0.8835 60.00/20.00

Table 2. Comparative results for case 2 (60 MW/40 MVAr).

Tool Mode Isc Vd Ivsc Vd Iq

PSS®CAPE P 2.110 0.9582 0.7552 0.6321 0.4132
rmsVSC P 2.111 0.9599 0.7512 0.6251 0.4167

PSS®CAPE Q 2.109 0.9576 0.7567 0.6348 0.4118
rmsVSC Q 2.111 0.9599 0.7512 0.6251 0.4167

The impact of VSC on the SC current was 1.43% for case 1 and 3.67% for case 2.
Regarding VSC bus voltages, a 11.55% voltage drop was sensed in the first case, against
only 4.17% for case 2, showing the voltage support of the reactive current injection.

5.3. Three-Phase Short Circuit at Bus 3

A three-phase fault at bus 3 (closer to the VSC connection bus), where the fault current
without VSC is 5.642 p.u., was considered. The total short circuit current, the VSC current,
as well as the VSC reference voltage and current components are shown in Table 3.
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Table 3. Results for case 2 (60 MW/40 MVAr), for a fault at bus 3, under active or reactive current priority.

Tool Mode Isc Vd Ivsc Id Iq

PSS®CAPE P 6.220 0.4376 0.7910 0.0087 0.7909 **
rmsVSC P 5.379 0.2208 0.8252 0.7502 0.3438

PSS®CAPE Q 6.166 0.4262 0.8614 * 0.4380 0.7416
rmsVSC Q 6.223 0.4346 0.8252 0.3438 0.7502

(*) violation of the total VSC current limits, (**) violation of the q-current limits.

Results from the rmsVSC-based methodology showed that the VSC reduced the SC
current to 5.379 in P mode, while it increased to 6.223 in mode Q (increased by 10.3%). In
the first case, the active current reached its maximum while in the reactive power mode,
and the reactive current reached the maximum. At bus 8, the fault voltage increased from
0.2208 to 0.4346 under mode Q, showing the voltage support effects of the VSC.

Results from PSS®CAPE were different and showed a change of the operation mode,
which had not yet been considered in the rmsVSC-based methodology. In the active
current priority mode, the active current order was reduced to close to zero because a
fault ride-through (FRT) option was activated using the full converter capacity to inject
only reactive current, even under the active current priority strategy (**). Under reactive
current priority, the maximum current (*) of the generator was not respected in PSS®CAPE,
while the rmsVSC-based methodology reduced the active current component to respect the
maximum current.

6. Final Remarks and Main Conclusions

In this work, a model and a methodology to include voltage source converters (VSCs)
in conventional RMS short-circuit analysis have been presented and discussed. The method-
ology was applied to an example network and the results compared to those obtained
from the commercial software package, PSS®CAPE. It was demonstrated that the proposed
methodology (rmsVSC model) was suitable for evaluating the effective short-circuit cur-
rent contribution of VSC, as well as for deriving other indirect information. It can also
accommodate different control strategies regarding the active/reactive current components.

A short-circuit current, as well as bus voltages calculation, support the design, selec-
tion and parametrization of electrical equipment. The rmsVSC-based methodology can
be used to introduce the new DC/AC interfaced sources in SC analysis related studies,
even with only a basic background of power electronics subjects. With the rmsVSC-based
methodology, contribution (and impacts) to short-circuit currents from VSC can be deter-
mined. In addition, based on the proposed methodology, protection coordination studies,
overcurrent and distance relays parameterization can be performed.
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