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Abstract: In this paper, a novel approach to matrix-converter-based variable frequency drives is
presented. It is proposed that these drives are used to provide or draw out reactive power from the
power distribution line, keeping the power factor close to unit and, simultaneously, performing their
primary function of motor powering and speed control. This application of matrix-converter-based
variable frequency drives is required due to the need to compensate for capacitive reactive power
generated by light emitting diode lighting devices. In this study, the reactive power compensation
range of the matrix-converter-based variable frequency drive is determined, and a method is proposed
to extend the compensation range.

Keywords: reactive power; power factor; matrix converter; induction motor

1. Introduction

Power generation, transmission, and conversion make up a complex process that
requires the interconnected operation of various components in a power system. Reactive
power is one of the main components of the system. To improve the performance of AC
power systems, this reactive power has to be managed. This is known as reactive power
compensation. For this purpose, various kinds of compensation devices are applied in AC
power systems.

Typically, the current in old-fashioned power distribution lines lags behind the voltage,
because of the presence of inductive loads such as motors [1]. Local reactive power
compensation devices are usually designed to compensate the lagging reactive power. The
application of energy-efficient light emitting diode LED lighting sources reduces the power
demand by about 30% relative to the currently available sources. Unfortunately, these
systems are, in many cases, the source of disturbances that further reduce the power factor.
The evolution of LED light technology and variable frequency drive (VFD) technology has
changed the type of reactive power available in 0.4 kV power distribution lines.

The problems posed by modern LED light sources have been examined in previous
publications [2,3]. The authors of [2] state that LED light sources generate leading reactive
power. Their publication presents current and voltage diagrams and measured power
values to prove this. However, they did not analyze the reasons for this or take into account
the specific details about the voltage converters present in LED light sources. They stated
that the use of LED lighting reduces the use of real power, but increases the generation
of leading reactive power, which causes compensation problems. The authors of the
publication suggest stricter standardization of the power factor values of the converters
used in LEDs. In [3], an analysis of other aspects of LED application is conducted, and LED
current and voltage diagrams showing that LED light sources generate leading reactive
power are given. The publication only presents experimental measurements and does not
analyze the theoretical causes of leading reactive power generation. The authors of [4] use
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connected fixed setting inductors in lighting control cabinets to compensate for the reactive
power produced by street LED lighting sources. However, this requires additional costs
and an increase in the consumption of non-ferrous metals. The authors of [5] propose a
distribution static synchronous compensator integrated with a Y-y connection transformer
for reactive power compensation. This can compensate for both leading and lagging
reactive power.

Recently, the VFD-based on a novel three-phase purely semiconductor matrix con-
verter (MC) has become increasingly popular. The purely semiconductor-based MC does
not require intermediate energy storage capacitors. With the rapid development of semicon-
ductor technologies, the MC’s popularity has been constantly increasing. In the MC-based
VFD, Indirect Space Vector Modulation (ISVM) can be applied. ISVM considers the MC
to be of the indirect form, featuring a Current Source Rectifier (CSR) part and a Voltage
Source Inverter (VSI) part. This virtual division enables the direct control of the phase
angle between the MC input current and voltage, while allowing for the direct control
of the reactive power at the point of connection to the power distribution lines. Based
on this principle of functioning, the MC-based induction motor VFD has the ability to
exchange both leading and lagging reactive power with the connected power distribution
line. This means that the MC-based induction motor VFD could be used for LED wall
display generated reactive power compensation.

Additionally, MCs have two obvious advantages over conventional capacitor-based
local compensation devices. Firstly, the use of large capacitor banks can be avoided. This
is an advantage from the point of view of volume and reliability. Secondly—along with
reactive power compensation, the MC can perform their primary function of induction
motor powering and speed control.

Some authors of reviewed publications have suggested that the ISVM-controlled MC
should be used for reactive power compensation. It has been suggested the use of a perma-
nent magnet machine powered by a MC as the compensation device [6]. In [7], reactive
power ripple minimization in matrix converter-fed double-fed induction generators is
presented. The authors of [8] present a modulation strategy to extend the reactive power
transfer range in the MC. The only study that has taken the reactive power in the MC VFD
induction motor into account is [9]. However, the authors of this publication only propose
a control strategy that provides current control and a power factor close to unit. They did
not measure the ability to compensate the reactive power produced by LED wall screens.

After assessing the listed problems and previously performed research, the following
study aims were generated:

• To study the nature and value of the reactive power generated by LEDs with respect
to the effect of harmonics;

• To explore the possibility of using matrix-converter-based variable frequency drives
to compensate for this reactive power;

• To investigate a way to extend the reactive power compensation range.

2. The Effect of Harmonics on Power Factor

The reactive power measurement of a nonlinear load can be performed with or without
taking the effect of harmonics into account.

In mathematical terms, the relation is as follows:

PF =
Q
S

(1)

where Q is the displacement of the reactive power at the fundamental harmonic, PF is the
power factor, and S is the total power.

However, most of older measuring devices do not emit these powers and determine
only the total amount of reactive power QT, before which also adds the reactive power D
generated by harmonics:

Q2
T = Q2 + D2; (2)
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DPF =
QT
S

. (3)

where DPF is the distorting power factor and D is the distorting reactive power of a higher
harmonic.

It should not be forgotten that, in non-sinusoidal AC systems, there is a difference
between the displacement power factor Q (PF or cos ϕ) and the distorting power factor D
(DPF). This power has an immediate effect on the waveform and the THD of the current.
However, most measuring devices do not emit these types of power and just determine the
total amount of reactive power Q, which also includes the reactive power D generated by
harmonics.

In the reactive power compensation process, the displacement reactive power and
distorting reactive power of harmonic are compensated differently. Power factor correction
equipment is not of any use, because it only acts on the displacement reactive power Q.
The distorting reactive power of harmonic D is reduced using filtering equipment.

In the industry, the focus is on compensating Q, as fines are paid for non-compensated
Q. Less attention is paid to D compensation by the industry, because there is no penalty for
D generation.

Recently, more and more devices with non-linear rectifiers and switched converters
have been connected to distribution lines. Nonlinear loads and switched devices energized
by sinusoidal sources produce Q and D together. This causes specific compensation
problems. Conventional capacitor-based compensating devices are designed to compensate
for the positive signal reactive power Q. Therefore, it is necessary to determine the sign of
reactive power Q generated by such loads and the requirements for compensation. Reactive
power in power distribution lines today

Typically, current lags behind voltage in conventional power distribution lines, be-
cause of the presence of inductive loads such as AC motors. However, as shown in Figure 1,
more and more power consumption devices are being developed that influence the power
distribution lines via a diode rectifier. These are the conventional diode rectifier supply-side
VFD, LED lighting sources, and others. These diode rectifier supply-side devices can be
divided into two groups: -with and without the power factor correction (PFC) function.
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Figure 1. The main loads and local compensation device used in 0.4 kV power distribution lines in
the re-searched arena building.

2.1. Performance Features of Diode Rectifier Supply-Side Devices without the PFC Function

As shown in Figure 2, a typical LED power supplier consists of a diode rectifier, a DC
circuit electrolytic capacitor, and a DC/DC converter for voltage adaptation. The reactive
power of such equipment directly depends on the voltage at the power distribution line
connection point and the input current of the rectifier.
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The voltage pulsations and current of diode-rectifier-based devices can be expressed
by the following equations:

vPDL = VM sin ωt (4)

iIN(t) ≈ C
dvPDL

dt
= C Vm ω cos ωt (5)

when ωt is in the range [α, π/2] and [π + α, 3π/2], otherwise, iIN = 0.

∆VPULS = VM −VMIN (6)

kV =
∆VPULS

VM
(7)

where VPDL is the voltage of power distribution lines; IIN is the input current of the LED
supply; VM is the voltage amplitude; C is the rectifier capacitor value; VOUT is the rectifier
capacitor voltage; VMIN is the minimal voltage value at the rectifier capacitor terminals; and
∆VPULS is the amplitude of the voltage pulsations. According to the technical requirements,
the voltage pulsation kV of the filter capacitor is in the range of 5 ÷ 10%. Based on this
value, time α is set when the current starts to flow through this capacitor:

sin α = 1− kV
100%

= 0.9 ÷ 0.95 (8)

α1 = 64◦ , when kV = 10% (9)

α2 = 71◦ , when kV = 5% (10)

The produced reactive power:

Q = P · tan ϕ1 (11)

Due to the large number of harmonics, the input current of a diode-rectifier-based
device has a fairly complex expression:

IIN(t) = I0 + I1 sin(ωt + ϕ1) + I2 sin(ωt + ϕ2) · · · (12)

The consumption or generation of reactive power depends on I1 sin(ωt + ϕ1). Be-
cause of this it must be expressed in the Fourier line and the ϕ1 must be determined.

tan ϕ1 =
I ′′1
I′1

(13)
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I′1 =
1
π

∫ π

0
0 dt +

1
π

∫ π
2

0
cos x sin x dt +

1
π

∫ π+α

π
2

0 dt+

+
1
π

∫ 3π
2

π+α
cos x sin x dt = − 1

2π
(1 + cos 2α)

(14)

I ′′1 =
1
π

∫ π
2

π
cos2 x dt +

1
π

∫ 3π
2

π+α
cos2 x dt =

1
2π

(π − 2α− sin2α) (15)

tan ϕ1 =
I ′′1
I′1

=
(π − 2α− sin2α)

(1 + cos 2α)
(16)

Based on the previously written equations:

• In the case of α1 = 64◦, ϕ1 = 19.1◦;
• In the case of α2 = 72◦, ϕ2 = 16.1◦.

These are the minimum and maximum limits of the current displacement angle. Since
ϕ1 > 0 and ϕ2 > 0, it can be stated that the diode rectifier supply-side devices inject some of
the leading reactive power into the power distribution lines. The amount injected is 0.28 ÷
0.34 kVar when 1 kW load is being powered. This reactive power cannot be compensated
for with a conventional capacitor-based local compensation device.

2.2. Performance Features of Diode Rectifier Supply-Side Devices with PFC Function

Recently, special power supplies with PFC correction components have been increas-
ingly used for low-power sources, especially LED lamps. As shown in Figure 3, these
power supplies are supplemented by the specialized power factor correction block: -its
operation is described below. An example is the L6562D—controlled rectifier presented
in Figure 4. The L6562 is a current-mode PFC controller that operates in Transition Mode.
This highly linear multiplier includes a special circuit that is able to reduce the AC input
current distortion, allowing a wide range of mains operations to be carried out with an
extremely low THD, even over large load ranges [10].
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Figure 3. Time diagrams of the voltage and current of diode rectifier supply-side devices with power factor correction
function.

When the converter is ON, the tactical frequency generator A3 transfers a pulse via
D1 to trigger D2. A high voltage level occurs at the location of trigger D1 output, and
the transistor switcher T1 is turned ON. As a consequence, the current across L1 and T1
increases. The current through resistor R3 increases and is fed to one input of comparator
A5 input. A signal, proportional to the voltage of power distribution lines, is applied
to the next A5 input from the multiplier R1-R2. When the UCUR exceeds the A4 output
voltage, the comparator A5 changes the polarity and T1 is moved to the OFF state via D2.
The current IL1 flows through D1 to the load, where it decreases. When IL1 = 0, the zero
value finding unit A1 generates a signal, which moves T1 to the ON state again via D1,
the process is repeated. As the proportional values of VIN and UCUR II are compared, this
current IT1 reproduces the shape of the power distribution line voltage. The output voltage
UOUT depends on the multiplier A4 transmission factor. In this way the VOUT = const is
maintained. Because the input current reproduces the shape of the power distribution lines
voltage, the THD is close to zero. However, the filter capacitors CF1 and CF2 are required for
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smooth operation of the converter. This shows that elimination of the harmonics worsens
the power factor.

In the typical L6562D circuit provided by the manufacturer, only the capacitors CF1 and
CF2 and the inductance L are recommended for use, but in practice, the use of these elements
significantly increases the power factor of the device. The manufacturer offers the following
filter component values for the L6562D controlled 80 W power device: CF1 = 0.47 µF,
CF2 = 0.68 µF, and L = 47 mH [10]. The reactive power is leading and displacement angle of
such a device is Qc = −19 var, ϕ = 13.1◦: so a significant negative power factor is obtained
(0.97). However, such a power factor will only occur with a rated source load. If the load is
lower than the nominal value, the power factor will be much worse.
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2.3. Experimental Comparison of LED Power Supplies with and without PFC Function

In order to experimentally research the reactive power generated by LED power
supplies, two power supplies, from the same manufacturer were researched. Both LED
power supplies produced 60 W. The first LED power supplies had a conventional design-
connected to power distribution lines via a conventional diode rectifier. The second LED
power supply was supplemented by components with the ability to perform the PFC
correction function.

A comparison of the input current curves of the two LED power supplies shows
that they differ significantly. Oscillograms of the input current curves of both LED power
supplies were obtained during the study and are presented in Figure 5. A comparison
of these curves shows a fundamental difference between the conventional LED power
supply and one with the PFC correction function. The power quality analyzer MI2892 was
used to analyze the power quality at the point that these blocks connected to the power
distribution lines. Using this analyzer, it was possible to measure the distorting power
factor DPF, the total amount of reactive power QT, and the total amount of complex power
St. The measurement results are presented in Tables 1 and 2.
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Table 1. Measurement results for the conventional capacitive rectifier-based LED power supplier.

Load, A
Total Amount of Power Power of Fundamental Harmonic

P, W QT, Var ST, VA DPF P, W Q, Var S, VA PF tg ϕ

0 0 −8 8 0.03 0 −8 8 - -

1 14 −24 28 0.49 14 −8 16 0.88 −0.57

2 27 −41 48 0.56 27 −9 28 0.95 −0.34

3 41 −57 69 0.59 41 −11 43 0.96 −0.28

4 56 −74 94 0.60 56 −15 59 0.97 −0.26

5 69 −95 116 0.60 69 −19 72 0.97 −0.26

Table 2. Measurement results for the LED power supplier with the PFC correction function.

Load, A
Total Amount of Power Power of Fundamental Harmonic

P, W QT, Var ST, VA DPF P, W Q, Var S, VA PF tg ϕ

0 0 −4 4 0.06 0 −4 4 0 -

0.5 10 −8 21 0.49 10 −4 11 0.92 −0.44

1 25 −15 29 0.85 25 −13 28 0.88 −0.54

1.5 38 −18 42 0.91 38 −16 41 0.92 −0.42

2 51 −19 55 0.93 51 −17 54 0.95 −0.34

2.5 67 −21 70 0.95 67 −19 69 0.96 −0.29

The measurement results, which were applied to the conventional capacitive rectifier-
based LED power supplier, confirm our theoretical assumptions. The measured total
reactive power was an average of 30 percent of the real power. At low or zero load, the
reactive power increased due to interference from the filtering capacitors. Thus, in the
presence of a large number of these LEDs, the reactive power of the power supply would
become significant causing the need to compensate for it. Since the current of the LED
power supplier is non-sinusoidal, high values of ST and QT were obtained, much higher
than those of Q and S.

The measurement results, which were applied to the LED power supplier, showed
that the total reactive power was an average of 30 percent of the real power. Due to the
installed PFC correction function components, the input current was close to sinusoidal.
Figure 5 show that the input current had a displacement angle related to the voltage of the
power distribution line, which was the cause of reactive power. At low load currents, the
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capacitance of the input filter significantly affected the formation of the displacement angle,
but at high loads, the displacement angle formed due to other reasons. The measurement
data show that the filter capacitor in this unit was much smaller than recommended—the
reactive power with no load was only −4 var. This could have been due to the operation of
the internal element A4 (multiplier) of the chip. In the initial capacitor charging stage, the
capacitor was charged to the required voltage by sinusoidal current in about 5 ms. In the
next stage, the A4 transmission rate was reduced because a constant voltage needed to be
maintained in the capacitor. Therefore, the input current dropped faster than it rose, and a
current displacement occurred with respect to the voltage. This was necessary to allow the
capacitor to maintain a constant voltage or become fully charged. If that shift was avoided,
it would be quite difficult to predict the value of the A4 transfer factor based on several
converter mode parameters. However, manufacturers are adopting a simpler option. The
harmonics distortion of this LED power supply unit was small compared to that of other
power supplies. Its S and Q were almost indistinguishable from ST and QT, so the negative
effect of harmonics distortion was reduced. Our experimental studies showed that the
same reactive power compensation problems occur with both the capacitive rectifier-based
LED power supplier and the LED power supplier with the PFC correction function.

2.4. Reactive Power of Parallel Connected LED Power Supplies

Connecting a group of identical diode rectifier supply-side devices to power distribu-
tion lines has been shown to have an even more significant impact on the power factor. This
was confirmed by measurements made in a large arena building with a 32 kW LED wall dis-
play powered by dozens of small LED power suppliers with a PFC function. Like a single
LED power supplier with a PFC correction function, the whole combination also generates
leading reactive power. This poses serious problems for reactive power compensation,
as the interaction of the LED with a conventional capacitor-based local reactive power
compensation device leads to overcompensation. Figure 6 shows the active and reactive
power values caused by this wall display. These data were collected from the Kaunas
“Zalgiris” arena, where a DA80.1600RGB-50M LED wall display is installed. The data were
collected in full daylight, as the brightness of the screen was the highest at that time. The
data show that, regardless of the real power consumption, the LED wall display produced
a leading reactive power Q in the range of 9.5–10.9 kVar. Due to overcompensation by the
old-fashioned capacitor-based local reactive power compensation device, the company that
operates this sports arena pays fines to the electric power supply company.
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In both cases a universal compensation device is required, which has the ability to
compensate for both types of reactive power: leading and lagging.
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Next, we describe the use of an induction motor powered by the MC as a universal
compensation device. Depending on the structure of the converter and the specific controls,
it can be said that the MC-based VFD may be suitable for both leading and lagging reactive
power compensation.

3. Special Features of the Matrix Converter-Based Variable Frequency Drive

The researched compensation device consists of the MC, whose input is connected to
the power distribution lines and powers the induction motor (Figure 7). The MC is a forced
commutated converter, that consists of nine bidirectional switches as the power elements to
create a variable output voltage system. In contrast to the conventional VFD, the MC-based
VFD contains no large energy storage elements (capacitors). The key element of the MC
is the fully controlled four-quadrant bidirectional switch, which allows high-frequency
operation. There are 27 possible combinations (vectors) for the bidirectional switches of
this three-to-three phase matrix converter.
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With an MC, Indirect Space Vector Modulation (ISVM) can be applied to control
output voltage and input current. The ISVM considers the matrix converter to be of the
indirect form. It features a Voltage Source Inverter (VSI) control part, a Current Source
Rectifier (CSR) control part and a DC link in between.

By using the ISVM strategy, the desired output voltage and input current are synthe-
sized from the active vectors and zero vectors. As shown in Figure 8, the active vectors are
formed from 18 possible switch combinations (−9, −8, . . . ., +8, +9).

The two adjacent vectors approximate the space vector of the desired output line
voltages and input currents. The frequency of the MC output voltage is determined by the
angle QSC, and the input current displacement is determined by the angle QSV.

QSC = (ωit− ϕin) + 30◦ (17)

− 30◦ ≤ ωit− ϕin ≤ +30◦ (18)

where t is the time, determined through synchronization with the frequency of the power
distribution lines and ϕin is the preferred current displacement angle, which determines
the reactive power at the area of input of the MC.
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The control algorithm used for vector approximation is presented in Figure 9. Accord-
ing to the ISVM control strategy, it consists of two sequences representing the rectifier and
inverter stages. Every sequence consists of sector determination and duty cycle determina-
tion. Both sequences are combined by the common duty cycle determination segment and
bidirectional switchers control logic, as presented in Table 3.
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Table 3. Bidirectional switches combination logic.

Output Voltage Vector Sectors SV

Sectors 1 2 3 4 5 6

Input current
vector sectors

SC

1 −7 +9 +1 −3 +9 −8 −3 +2 −8 +7 +2 −1 +7 −9 −1 +3 −9 +8 +3 −2 +8 −7 −2 +1

2 +4 −6 −7 +9 −6 +5 +9 −8 +5 −4 −8 +7 −4 +6 +7 −9 +6 −5 −9 +8 −5 +4 +8 −7

3 −1 +3 +4 −6 +3 −2 −6 +5 −2 +1 +5 −4 +1 −3 −4 +6 −3 +2 +6 −5 +2 −1 −5 +4

4 +7 −9 −1 +3 −9 +8 +3 −2 +8 −7 −2 +1 −7 +9 +1 −3 +9 −2 −3 +2 −8 +7 +2 −1

5 −4 +6 +7 −9 +6 −5 −9 +8 −5 +4 +8 −7 +4 −6 −7 +9 −6 +5 +9 −8 +5 −4 −8 +7

6 +1 −3 −4 +6 −3 +2 +6 −5 +2 −1 −5 +4 −1 +3 +4 −5 +3 −2 −6 +5 −2 +1 +5 −4

Duty
circles

dαµ dαυ dβµ

dβυ

dαµ dαυ dβµ

dβυ

dαµ dαυ dβµ

dβυ

dαµ dαυ dβµ

dβυ

dαµ dαυ dβµ

dβυ

dαµ dαυ dβµ

dβυ

When dα, dβ = 1 (stage of VSI is Off), three DC voltages VDC1-3 will be generated at
the MC output. These voltages are presented in Figure 10. Based on these voltages, the VSI
stage forms the sinusoidal output voltages VoA−VoB.
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The ISVM ensures a voltage transfer rate of 0.866, but this value is not satisfactory
for induction motor stator windings connected in a “star” formation. Therefore, only the
“delta” connection is applicable for the MC-based VFD.

4. Application of the Matrix Converter-Based Variable Frequency Drive as the
Reactive Power Compensation Device

By using the MC-based VFD, the transfer of real power to the motor and the reactive
power compensation are performed simultaneously. In order to determine the reactive
power compensation range, the system, whose structure is presented in Figure 11, was
researched through a Matlab/Simulink simulation.
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The input current and output voltage of this converter can be described by the follow-
ing equations:

IIN =

√
3

2
IOUT m cos ϕOUT ; (19)

VOUT =

√
3

2
VIN m cos ϕIN . (20)

where IIN is the MC input current, VOUT is the MC output voltage, m is βthe modulation
index, ϕIN is the input displacement angle, and ϕOUT is the output displacement angle.

There are no storage elements in the matrix converter, and the matrix converter is
considered lossless in this analysis. From Equations (19) and (20), it is possible to write an
equation to show the amount of power in the MC:

PIN =
3
2

VPDL IIN cos ϕIN = POUT =
3
2

VOUT IOUT cos ϕOUT . (21)

From Equation (21), it can be seen that an increase in the output displacement angle
ϕOUT causes a decrease in the MC input current IIN. It can also be seen that an increase in
the input displacement angle ϕIN causes a decrease in the MC output voltage VOUT.

Equation (10) shows that the load power of the MC must have a constant value,
thereby ensuring the correct operation of the MC and the induction motor. To ensure
constant load power POUT when cosϕIN is variable, it is necessary to have a certain range
of output voltages regulation. In such a case, a constant POUT would be maintained during
the control of the modulation index m (0 ÷ 1).

VOUT
VPDL

=

√
3

2
m cos ϕIN . (22)

The cosϕIN value is limited when m = 1:

cos ϕINLIM =
VOUT
VIN

2√
3

. (23)

For the induction motor powered by the MC to be applied as a flexible AC transmission
system device, the voltage VOUT at the induction motor stator windings less then the input
voltage by

√
3. Because of this, the stator windings have to be connected in a “delta” ∆

format.
The voltage ratio to ensure reactive power compensation:

VOUT
VPDL

=
1√
3
= 0.58. (24)

In this case:

cos ϕINLIM = 0.58
2√
3
= 0.67; ϕINLIM = 48◦; tan ϕINLIM = 1.1. (25)
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QCOMP = POUT ϕINLIM = 1.11POUT . (26)

Equation (26) is only valid if the MC output voltage frequency is equal to the frequency
of the power distribution line voltage. In the event that the MC output voltage frequency
is not constant, the condition is:

VOUT f

fOUT
= const (27)

The output voltage is

Vout f =
fOUT · VOUT

fGRID
(28)

cos ϕINlim f =
fOUT
fGRID

· VOUT
VIN

· 2
3

(29)

ϕINlim f > ϕINlim (30)

In the case of fOUT = 25 Hz,

cos ϕINlim f = 0.33 (31)

ϕINlim f = 70.4◦ (32)

tan ϕINlim f = 2.80 (33)

As shown in Equation (29), the output power decreases by almost half, reducing the
output voltage frequency. However, this decrease is offset by an increase in tan φ1N limf.
Therefore, MC’s has the ability to compensate for reactive power increases with a decreasing
output voltage frequency.

4.1. Matlab/Simulink Model of the Induction Motor and the Matrix-Converter-Based Reactive
Power Compensation Device

The Matlab/Simulink model of the researched system consists of four parts. The
first part contains the simulation blocks of the power distribution line components for a
10/0.4 kV transformer. Matlab/Simulink blocks the implementing ideal sinusoidal AC
voltage source and therefore a three-phase series RLC branch was used.

The second part contains nine ideal bidirectional switches from the MC and ISVM
control modules. For the simulation of the nine bidirectional switches, the Matlab Simulink
blocks the implementation of IGBT device and a diode in parallel through a series RC
snubber circuit shown in Figure 12.
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The third part contains an MC load, which is presented as an equivalent diagram of
the induction motor [11].

For the power measurements the PLL-Driven, Positive-Sequence block was used. This
computes the positive-sequence real power P (in watts) and the reactive power Q (in vars)
of a periodic set of three-phase voltages and currents.

4.2. The Reactive Power Compensation Ranges of the Induction Motor and the
Matrix-Converter-Based Compensation Device

For the MC-based VFD, the reactive power is presented as a function of the current
displacement angle in Figure 13. The values of reactive power were determined by keeping
the real power transferred to the motor constant. As a result, changes in real power caused
by current displacement angle changes (rectifier stage) were compensated by voltage
modulation index correction (inverter stage). The MC was powered by 400 V of line-to-
line voltage. The induction motor stator windings were connected to the MC output in
“delta“ format to allow adaptation to 230 V line-to-line powering. By connecting the MC
and stator windings in this way, it was possible to perform reactive power compensation.
Consequently, at a displacement angle of zero, the modulation index must be significantly
reduced. However, by when the displacement angle increased, there was a much wider
voltage correction range due to the delta connection.

Figure 13 clearly shows that the reactive power can be compensated in both directions
(leading and lagging), depending on the current displacement angle.
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power distribution lines as a function of the current displacement angle determined by ISVM.

In case of stator windings “delta“ connection the range of possible displacement
angles is from minus 44 degrees to plus 47 degrees. These angles allow the real power
transferred to the motor to be kept constant. For 15 kW induction motor, the reactive
power produced at these displacement angles varies from the leading 14.7 kVar to the
lagging 15.7 kVar. Increasing the displacement angle above this specified range will lead
to a decrease in the voltage at the induction motor stator windings and a decrease in the
real power transferred to the induction motor.

As presented in Figure 14, the voltage drop due to the displacement angle change
was recovered by increasing the value of the modulation index. Upon reaching the limits
determined by displacement angel specified range, the modulation index reaches its
maximum value and cannot recover a voltage drop caused by a further increase in the
current displacement angle.
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Figure 14. ISVM modulation index for the voltage drop recovering as a function of the current
displacement angle.

4.3. Matlab/Simulink Model of the LED Wall Display Loaded Power Distribution Lines

The 32 kW LED wall display described in Section 2 produces an average leading
reactive power of 10.15 kVar. In order to determine the ability of the MC-based VFD to
compensate the reactive power produced by the LED wall display, a Matlab/Simulink
model for the system MC-based VFD and the LED wall display was created. As shown in
Figure 15, the Matlab/Simulink model consist of two device models connected to power
distribution lines—the 32 kW LED wall display with a PFC power supply model and an
MC-based VFD model. The actual 32 kW LED wall display described in Section 2.4 consists
of 16 blocks connected to each of the three power distribution lines phases. Therefore, the
LED wall display Matlab/Simulink model consists of 3 × 16 blocks.
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Figure 15. The structure of the Matlab/Simulink model for the reactive power compensation of the
LED wall display.

To accurately reproduce the input current of the LED wall display, the model of each
block consists of 16 components simulating the first 15 harmonics, and the DC component
is presented in Table 4. The second part of the model, MC converter, operates as the
converter for the VFD, simultaneously, as the device for the reactive power compensation
at the point of connection to the power distribution lines.
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Table 4. Values of the harmonics for accurate reproduction of the input current of the LED wall
display.

Harmonic Nr. Magnitude, A Phase Angle, Rad

0 0.0070 0

1 3.6045 0.5960

2 0.0407 −0.2189

3 0.6627 1.2678

4 0.0171 −1.5554

5 0.4740 −1.1146

6 0.0337 −0.3947

7 0.1412 −1.2379

8 0.0262 1.4022

9 0.1693 1.4520

10 0.0734 0.6311

11 0.1284 0.1885

12 0.0447 −0.3292

13 0.1949 1.4879

14 0.0386 −1.1194

15 0.1078 −0.3580

4.4. Compensation of the Reactive Power in the Distribution Lines

The ability to compensate for the reactive power generated by an LED wall display
using standard rated asynchronous motors was investigated through a simulation. The
possibility of using 5.5 kW, 4 kW, and 2.2 kW MC-based VFDs for this purpose was
investigated. VFDs with these power levels were selected, because induction motors with
these power levels are found in the air handling units of buildings and are connected
to the same power distribution lines as the LED wall display. Therefore, the simulation
results can be used to guide the real implementation of such a compensation system in the
arena building. As can be seen from the simulation results presented in Figure 16, only the
5.5 kW VFD showed the ability to carry out complete reactive power compensation. The
power factor is equal to the unit available with the 5.5 kW MC-based VFD at the current
displacement angle of minus 42.6 degrees.

It was found that the 4 kW and 2.2 kW rated power MC-based VFDs cannot com-
pensate the power factor to unit. After lowering the current displacement angle below
minus 44 degrees, the 4 and 2.2 kW MC-based VFDs were no longer able to maintain the
voltage required on the stator windings and constant power transfer to the induction motor.
Figure 17 shows how the reactive power generated by an MC-based VFD depends on the
current displacement angle. This figure also shows how the reactive power changes at the
point of connection of the VFD to the power distribution lines when the reactive power of
the LED display is constant.
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5. Discussions

The idea for this research came from the fact that the interaction of a large number
of LED lighting sources with a conventional capacitor-based local compensation device
leads to overcompensation in the 0.4 kV power distribution lines. This is due to the fact
that the conventional compensation device is designed to compensate the lagging reactive
power produced by inductive loads, such as AC motors. This highlighted the demand for
compensation of capacitive reactive power which is not predicted by the designer.

The application of matric converter based-VFD could solve the problem of compen-
sating the reactive power generated by LED devices. In addition, the application of these
VFD allows the use of compensation devices with large inductors to be revoked. In addi-
tion, matric converter based-VFD can be useful if there is a need to compensate lagging
reactive power produced by inductive loads, such as induction motors. Applying matric
converter based-VFD for lagging reactive power compensation could eliminate the use of
large capacitor-based compensation devices.

In further research we plan to investigate the possibility of using a conventional AC-
DC-AC converter and a Back-to-Back converter based-VFD to compensate for the reactive
power in power distribution lines. The low power conventional AC-DC-AC converter
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based-VFD has the structure similar to that of LED power supplies. Therefore, a similar
effect on reactive power can be observed.

6. Conclusions

Due to the special properties of LEDs, the interaction of LED lighting with conven-
tional capacitor-based local compensation devices results in overcompensation in 0.4 kV
power distribution lines. Experimental study of the harmonic structure of the input current
of a LED power supply revealed that due to the specific harmonic distortion that occurs,
leading reactive power is generated.

An application of the ISVM provides an opportunity to control the input current
displacement angle of the MC-based VFD. As a result of this, the MC-based VFD could be
applied for reactive power compensation, simultaneously, performing the main function of
the VFD—motor powering and speed control.

An increase in the MC-based VFD input current displacement angle results in a de-
crease in the voltage of the stator windings below the nominal level. To recover this voltage
decrease, the ISVM factor must be increased accordingly. Reactive power compensation
can only be performed by connecting the stator windings in delta formation of 230/400 V
motor. In the case of windings connected in a star formation, it is not possible to manip-
ulate the current displacement angle, because there is no room to reproduce the voltage
drop by changing the modulation index. The determined applicable range of the current
displacement angle is from minus 44 degrees to plus 47 degrees in a delta connection
formation. The asymmetry of the compensation range is related to the influence of the
inductance of the motor windings.

The induction motor powered by the matrix converter has the ability to compensate
the reactive power produced by the large LED wall display investigated in this study
that cannot compensated by capacitors based local reactive power compensation device.
The 10.15 kVar capacitive reactive power generated by the LED wall display can be fully
compensated (power factor equal to unit) with a 5.5 kW induction motor powered by the
MC keeping the current displacement angle of the ISVM minus 42.6 degrees. The voltage
modulation index of ISVM in that situation is 0.96.

A MC-based VFD operating as a lagging reactive power compensation device has
another obvious advantage over the capacitors based compensation devices—there is no
need for any large capacitor banks. This is an advantage in terms of volume and reliability.

In this study, pure MC-based VFD without harmonic suppression components were
investigated. Further work includes the study of the influence of MC harmonic suppression
filters on the reactive power.
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