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Abstract: The paper proposes a new speed control method to improve control quality and expand the
Permanent Magnet Synchronous Motors speed range. The Permanent Magnet Synchronous Motors
(PMSM) speed range enlarging is based on the newly proposed power control principle between
two voltage sources instead of winding current control as the conventional Field Oriented Control
method. The power management between the inverter and PMSM motor allows the Flux-Weakening
obstacle to be overcome entirely, leading to a significant extension of the motor speed to a constant
power range. Based on motor power control, a new control method is proposed and allows for
efficiently reducing current and torque ripple caused by the imbalance between the power supply of
the inverter and the power required through the desired stator current. The proposed method permits
for not only an enhanced PMSM speed range, but also a robust stability in PMSM speed control. The
simulation results have demonstrated the efficiency and stability of the proposed control method.

Keywords: permanent magnet synchronous motors (PMSM); active power control; reactive power
control; extended speed range; ripple torque reduction; flux-weakening (FW)

1. Introduction

Permanent Magnet Synchronous Motors (PMSM) are increasingly widely used in civil
and industrial applications because of their high efficiency, high power density, low main-
tenance cost, and lower permanent magnet price. The vector control method’s popularity,
including Field Oriented Control (FOC) [1–6] and Direct Torque Control (DTC) [7–10],
stems from its advantages of simplicity in the control structure, ease of operation, reliability,
and high efficiency [11,12].

There are two main parts of the operating speed range of PMSM operation, including
constant torque range and constant power range, as mentioned in Figure 1. The speed
control principle in the constant torque region (in which the PMSM rotor speed is below
the rated speed) is suitable for the vector control method when the operating voltage is
lower than the inverter output voltage limit. When the PMSM speed exceeds the rated
speed, the Back Electromotive Force (B-EMF) generated in the winding, caused by a
permanent magnet flux on the rotating rotor in the lumen of the stator windings, can
increase beyond the limit of the voltage of the inverters. For motors that do not use
permanent magnets, such as induction motors, reducing the current rotor windings can
reduce the BEMF voltage [13–15]. Unfortunately, this way is not possible with rotor motors
that use permanent magnets. Due to the limit of output voltage, the inverter cannot increase
the voltage to stabilize the stator current control.
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The input DC voltage is proportional to the maximum amplitude of the output voltage
of the inverter. Therefore, in some studies, the expansion of the motor operating speed is
achieved by increasing the inverter input voltage [16,17]. However, the step-up voltage
method encounters the main limitation of expanding the power drive room for DC–DC
voltage converter circuits, and only changes in a narrow speed range. In addition, inverters
are designed to operate within a specific voltage limit. Increasing DC voltage to increase
motor speed increases inverter costs in applications requiring a high-speed operation.

To ensure that the active power is transmitted to the motor, the reactive power is
drawn out of the inverter to ensure that a low voltage amplitude source can push power
into a higher voltage source. Then, the d-axis current increases the negative amplitude
during entering the FW region, which manifests reactive power inflowing from the PMSM
to the inverter.

On the other hand, during operation in the FW zone, the inverter voltage cannot
exceed the inverter output voltage limit. However, controlling the stator current using
current controllers will cause the estimated controller output voltage to exceed a given
boundary. This trouble leads to an increased stator current ripple, resulting in increasing
electromagnetic torque ripple and reducing the efficiency in reference velocity tracking.

Several improvements have been used in PMSM speed control in FW to improve
control efficiency and reduce current ripple during voltage limit violation in the FW zone.
These methods include the Auto-tuning method [18–20], Fuzzy Logic Speed Control [21–25],
Improved UDE-Based Flux-Weakening Control [26], and Single Current Regulator Con-
trol [27–30].

When entering the FW zone, the d-axis current is adjusted to increase negatively based
on the PI controller, where input is the deviation between the maximum voltage amplitude
supplied by the inverter and the voltage at the current controller output. As the voltage
fluctuation is more extensive in the FW region, the d-axis current ripple also increases. The
fuzzy logic speed control method reduces the d-axis current ripple desired by replacing a
PI controller with a Fuzzy PI controller. The Fuzzy PI current controller’s output voltage is
less violated than the PI current controller, leading to a reduced ripple of the d-axis current
component. However, this violation’s nature persists and adversely affects the control
quality when the current controller output voltage estimated value still exceeds the limit
voltage value of the inverter.

Single Current Regulator Control approach allows elimination of the output voltage
violation when the voltage amplitude is kept at the rated value, as shown in [29]. However,
the voltage angle change is based on a current error, without considering the inverter
power balance and the load power caused by the wave. Results are demonstrated in [29],
on the proposed solutions of Single Current Regulator Control method proposed in [27,31].
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Research [29] can only minimize power imbalance by limiting voltage angle variation, but
does not wholly address the power imbalance’s harmful effects.

Another creative direction in minimizing current and torque ripple in the FW region
aims to optimize the current controller parameters. The PSO algorithm is used in [32] to
find suitable values when working conditions were changed. A Fuzzy-PI controller is used
instead of the PI controller in the more refined determination of the d-axis reference current
when the motor operates in the FW region. These innovative methods minimize output
torque ripple, while reducing the reference current’s effect on the control voltage. However,
these methods increase the complexity, and require an amount of computation in the speed
control process of PMSM.

The novelty and contributions of this paper are tri-fold. Firstly, this paper proposes the
new PMSM speed control based on balancing the output inverter energy and the motor’s
load energy. The proposed approach differs from the known solution because it does not use
rated speed to switch from a constant torque region to an FW region. A change in reactive
power leads to a change in rotor speed. Second, the energy transformation to the machine
is done by sending energy between two voltage sources, the inverter output voltage and
the BEMF of the motor. Eventually, a detailed analysis of the power transmission principle
between the two voltage sources is discussed in the following section.

Over the entire operating speed range of the PMSM, the increase (or decrease) of
the rotor speed is accomplished by increasing (or decreasing) the active power of the
inverter, which enables the roaming to operate without the need to switch different control
methods between the two operating zones. Power control will minimize current and torque
ripple, and the power supplied to the PMSM will also better monitored. This advantage
is especially significant in mobile systems with batteries. The new control method allows
efficient reduction of the electric current and torque ripples in the motor through direct
control of the inverter output voltage.

The remainder of this paper is structured as such: Part 2 presents the PMSM math
model and the principle of transferring power from the inverter to the PMSM; Part 3
introduces the principle of controlling a PMSM motor’s speed based on the active power
control; Part 4 shows the results obtained after the simulation modeling for the proposed
algorithm with the Direct Current Calculation and Vector Current Control algorithms used
in the comparison; Part 5 includes the conclusion.

2. Speed Control of PMSM Drive Systems
2.1. PMSM Model and Its Limitations

According to [33], Equations (1) and (2) show the relationship between stator voltage,
stator current, and rotor speed. The dq coordinate system is performed through the Park
transformation, converting from the abc three-dimensional space to the dq two-dimensional
space with almost constant values.

vd= RS × id+Ld ×
id
dt
− Pp×ωm × Lq × iq (1)

vq = RSiq + Lq
iq
dt

+ Pp.ωm.Ld.id + Pp.ωm.λpm (2)

where vd, vq, id and iq are the components voltage and current on the dq-axis, respectively.
Ld and Lq are the stator coil inductance components in the dq coordinate system, λpm is
the flux linkage of the permanent magnet on the rotor, RS is the coil resistance, ω is the
rotor speed, and Pp is the number of pole pairs.

When analyzing the PMSM in the stationary state, the current variation is zero; the
voltage Equations are rewritten in (3) and (4).

vd = RS × id − Pp×ωm × Lq × iq (3)

vq = RS × iq + Pp×ωm × Ld × id + Pp×ωm × λpm (4)
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Electromagnetic torque is determined by (5)

Te =
3
2
× Pp

(
λpm × iq +

(
Ld − Lq

)
× iq × id

)
(5)

According to Newton’s Second Law for Rotation, the rotational acceleration of the
rotor is determined by (6).

dωm

dt
=

1
J
(Te − TL − Fωm) (6)

where:

J: The inertia of motor and load combined referred to the motor shaft.
F: The combined viscous friction coefficient of rotor and load.
θ: Rotor angular position.
TL: Shaft load torque.
θm: Angular velocity of the rotor (mechanical speed)

During operation, the stator voltage and current are limited below their rated values.
The voltage limit is determined based on the motor insulation capacity and the maximum
voltage amplitude generated by the inverter, determined by the dc bus voltage. Current
limits are usually related to the motor heat dissipation, and the manufacturer provides its
value. The Equations described the limits of voltage and current are expressed through (7)
and (8), respectively:

v2
d + v2

q = v2
s ≤ v2

s,max (7)

i2d + i2q = i2s ≤ i2s,max (8)

where vs represents the vector amplitude of the stator voltage, vs,max is the maximum
output voltage of the inverter, is is the vector amplitude of the stator current, and is,max
denotes the maximum output current of the inverter.

When the PMSM motor speed exceeds the rated speed, it is possible to ignore the
voltage drop on the stator coil since they are insignificant in comparison to the back EMF
on the stator winding. On the other hand, in the steady-state, the flux linkage is considered
constant, resulting in the derivative of the current to zero (did/dt = 0; diq/dt = 0).
Therefore, the stator voltage Equations in (1) and (2) are rewritten as follows:

vd = −ωeLqiq (9)

vq = ωeLdid +ωeλpm (10)

Substitute (9) and (10) into (7), the stator voltage limit in the constant power region is
described by (11). (

Lqiq
)2

+
(
Ldid + λpm

)2 ≤
v2

s,max

ω2
e

(11)

The voltage and current restriction relationships of the IPMSM in the whole
region are shown in Figure 2, which indicates both of the voltage-limiting circle and
current-limiting circle.
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2.2. Principle of Transferring Power from the Inverter to the Motor

Consider the static state of the PMSM working with speed ω1 and electromag-
netic torque Te1. the electromagnetic torque must balance with the load torque (friction
torque included) to keep the speed constant. At this time, the motor provides the power
P1 (P1 =ω1 × Te1). Ignore the energy conversion losses and the stator winding losses, and
the PMSM power consumption is equal to the inverter’s electrical power.

The inverter needs to provide a power P2 (P2 =ω2 × Te2) in converting this operating
point to a new one with velocity ω2 and electromagnetic torque Te2. Thus, the working
condition change is to change the power supplied to the motor from the inverter.

Changing the rotor speed cannot be instantaneous but takes a short time with a specific
route. During this process, the inverter’s power can change with the principle that if the
power increases, the speed will increase, and vice versa.

When the rotor rotates once, the permanent magnet’s magnetic field will sweep
Pp times the number of coils on it. Thus, the BEMF generated when the permanent
magnet’s magnetic field turns with the speedωm induced on the stator coil is determined
by Faraday’s induction law (12).

E = Pp×ωm × λpm (12)

With the synchronous motor in the stationary state, the magnetic field speed equals
the rotor speed, ωe = ωm × Pp. The Equation (12) is rewritten according to the stator
magnetic field rate, as shown in (8).

E = ωe × λpm (13)

When two alternating current sources have the same rotating speed of the magnetic
field, based on recommendations in [33], Figure 3 represented the equivalent circuit of
these two voltage sources.
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According to Figure 1, the transparent power transmitted to the BEMF terminal is
determined according to (14) with the current determined according to (15):

S = 3× E× IS (14)

IS =
|US|∠δ− |E|∠00

|ZS|∠β
(15)

From Equations (14) and (15), we get

S = 3
|US| × |E|
|ZS|

∠(β− δ)− 3
|E|2

|ZS|
∠β (16)

The active and reactive power is derived from (16) and determined according to
(17) and (18) respectively.

P = 3
|US| × |E|
|ZS|

cos(β− δ)− 3
|E|2

|ZS|
cosβ (17)

Q = 3
|US| × |E|
|ZS|

sin(β− δ)− 3
|E|2

|ZS|
sinβ (18)

If resistance is neglected, then Zs = XL andβ = 90
◦
. At this time, Equations (17) and (18)

are rewritten as (19) and (20), respectively, as follows.

P = 3
|US| × |E|

XL
sin δ (19)

Q = 3
|E|
XL

(|US| cos δ− |E|) (20)

The active power P transmitted between the two voltage sources is determined by
the Equation (21) where δ is an angular deviation between the phase of inverters voltage
vector and phase of back electromotive force vector in the stator winding, as shown in
Figure 4. In order to stabilize PMSM operations under electric motor drive mode, δ is kept
within (0; π/2).

P = 3
|US| × |E| × sin δ

XL
(21)
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The two voltage sources’ impedance value is kept constant in the stationary state, with
a constant rotor velocity according to (23), with a new inductance determined according
to (10). The amplitude of BEMF is determined based on (13).

L = Ld = Lq (22)

(XL = ωe × L) (23)

Combined with (13) and (23), the power applied to the motor from the inverter is
determined according to (24).

P = 3
|US| × λpm × sin δ

L
(24)

During operation, L and λpm have slight changes due to magnetic saturation and
magnet temperature. However, in comparison with US and δ, this change is not significant
and can be ignored. Therefore, we can consider that L and λpm are constants in the control
process. We can calculate transmitted power based on (25) where constant k = 3 × λpm/L.

P = k× |US| × sin δ (25)

During operation, the inverter provides active power P to the motor. Reactive power
Q does not participate in the transfer of energy from the stator to the rotor, but only serves
as the power supply for the magnetization of the magnetic circuits. The reactive power Q
only plays a specific role in the switching support, so the goal is to minimize the reactive
power Q supplied to the BEMF source.

The goal in motor control is zero reactive power QR at the BEMF end. Thus, the
reactive power Q at the stator head only compensates for the magnetic circuit’s loss. The
reactive power Q obtained at the BEMF input is determined according to (20).

For Q = 0, then US must satisfy (26).

US =
E

cos δ
(26)

When considering the internal resistance of the stator winding, the voltage drop across
the winding is determined as follows:

∆U = IsZ =
(
Id + jIq

)
(RS + jXL) =

(
IdRS − IqXL

)
+ j

(
IqRS + IdXL

)
(27)

Due to
(
IqRS + IdXL

)
�

(
IdRS − IqXL

)
, it leads to the voltage drop magnitude which

is calculated by (28).
|∆U| '

(
IqRS + IdXL

)
(28)

Combined (26) and (28), the inverter voltage amplitude is calculated according to (29).

|US| =
∣∣∣∣ E
cos δ

∣∣∣∣+ ∣∣(IqRS + IdωeL
)∣∣ (29)

Thus, the active power P to change the working point from the point with power P1
to the operation point with power P2 is determined by adjusting the inverter voltage range.
The angle δ is calibrated to the new working point, so that the reactive power supplied to
the BEMF is zero.

3. The Principle of Controlling the Speed of a PMSM Motor Is Based on the Power
Control PQ

The control diagram of the PMSM motor is shown in Figure 5 below, based on the
control principle analyzed above.
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• The active power is adjusted through the speed PI controller (PI_S) from the actual
speed difference compared to the reference speed.

• The power PI controller is used to change the inverter voltage amplitude, to change
the power supplied to the inverter according to the reference power,

• To ensure that reactive power Q is not fed to the BEMF source, the inverter voltage
must be kept at a value according to (18) and must not exceed the inverter limit value
to optimize motor operation. Inverter voltage must be kept at a determined value;
some reactive power must be added (or drawn) from the inverters. The determination
of reactive power Q is done via a voltage controller with the input of the error between
the reference voltage and the actual voltage at the inverter output.

• The reactive power PI controller corrects the voltage angle δ between U and E, respec-
tively, to change the reactive power to the reference value. The BEMF vector angle
is always perpendicular to the direction of the d-axis current component, as shown
in Figure 4; the voltage across the inverters’ coordinate system dq is determined
according to (19) and (20).

vd = −|US| sin(δ) (30)

vq = |US| cos(δ) (31)

4. Simulation Validation
4.1. Simulation IPMSM Speed Control Model

The PMSM motor speed control model is built on the simulation software Mat-
lab/Simulink used to evaluate the proposed control efficiency. Table 1 shows the PMSM
motors’ parameters used in the simulation; these parameters belong to the EMJ-04APB22
motor, which Wang et al. used in their study [34]. The Texas Instruments Company rec-
ommends the use of the EMJ-04APB22 motor in the quality assessment of controllers. The
model is built with three main blocks, the PMSM motor block, the control unit, and the
inverter block Figure 6 shows the simulation PMSM model. The Vector Current Control
(VCC) method [35] and the Direct Current Calculation (DCC) method [36] were used to
evaluate the proposed control method’s effectiveness. The simulation results under differ-
ent operating conditions are satisfactorily introduced in detail in the following sections.
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Table 1. PMSM parameters.

Parameter Symbol Value Unit

Rated power 400 W
Rated phase current Imax 2.7 Arms

Rated speed ωrate 3000 RPM
Rated torque Trate 1.27 N.m

Number of poles
pairs P 4

Stator resistance R 2.35 Ω
Stator inductance L = Ld= Lq 8.5 mH

Flux linkage λpm 0.0615 Wb
Inertia J 167 × 10−6 Kg.m2

Viscous friction F 106.9 × 10−6 N.m.s/rad
DC Bus Voltage Vdc 200 V
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4.2. Simulation Results

The PMSM motor is used to test the proposed method’s control quality in constant
torque and constant power zones at various speeds. The speed variation between two
operating zones, as well as within the same operating region of PMSM, is used to evaluate
the effect of extending the operating speed range and minimizing the fluctuations in
electric torque, current, and associated flux of PMSM in the FW region of the proposed
method. Figure 7 shows the speed control results. The obtained results show that the
control methods can adhere well to the reference speed.

The under-rated speed enlargement results show that DCC and VCC control methods
got lower overshoot than the proposed method. The reason for this is that when controlling
the constant torque region, it is much more efficient to change the speed by changing the
current when having to indirectly control the speed by holding power inject to the motor.
Although the response is slower, the proposed method is more stable, with the speed’s
ripple less than the other DCC and VCC ways.

The speed enlargement results in the FW region show that the two DCC and VCC
methods also have a lower overshoot than the proposed method. However, these two
methods’ speed ripple is much higher, and thus the quality of speed control is also signif-
icantly reduced. The reason is that when entering the voltage limit area, the method of
current management and voltage correction through the current controller will no longer
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be as effective as in the constant torque region. Then, the proposed method shows the
advantages when the two control zones’ speed control quality is the same and stable.
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Figure 8a shows the results of the electromagnetic moment of comparative control
methods. The simulation results show that all three approaches give a small ripple in
the constant moment region. Electromagnetic torque responds to changes in the load
torque and the need for the engine’s acceleration or deceleration speed. Figure 8b shows
electromagnetic moment results at a constant power range. The electromagnetic moment
oscillation of VCC, DCC and the proposed approach is (0.35–0.6) N.m, (0.38–0.5) N.m,
(0.42–0.48) N.m, respectively. The result of the flux linkage ripple percent is 26.3%, 13.64%,
and 6.67%, respectively. This means that the VCC and DCC methods’ electromagnetic
torque has a more significant ripple than the proposed method while entering the FW
region. The results demonstrate the proposed method’s ability to minimize the electro-
magnetic torque ripple. The task of reducing electromagnetic surges plays a crucial role in
improving not only the control quality but also the electric drive system’s stability.

The stator winding power loss is determined based on the stator current and stator
resistance, as shown in (21). Figure 9 shows the power loss simulation results. The results
show that the proposed control method has the same effect of minimizing losses as the other
comparative methods. These results show that the proposed control method effectively
reduces power loss as the current-based control method, similar to the FOC control method.

Ploss = I2
s .Rs (32)

Figure 10a shows the flux linkage results. The flux linkage in the control method is
greater than that of the flux linkage of the permanent magnet when operating in the con-
stant torque region. The flux linkage decreases when entering the constant power region.
Figure 10b shows the flux linkage results at a constant power range. It is important to note
that flux linkage oscillation of VCC, DCC and the proposed approach is (0.038–0.045) Wb,
(0.04–0.043) Wb, (0.04–0.041) Wb, respectively. This leads to the flux linkage ripple percent-
age, at 18%, 7.5%, and 2.5%, respectively. Hence, the VCC and DCC methods’ flux linkage
value has a more significant ripple than the proposed method.
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Figure 10. Comparative Total Flux linkage results of PMSM in (a) full simulation time range and (b) interval time of
(2.8–3.7 s).

Figure 11a shows the resulting stator currents controlled by different methods. The
similarity of the currents within the constant moment range can be seen immediately.
However, when entering the FW region, the quality of the stator current has a big difference.
Zooming in on these results in Figure 11b from 3.2 s to 3.5 s shows the difference between
the comparative methods. The current fluctuation of the VCC method is the most significant
(2.4–3.3) A, with a fluctuation rate of 15.8%. On the contrary the current instability of the
proposed method is the smallest (2.6–2.8) A, with a fluctuation rate of 3.7%. Hence, a
current ripple of the proposed method is significantly smaller than two other comparative
approaches in the FW mode.
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Figure 12 shows the voltage simulation results on the stator winding. The recorded
results show that the proposed method’s voltage is more stable than the DCC and VCC
methods when operating in the FW region. In the area of the constant moment, the ripple
of the current and voltage amplitude is equivalent. Moreover, it also shows the superiority
of the proposed method in expanding the range of PMSM operating speeds in comparison
with the DCC and VCC control methods.
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5. Conclusions

The paper proposes an advanced method to expand the PMSM speed range by
controlling the inverter power instead of the conventional current control approach. Speed
control based on power balance allows flexible control, no longer considering higher or
lower rotor speed conditions along with switch control strategies. After comprehensive
simulations, it is possible to state that the proposed control method is capable of stable
operation from 300 to 5500 rpm, regardless of changing the PMSM speed control method
between two separate working stages: the constant power region and constant torque
region. By controlling the power injected into the PMSM, the proposed control method
allows for reasonable control of the storage systems’ discharge power, necessary in mobile
drive applications. The proposed control method contains the same number of control
loops, and does not need to provide any additional data compared to the two comparative
control methods. In comparing simulation results with the two traditional DCC and VCC
control methods, the proposed control method has proven to improve not only control
quality and stability, but also to minimize electromagnetic torque and current ripples. The
fact is that, during PMSM operation, the algorithm uses PMSM parameters to calculate
the voltage to be supplied by the inverter, which leads to the requirement of accurately
determining PMSM parameters. These limitations lead to the subsequent development
direction of the research, to further improve the control efficiency of the proposed PMSM
speed control algorithm.
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Nomenclature
vd (vq) Stator voltage in d–q coordinate system
id (iq) Stator current in d–q coordinate system
Ld (Lq) stator inductance in dq coordinate system
λpm Magnet flux linkage
RS Stator resistance
Ω rotor speed
ωe magnetic field speed
Pp number of pole pairs
Te Electromagnetic torque
J The inertia of motor and load combined reduced to the motor shaft.
F The combined viscous friction coefficient of rotor and load.
θ Rotor angular position
TL Shaft load torque
θm Angular velocity of the rotor (mechanical speed)
P1, P2 Power at the inverter output
E back electromotive force in the stator winding
S transparent power transmitted to the back electromotive force terminal
P Active power transmitted to the back electromotive force terminal
Q Reactive power transmitted to the back electromotive force terminal
|Us| Voltage amplitude at the inverter output
ϕus the phase of inverters voltage vector
ϕE the phase of back electromotive force in the stator winding
δ angular deviation between ϕus and ϕE
β Phase of winding impedance
XL Winding impedance
L winding inductance
∆U voltage drop across the winding
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