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Abstract: In an electrical safe microenvironment, all kinds of electrical appliances can be operated
safely to ensure the safety of life and property. The significance of safety hazard factors detection
is to detect safety hazards in advance, to remind the administrators to exclude risk, to reduce
the unnecessary loss, and to ensure that the electrical operation is healthy and orderly before the
occurrence of accidents. In this paper, batteries are selected as the primary research subject of
safety detection because batteries are used more and more in the Internet of Things (IOT), and
they often cause fire in the process of discharging and charging. The existing algorithms need to
be embedded into the specialized sensor for each important electrical appliance. However, they
are limited by the actual deployment, so it is extremely difficult to spread widely. According to
the opinions above, an improved load disaggregation algorithm based on dictionary learning and
sparse coding with optimal dictionary matrix period is proposed to detect potential safety hazards of
battery loads. For safety-related electrical applications, doing so can increase interpretability. Through
experiments, we test this algorithm on the REDD dataset, and compare it with the baseline algorithms
(combinatorial optimization, factorial hidden Markov model, basic discriminative dictionary sparse
coding algorithm) to achieve a degree of trust. The Mean Absolute Error (MAE) value is 8.26, which
drops by 70%. The Root Mean Square Error (RMSE) value is 97.75, which is also better than those
baseline algorithms.

Keywords: Internet of Things; power supply safety; safety hazard factors detection

1. Introduction

All the time, electrical fire accidents occur frequently, causing many economic property
losses and casualties [1]. The statistical report on fire losses and casualties in the United
States from 1980 to 2016 shows that the total number of fire hazards has decreased by half,
but the losses of property and human have not significantly reduced [2]. The key reason to
electrical safety problems is that there are not enough monitoring datasets about unsafe
electrical appliances and interpretable monitoring algorithms [3,4]. Moreover, there are
two ways to detect safety hazard factors, direct monitoring and nonintrusive load disaggre-
gation [5,6]. Although the power consumption of individual appliances can be directly and
accurately monitored, direct monitoring of battery load is difficult to deploy in practice due
to hardware budget constraints and installation space constraints. With widespread use of
smart meters and charging/recharging appliances, the safety hazard factors issue regarding
electrical appliances is still an intractable challenging problem. The existing methods can
be categorized as several main types of interpretable nonintrusive load disaggregation
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algorithms, including combinatorial optimization (CO) [7], factorial hidden Markov model
(FHMM) [8], and dictionary learning sparse coding (SC) [4] algorithms.

The combinatorial optimization algorithms in load disaggregation of safety detection
problem are like the famous knapsack problem and subset summation problem. These
algorithms are essential to find the optimal combination from a finite set of appliances for
power value. The goal of these algorithms is to assign power value to every appliance in
order to minimize the error between the sum of the estimated value and the real aggregated
data. The combinational optimization algorithms mentioned above have been used as
the benchmark for these algorithms [4,7,9]. The combinatorial optimization algorithm is
used to express the electric appliance model as switching state and finite multi-state [10].
Although the combinatorial optimization non-intrusive load disaggregation algorithm can
explain the electrical load mathematically, it is still not suitable in battery safety scenarios
because of low accuracy for lack of time correlation.

With the deepening of the research, although the continuity principle of the close time
is considered, the problem of the state transition probability is not considered [11–13]. The
factorial hidden Markov algorithms model each electrical appliance as a single Markov
chain. The states of multiple electrical appliances form multiple Markov chains and evolve
simultaneously, which are not only constrained by the aggregate power, but also influenced
by the transition probability. The factorial hidden Markov model algorithm will use the
clustering algorithm to cluster more discrete electrical states into several basic states, thus
there is less representation of the state of each appliance [8,14–16]. The models from
multiple appliances are combined to create a superstate hidden Markov model (SSHMM),
which can represent states of all the appliances. The aggregated power is passed through
the SSHMM, which returns the states of every appliance included in this aggregated power.
When the number of appliances is smaller, these factorial hidden Markov models can be
solved exactly (FHMMExact) [17]. The factorial hidden Markov algorithms have some
explanatory abilities, but they have low precision because it expresses less state of each
electrical appliance [18], so it is not suitable for battery safety hazard detection as well.

The current load disaggregation algorithms only focus on the consumed load, rarely
involving the supplied load [19]. The existing load disaggregation algorithms [20] are not
suitable for the expression of battery safety hazard factors. Recent studies on interpretable
load disaggregation have been dominated by dictionary learning algorithms [21,22], such
as energy disaggregation via discriminative sparse coding (DDSC) [4]. However, the
dictionary matrix period of these algorithms is not optimal, so it leads to lower accuracy. At
the same time, the dictionary learning and sparse coding can be not applied directly to our
scenarios because of nonnegative matrix properties in the dictionary learning algorithm.
Inspired by these algorithms, for battery safety hidden danger scenarios, this paper needs
to build a new topology expression diagram for battery loads not mentioned before, and to
build an improved detection algorithm with higher precision.

The contributions of this paper are as follows:

• For the battery load safety hazard factors’ detection scenarios, we propose a new
topological representation diagram in the load disaggregation domain firstly. In order
to tackle the issue of nonnegative matrix properties, we design the shift strategy of
battery load.

• The optimal dictionary matrix period algorithm is constructed for improved the
accuracy of the improved dictionary learning and sparse coding. In addition, adding
the aggregation constraint further improves the algorithm.

• Based on the above two points, we propose a new safety hazard factors detection
algorithm for battery load.

• Compared with three baseline algorithms including CO, FHMMExact, and DDSC, our
algorithm Bats is more accurate than them on the Reference Energy Disaggregation
Dataset (REDD) [23].

The remainder of this paper is organized as follows. In Section 2, we describe the basic
model of the nonintrusive load disaggregation algorithm, the basic process of dictionary
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learning and sparse coding. Based on the above basic model, we propose an algorithm
about how to further build the model for dictionary learning and sparse coding in the
scene of nonintrusive load disaggregation, and we finally make some improvements
according to the characteristics of battery safety hazard factors and the requirement for
accuracy. Finally, we describe the modeling process for the problem. In Section 3, we
describe the establishment and analysis of the model, deducing the detailed process of the
algorithm. Section 4 is the experimental part which shows the simulation and analysis
results. Section 6 is the concise summary of this paper, and the possible research directions
in the future are prospected.

2. Problem Modeling
2.1. Preliminary

In the electrical microenvironment, the topologically logic relationship among the
electrical appliances is shown in Figure 1. It is assumed that the power consumption is
mathematically positive, and the power production is mathematically negative. The mathe-
matically positive load includes the TV set, washing machine, microwave oven, refrigerator,
and the energy storage battery in charging time slot, etc., while the negative load refers to
the energy storage battery in the discharge that provides the power consumption time slot.
In the case of the whole time slot, the energy storage battery shows partially positive and
negative power consumption curve with alternating operation mode. The other commonly
used electrical appliances continue to maintain the original operation mode of power
consumption. For the convenience of reading, most of the important mathematical symbols
are adopted in this paper, and the corresponding description is listed in Table 1.

Figure 1. New topological logic diagram of electrical microenvironment with potential safety hazards.

In this way, we can define the aggregate power consumption on the meter or the
plug board as y(t), t ∈ (1, 2, . . . T), where T is the length of the entire time slot. Suppose
that there are N electrical appliances, the ith electrical equipment in power consumption
expression of time slot t is xi(t), t ∈ (1, 2, . . . T), i ∈ (1, 2, . . . N); therefore,

y(t) = x1(t) +
N

∑
k=2

xi(t) + ε(t) (1)

where x1(t) represents the energy storage battery with the mathematically positive or
negative power consumption, xi(t), t ∈ (2, . . . N) represents other kinds of commonly



Energies 2021, 14, 3547 4 of 18

used electrical appliances, and ε(t) represents the random noise of system operation
and measurement.

Table 1. Academic terms covered in this paper.

Symbol The Meaning of the Symbol

Y Aggregation power
Xi, i ∈ (1, 2, . . . , N) Power of ith appliance
y(t), t ∈ (1, 2, . . . , T) Aggregation power in t
xi(t) Actual power of ith appliance in t
ε(t) Power noise in t
ŷ(t), t ∈ (1, 2, . . . , T) Estimated aggregation power in t
x̂i(t), t ∈ (2, . . . , N) Estimated power of ith appliance in t
t ∈ (1, 2, . . . , T) Time slot
i ∈ (1, 2, . . . , N) Index of all appliances
j ∈ (1, 2, . . . , M) The atom numbers of dictionary
B Fundamental matrix of Fourier transform
A Coefficient matrix of Fourier transform
D Dictionary representation of aggregate
Di, i ∈ (1, 2, . . . , N) Dictionary representation of ith appliance
D1:k {1 : k} Appliance dict concatenation

d(j)
i

The subvector of dictionary
C Aggregation sparse coefficient
Ĉ Estimated aggregation sparse coefficient
C∗ Optimal aggregation sparse coefficient
Ci, i ∈ (1, 2, . . . , N) ith appliance sparse coefficient
C1:k {1 : k} Appliance sparse coefficient
Ĉ Estimated aggregation sparse coefficient

Due to practical constraints, we cannot provide all electrical appliances, charging and
discharging appliances with some safe, expensive and large power sensors, or configure
the corresponding signal processing and data transmission module. Generally speaking,
only a single power sensor device is deployed at the entrance of the electrical microen-
vironment, such as a building, a room, or a station. In the case of a few power sensor
points’ deployment, we can only measure and record the aggregate power data expressed
as yt, t ∈ (1, 2, . . . , T), but we often hope to get the power consumption of these electrical
appliances, which is inferred and computed by signal processing and data mining methods.
Inspired by the theory of pattern recognition and numerical estimation, it is assumed that
the electrical appliances estimated value x̂i(t), t ∈ (2, . . . , N). In addition, then add the
estimated individual electrical appliance power consumption values to get a new aggregate
estimated value ŷ(t), which is compared with the original aggregate power consumption
data yt. The goal of estimation is to make the error between the estimated aggregate value
and the actual aggregate value as small as possible, which can be formally expressed as:

min||y(t)−
N

∑
i=1

x̂i(t)||2 (2)

There are many specific modeling and solving methods for general expression (2).
Inspired by the expression of Fourier series, any waveform theory can be expressed as the
combination of fundamental waves. For load disaggregation modeling methods about the
safety hazard factors detection, in order to obtain explicable results, we use the following
form to express:

min||y(t)− BA||2 (3)

where y(t) is the signal to be decomposed, B is the Fourier basis functions, and A is
the coefficients of the basis functions. However, on the whole, the actual deployment of
the electrical IOT safety monitoring systems is affected by some factors, such as a lower
hardware budget of the sensor, higher computation cost of signal processing and data
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analysis, more storage and communication consumption of the back end system, and a
bigger amount of connected internet data. Because such systems generally do not acquire
high-frequency load data information in real time, it is unrealistic to directly use the Fourier
transform method to implement high-frequency signal processing. In this case, the selection
of similar and alternative solutions has become one of the basic modelings and solutions.

In this paper, the dictionary learning method is adopted to learn the basis matrix
of each electrical appliance from the time-series data sampled at low frequency, and the
activation matrix corresponding to the basis matrix is similar to the basis function and
coefficient in the Fourier transform method. In Equation (4), D represents the basis matrix,
and C represents the sparse coefficient matrix. The error between the expression of the
estimated aggregate obtained by the combination of D and C can be measured by the
Euclidean distance. Dictionary learning and sparse coding theory show that C should be
as sparse as possible. While keeping the error small, sparse means to make as many zero
items in the sparse coefficient matrix as possible,

minC||y(t)− DC||22 + λ||C||1 (4)

where ||y(t)− DC||2 is Euclidean distance expression, and λ||C||1 is the penalty term. `1
norm or `2 norm regularization helps reduce overfitting and implements sparse solution
problems. `1 norm regularization uses proximal gradient descent. Tibshirani et al. [24]
described the reason why the `1 norm is chosen for the penalty item. The `1 norm represents
a rectangle in the coordinate system of the solution, intersecting a circle constructed by
the quadratic function of the objective function, usually on the coordinate axis. In the
coordinate system of the solution, `2 norm presents a circle with the origin of coordinates
as the center of the circle, and intersects the circle constructed by the quadratic function of
the objective function. Generally, it will not intersect on the coordinate axis. It can be seen
from the properties of the solution of activation matrix or sparse representation that the
sparsity of the solution of `1 norm type is better than that of `2 norm. In this way, we can
construct the objective function of sparse coding for dictionary learning of `1 norm type,
and finally solve the safety hazard factors detection problem to satisfy the requirements of
the system.

2.2. Determination of Objective Function

In this section, Equation (4) is further transformed into an objective function with
coefficients. According to the derivation process of Taylor’s Equation, the transformation
and derivation of L-Lipschitz condition realization problem are figured out in [25].

Assuming that ∇ represents a differential operator and the objective function is f (z),
the problem is constructed as the following objective function:

min
z

f (z) + λ||z||1 (5)

where z is the independent variable. In addition, find the smallest z value by minimizing
the objective function f (z). If the objective function f (z) is differentiable, and ∇ f meets
the L-Lipschitz condition, where L > 0 is constant, the gradient inequality is formed
as follows: ∣∣∇ f

(
z′
)
−∇ f (z)

∣∣2
2 ≤ L

∥∥z′ − z
∥∥2

2

(
∀z, z′

)
(6)

The second-order Taylor expansion of the objective function f (z) is carried out near
zk, and its expression is approximately as follows:

f̂ (z) ' f (zk) +∇ f (zk)(z− zk) +
L
2
‖z− zk‖2

2

=
L
2

∥∥∥∥z−
(

zk −
1
L
∇ f (zk)

)∥∥∥∥2

2
+ CST

(7)
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where f̂ (z) is the estimated value of the object function, zk is the specific value of z, L is
constant coefficient value, and CST is constant. The minimum value will be obtained at
zk+1:

zk+1 = zk −
1
L
∇ f (zk) (8)

Through the gradient descent method, f (z) can be minimized by iterative computa-
tions. With each step of gradient descent iteration, the quadratic function f̂ (z) is minimized
to get

zk+1 = arg min
z

L
2

∥∥∥∥z−
(

zk −
1
L
∇ f (zk)

)∥∥∥∥2

2
+ λ‖z‖1 (9)

where L can be simplified as constant value 1.

3. Model Solution and Algorithm Analysis

This section includes the detailed derivation process of the optimization objective
function. Firstly, the dictionary learning algorithm of single appliance explains the dic-
tionary belonging to every appliance. In addition, the load disaggregation error function
states the iteration optimization methods. Then, the optimal dictionary matrix period
algorithm can find one of the maximum periods for the improved dictionary learning
sparse coding algorithm.

3.1. The Optimization Objective

Based on the input data Xi, the basis matrix Di and the activate matrix Ci, we can
build the minimization objective function as follows:

P1 : min
Di≥0,Ci≥0

1
2
‖Xi − DiCi‖2

2 + λ‖Ci‖1, i = 1, . . . , N

s.t.
∥∥∥c(j)

i

∥∥∥
2
≤ 1, j = 1, . . . , M

T

∑
t=1

Xi(t) ≤ consti

(10)

where the coefficient value 1
2 is the coefficient of second derivative term of the Taylor series

expansion Equation (7), consti is the constraint value of the ith appliance, i.e., the maximum
power value. In this way, when the objective function is doing gradient descending, by
adjusting the regularization coefficient λ, the relationship between sparse coding error
and sparsity of sparse matrix Ci is balanced. In addition, the sparse expression obtained
finally meets the sparse condition. At the same time, we add the coefficient of sparse
matrix normalized constraints

∥∥∥c(j)
i

∥∥∥
2
≤ 1, j = 1, . . . , M, in order to balance the sub-

dictionary of relations among the weights of all atoms. The second constraint condition
is the load disaggregation value finally solved, which needs to satisfy a condition. This
condition is that each electrical appliance has a threshold value of cumulative sum of power
consumption, and the whole operation process cannot exceed the threshold value.

From Equation (10), we can see that the objective function to be optimized includes
two optimization variables: Di, which is the dictionary basis matrix of the ith electrical
appliances, and Ci which is the corresponding sparse expression. According to the descrip-
tion of the literature in [26], the natural solution to the problem is to fix a variable and solve
another variable. At this time, the convex optimization theory can be used to obtain the
corresponding solution through the derivation.

The values Di and Ci can be solved by the above alternative optimization method;
then, they they are used to construct the dictionary of [1 : k] electrical appliances by means
of matrix concatenation. The dictionary construction of all electrical appliances is formed
as follows, and its formal expression is as follows:
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D̂1:k = arg min
D1:k≥0

‖Y−D1:kC1:k‖2
2 + λ‖C1:k‖1

= arg min
D1:k≥0

F(Y, D1:k, C1:k)
(11)

Assuming the fixed dictionary D, the estimated sparse code Ĉ can be calculated by
arg minC1:k≥0 F(Y, D1:k, C1:k). In Equation (11), F(Y, D1:k, C1:k) is equivalent to
‖Y−D1:kC1:k‖2

2 + λ‖C1:k‖1. After calculating the estimated sparse code Ĉ, the estimated
power value of the ith electrical appliance can be obtained:

X̂i = DiĈi (12)

In this way, the problem P1 is transformed into the problem P2, and the load disaggre-
gation error can be expressed as follows:

P2 : min E(X1:k, D1:k) =
k

∑
i=1

1
2

∥∥Xi −DiĈi
∥∥2

2

s.t. Ĉ1:k = arg min
C1:k≥0

F(Y, D1:k, C1:k)∥∥∥c(j)
i

∥∥∥
2
≤ 1, j = 1, . . . , M

T

∑
t=1

Xi(t) ≤ consti

(13)

where E(.) is the error function. j ∈ (1, 2, . . . , M) is the atom numbers of dictionary. C1:k,
{1 : k} is the concatenation formation of the appliance sparse coefficients.

However, because it is not easy to solve the error function minimization, a new penalty
term is introduced here to convert the problem P2 into the problem P3, which is not a
convex optimization problem, and it can be solved by using the gradient descent algorithm:

P3 : min Ereg(X1:k, D1:k) = E(X1:k, D1:k) + λ
(

ˆ‖C1:k‖1

)
=

k

∑
i=1

1
2

∥∥Xi −DiĈi
∥∥2

2 + λ
(

ˆ‖C1:k‖1

)
s.t. Ĉ1:k = arg min

C1:k≥0
F(Y, D1:k, C1:k)∥∥∥c(j)

i

∥∥∥
2
≤ 1, j = 1, . . . , M

T

∑
t=1

Xi(t) ≤ consti

(14)

where Ereg(.) is the error function with regularization item.
The power consumption data matrix Xi of the ith electrical appliance is used for sparse

coding iteration to obtain the optimal activation coefficient matrix C∗:

C?
i = arg min

Ci≥0

1
2
‖Xi −DiCi‖2

2 + λ
(

ˆ‖C1:k‖1

)
(15)

where C?
i is the optimal activation coefficient matrix of the ith appliance. Then, concatenate

these coefficient matrices into a bigger matrix.
Then, the iteration of gradient descent is performed to update the rules as follows:

D̃← D̃− α
(
(Y− D̃Ĉ)ĈT −

(
Y− D̃C?

)
C?T

)
(16)
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where the update rate or learning rate is α, which is the step size of each step of gradient
descent. The solution with smaller error is found by controlling the step size in the process
of solving this problem.

For each atom learned by updating iteratively the dictionary, for the convenience
of further interference, the sub-vectors of all the learned dictionary D are normalized
as follows:

d(j)
i ← d(j)

i /
∥∥∥d(j)

i

∥∥∥
2
, i ∈ (1, 2, . . . , N), j ∈ (1, 2, . . . , M) (17)

where d(j)
i is the jth vector of the ith appliance’s learned dictionary.

3.2. Dictionary Learning Period Optimal Algorithm

Xi(t), i = 1, . . . , N, t = 1, . . . , T is the power value of the ith appliance. Nperiod is the
total period number of every appliance. Ti, i = 1, . . . , N is the average period of the ith
appliance. In addition, the unit of Ti is the number of samples and the interval of two
samples is 60 s. Through data exploring, it is found that different appliances have different
operation periods as Figure 2 shows. Is it possible to consider different period window
size, which may lead to different precision? The answer is yes.

Figure 2. Appliance period characteristics in REDD dataset.
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Therefore, as Algorithm 1 describes, we compute every appliance typical period time
statistically. Then, for every appliance, if the power value is greater than the threshold,
then mark this timestamp as the start point of power period. Calculate the interval between
two marked start points of power value. Finally, select one of maximum period times as
the optimal dictionary learning period:

Algorithm 1: Dictionary Learning Period Optimal algorithm
Init Ti = 0, i = 1, . . . , N;
1. statistically computing the every appliance period;
while ∀Xi(t), i = 1, . . . , N do

while t=1,. . . ,T do
if single power value Xi(t) ≥ threshold then

Mark the start of the power period;
while meet next new start point do

Ti ++;
end

end
t ++;

end
i ++;

end
2. selecting one of the maximum for these appliance periods;
m∗ = max(Ti), i = 1, . . . , N.

3.3. Improved Dictionary Learning Sparse Coding Algorithm

In Algorithm 2, firstly, the optimal window size M∗ is calculated by Algorithm 1,
which is used as the segmentation method of time series data Xi. In addition, the time
series data can be converted into matrix form. Then, the power values with a negative
value are moved to positive values by adding some shift value. The same shift values
are also added to the aggregate power consumption data. Thus, the new battery power
values and aggregate power values are formed. Then, the positive values are initialized
for Di and Ci, and normalized for D. The dictionary learning algorithm is learned for each
appliance to train the dictionary and the corresponding sparse code of every appliance. The
learned dictionary is concatenated into a new sparse coding matrix. Update the dictionary
according to the learning rate α. After adding the aggregate constraints, the optimization
is iterated continuously. Through the above process, the optimal sparse coding matrix is
obtained. Finally, in the dataset, the dictionary is multiplied by the sparse code matrix to
obtain the predicted load decomposition power. The flowchart about Algorithms 1 and 2 is
shown in Figure 3.
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Shift the negative to a positive value of battery

Shift the same value to aggregate power value

End

Start

Di  and Ci are initialized using positive values，

normalize  Di

Fix D, solve Ci by optimal methods

Know Ci, solve Di by optimal methods

Converge?

Learned Sparse Coding and Dictionary Atom 
as Optimal ones

Concatenated learned Sparse Coding by 
optimal methods

Converge?

Predict the power value of diaggregated appliance                      .

Y

Y

N

N

Optimal  m*  by algorithm 1

Add aggregation constraint

Update D by learning rate

i ii

 

=X D C

Figure 3. Flowchart about Algorithms 1 and 2.



Energies 2021, 14, 3547 11 of 18

Algorithm 2: Improved dictionary learning sparse coding algorithm
Input: Input data and constant.
The power value of the ith electrical appliance Xi ∈ RT×m, i = 1, . . . , N;
Optimal m via Algorithm 1;
The regularization parameter λ ∈ R+;
The gradient step α ∈ R+;
Output: Prediction value of an appliance X̂′i.
1. Shift the negative to a positive value of battery’s power consumption;
2. Di and Ci are initialized using positive values, and the column vector of Di is

normalized so that
∥∥∥d(j)

i

∥∥∥
2
= 1, i ∈ (1, 2, . . . , N), j ∈ (1, 2, . . . , M);

3. while Iterate for each appliance until convergence do
(a)

Ci ← arg min
C≥0
‖Xi −DiC‖2

2 + λ‖C1:k‖1

(b)
Di ← arg min

D≥0,‖d(j)‖2≤1
‖Xi −DCi‖2

2

end
4. Optimal Sparse coding value as C∗1:k ← C1:k, ;
Estimated Dictionary as D̃1:k ← D1:k ;
5.while Iterate to convergence do

(a)
Ĉ1:k ← arg min

C1:k≥0
F
(
Y, D̃1:k, C1;k

)
(b)

D̃←
[
D̃− α

(
(Y− D̃Ĉ)ĈT −

(
X− D̃C?

)
(C?)T

)]
(c) For all i, j :

d(j)
i ← d(j)

i /
∥∥∥d(j)

i

∥∥∥
2

(d) Add aggregation constraint:

T

∑
t=1

Xi(t) ≤ consti

end
6. Ĉ′1:k ← arg minC1:k≥0 F

(
Y′, D̃1:k, C1:k

)
;

7. Predict the power value of diaggregated appliance, X̂′i = DiĈ′i .

4. Experimental Results and Analysis
4.1. Datasets for Experiments

The Reference Energy Disaggregation Dataset (REDD) is a representative, public, and
freely available dataset that has frequently been utilized to explore all kinds of nonintrusive
load disaggregation algorithms [23]. In order to facilitate the experiments, this paper
modified and synthesized the battery simulation data based on REDD datasets. At the same
time, four electrical appliances, such as battery, fridge, sockets, and light, were selected
from building 1 to carry out the experiments of the improved dictionary learning and
sparse coding algorithms. The dataset for battery devices is from synthetic data. Currently,
there is no existing real dataset of battery electrical appliances for our experiments. The
data can be obtained through simulation and then transformed to a completely positive
condition for verification.

As Table 2 shows, the time of the REDD dataset is selected to execute 80% for training
and 20% for testing. In fact, the training dataset lasted from 18 April 2011 to 25 February
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2012. The test dataset lasted from 25 February 2012 to 25 May 2012. According to the
method of 1-min resample period, we get a new sample dataset.

Table 2. Experiment case for REDD datasets.

Index Item Time Duration

1 train start time 2011.04.18 313 days
2 train end time 2012.02.25

3 test start time 2012.2.25 90 days
4 test end time 2012.5.25

As Figure 4 shows, battery charging is embodied as external consumption power
consumption, and the maximum is 20 W. In addition, the minimum value is −40 W,
indicating that the average power consumption of external power supply is 40 W. To
facilitate the experiments, the first phase of the experimental simulation requires a relatively
ideal record of battery charging and discharging. It is further proved that the power
consumptions of charging and discharging is close to each other in geometric area. In the
future, we will test our algorithm on the real scenarios of battery loads.

Figure 4. Ideal simulation of battery charging and discharging curves and their data sets.

4.2. Experimental Setting

These algorithms are implemented in Python based on the NILMTK [17,27]. This
experiment is run on a desktop computer with GPU 1080i, Intel Core i5-10400 CPU, 2.9 GHz
CPU physical frequency, and 16 GB memory capacity of a Windows 10 operating system.
In order to make operation convenient and meet the needs of comparison experiments, this
paper builds a virtual machine environment of Anaconda, which is a professional platform
in the domain of data science research. It creates an isolated operating environment
and installs all kinds of Python installation packages, such as numpy, matplotlib, cvxpy,
hmmlearn, scikit-Learn, TensorFlow, Keras, and so on.

The baseline algorithms including CO, FHMMExact, and DDSC are selected as the
experimental comparison objects. For the convenience of the experiment, we adopt the
state-of-the-art load disaggregation framework in the domain of load disaggregation
research, NILMTK-Contrib, as an important means of our evaluation. In this unified
framework, three algorithms can obtain data, preprocess data, train models, and test them.

Furthermore, in the process of a simulation experiment, this paper selects the following
specific hyper-parameters and corresponding explanations in Table 3. The regularization
coefficient λ is 20. The learning rate of dictionary learning α is 10−12 The max iterative step
is 10,000. Certainly, as the operation converges gradually, the calculation will not generally
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run to the maximum number of iterations as Figure 5. In all these experiments, the atom
number of dictionary learning n is 10.

Table 3. Experiment parameters.

Index Parameter Parameter Name Parameter Value

1 λ coefficient 20
2 α update step 10−12

3 consti constraint const 0.1
4 T time length entire dataset
5 Step max iterative step 10,000
6 n atom number 10
7 error objective function error 0.1
8 m default matrix shape 120 or variable

Figure 5. Disaggregation convergence rate with shape window size in the REDD dataset.

4.3. Convergence Analysis

Experimenting with Algorithm 1, the window segmentation experiment shows that
different window sizes have different convergence rates, where the unit of convergence
rate is the number of iterations. As Figure 5 is shown and Table 4 is displayed, under
different segmentation windows, the optimization objective or the error function converge
over time. In general, with the increase of iteration times, the convergence effect is getting
better and better, while the error function is getting smaller and smaller. Therefore, the
choice of the window size is very important for the effect of the convergence rate. As
Table 4 says, convergence experiments were performed in the window size, ranging from
20 to 380. The result is that the minimum windows for convergence are 280 samples, and
the corresponding iterations are 40 iterations. At the same time, the maximum one for
convergence is 20 samples, and the corresponding iterations are 1465.

In this subsection, we investigate the convergence and carry out error analysis of
the dictionary learning method for load disaggregation. In Equation (11), we present the
error between the previous object function value and the current object function value. In
Figure 5, the error reduction is shown along with the number of iterations. From Figure 6,
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we can see the error variation of microwave as the shape window size increases. If the
shape window size changes, the MAE value is not always better than the other algorithms.
Thus, the optimal shape windows size is considered as one of the most important factors.

Table 4. Statistical measures on minimum, maximum, average, and standard deviation values of
errors for different presented cases.

Index Shape Size Iteration Numbers Remarks

1 20 1465 maximum
2 40 1040 -
3 60 906 -
4 80 724 -
5 100 814 -
6 120 556 -
7 140 731 -
8 160 466 -
9 180 464 -
10 200 276 -
11 220 429 -
12 240 372 -
13 260 324 -
14 280 45 minimum
15 320 147 -
16 340 145 -
17 360 190 -
18 380 111 -

minimum 280 40 -

maximum 20 1464 -

average - 511 -

standard deviation - 376 -

Figure 6. Error change of microwave with shape window size in the REDD dataset.
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4.4. Metrics

Compared with three baseline algorithms CO, FHMMExact, and DDSC, we need to
perform their measurement comparisons using the same metrics.

4.4.1. MAE

In statistics, the Mean Absolute Error (MAE) is the measurement error of a pair of
observations which express the same phenomenon. For instance, as described in this paper,
the mean absolute value error is expressed as follows:

MAEi =
1
T

T

∑
t=1
|x̂i(t)− xi(t)| (18)

where x̂i(t) is the estimated power consumption of the ith electrical appliance in the time
slot t, while xi(t) is the real power consumption of the ith electrical appliance in the time
slot t. T is the length of the entire dataset, and the MAE is the mean power consumption
error of the ith electrical appliance in the entire dataset. As a traditional indicator in the
domain of pattern recognition or measurement, this indicator can be seen in all kinds of
literature, and it is the most important indicator of load disaggregation.

4.4.2. RMSE

The Root Mean Square Error (RMSE) is often used to quantify the measurement error
of a pair of observations. Its mathematical expression is as follows:

RMSEi =

√
1
T ∑

t
(x̂i(t)− xi(t))

2 (19)

where the RMSEi is the Root Mean Square Error value of the ith electrical appliance, x̂i(t)is
the estimated power consumption of the ith electrical appliance in the time slot t, and xi(t)
is the real power consumption of the ith electrical appliance in the time slot t, T is the
time length of the whole training and testing set, and the RMSEi is the root mean square
error of the ith electrical appliance in the whole time period. The root mean square error is
calculated, which corresponds to the Euclidean distance or Euclidean norm, and could also
be called `2 norm, pronounced ‖ · ‖2 or ‖ · ‖.

4.5. Experiment Result Analysis

Through experiments, Bats (this paper), CO, FHMMExact, and DDSC are compared.
Composite data: use a curve similar to the heat pump data and offset the negative number
to the positive number line. Aggregated data: battery data, refrigerator data, etc. are
integrated for safety hazard factors detection.

According to the REDD dataset, as the basis of dataset, synthetic data are about
batteries while the power data of other appliances lasted from 18 April 2011 to 25 May
2012. These algorithms include CO, FHMMExact, DDSC, and Bats as the interpretable
algorithms, and you can select some of the main electrical appliances.

It can be seen from Table 5 that, compared with the CO and FHMMExact algorithms in
the REDD dataset, the MAE value of the Bats algorithm is at the same level as combinatorial
optimization in terms of battery electrical disaggregation results. The MAE values of all
appliances are smaller than the other two algorithms. The optimal windows shape size of
dictionary learning has a positive effect.

From Table 6, it can be seen that the root mean square error of the Bats algorithm is
improved to some extent compared with that of CO, FHMMExact, and DDSC algorithm.
The superiority of Bats over the CO and FHMMExact algorithm is due to capturing complex
dictionary atoms from the aggregate power data and learning more sequential relationships
in the power trace.
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Table 5. MAE in the REDD dataset.

Appliance Name CO FHMMExact DDSC Bats

battery 52.79 27.72 15.86 8.26
microwave 86.29 57.92 63.20 28.29
dish washer 113.13 70.58 113.05 38.92

light 69.40 38.05 73.50 33.83
electric oven 149.30 114.04 82.02 71.24
washer dryer 98.04 102.70 92.69 63.97

Table 6. RMSE in the REDD dataset.

Appliance Name CO FHMMExact DDSC Bats

battery 220.97 99.17 114.14 97.75
microwave 263.99 158.54 268.37 157.13
dish washer 265.07 220.22 389.93 174.31

light 101.14 64.87 132.43 59.35
electric oven 573.47 474.11 457.36 453.57
washer dryer 391.21 393.78 441.01 390.07

At present, according to the analysis of experimental data, the Bats algorithm has a
better effect than a combinatorial optimization algorithm and factorial hidden Markov
model. However, from the perspective of data trends, the effect after negative translation is
basically explained, indicating that the Bats algorithm can be used to detect battery safety
trends.

As a new and important application scenario, it is also very valuable. Through the
lasso and lars algorithm, the Bats algorithm converges well to a relatively smaller value,
for example, error = 0.1. In the future, the effect of sparse coding algorithm for dictionary
learning in load disaggregation, especially in the case of battery load, can be analyzed in
depth from the perspectives of initialization value, learning rate, and gradient.

5. Discussion

As is mentioned above in Section 1, although the power consumption of appliances can
be monitored directly and accurately, this paper should focus on safety hazard monitoring
methods under nonintrusive load decomposition scenarios in reality. Considering safety
monitoring, we select several relatively explicable approaches based on optimization theory
rather than black-box neural network algorithms, such as CO, FHMMExact, and DDSC. As
Table 7, the CO algorithm has no regard for temporal correlation of power consumption
data, the CO and FHMMExact transform power consumption data into state data and first
three algorithms have not been designed for battery scenarios. Therefore, in this paper,
when we design an algorithm for our research scenarios, dictionary learning algorithms
can overcome the loss of time correlation for CO and the loss of information based on
the state algorithm for FHMMExact. For battery scenarios, we design some algorithm
improvements including the shift strategy of battery load and optimal dictionary matrix
period algorithm. At the same time, we add an aggregation constraint.

Table 7. Comparison of several algorithms.

Algorithms Temporal Correlation State or Non State Based Specially for Battery Black-Box

CO [7] No State based No NO

FHMMExact [17] Yes State based No NO

DDSC [4] Yes Non State based No NO

Seq2point [28] Yes Non State based No Yes

DTDL [21] Yes Non State based No Yes

Bats Yes Non state Based Yes NO
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However, there are some limitations in our proposed algorithm Bats. The first main
limitation of Bats is that only simulation tests are performed. In the future, we will establish
a test-bed to verify the algorithm. The second main limitation of Bats is that, in the process
of dictionary learning and sparse coding, all the input training and testing dataset is low
frequency power consumption data that are not beneficial for the algorithm’s efficiency. In
the future, we will take the high frequency dataset into account.

6. Conclusions

As unsafe electrical appliances including batteries are important for life and property,
direct monitoring can ensure the safety monitoring timely. However, in some scenarios,
there is no choice but to adopt the nonintrusive load disaggregation methods. Based on
the principle that charging power is mathematically positive and discharging power is
negative, we propose a new topological representation diagram. Inspired by the idea of
Fourier transform algorithms and dictionary learning algorithms, we present an electrical
safety hazard factors algorithm by using the improved dictionary learning and sparse
coding methods, including an optimal dictionary matrix period. In our algorithm, we
build the minimization objective function and adopt the gradient descent algorithm to fix
the approximate solution for this problem. Compared with three baseline algorithms CO,
FHMMExact, and DDSC, our algorithm is more accurate than them on the dataset REDD.
The MAE value is 8.26, which drops by 70%. The RMSE value is 97.75, which is also better
than these baseline algorithms. In conclusion, our algorithm has achieved some degree of
feasibility but still has some room to improve. In future work, we will continue to explore
higher precision algorithms while maintaining the interpretability for safety-related tasks.
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