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Abstract: Because of the high penetration of renewable energies and the installation of new control
devices, modern distribution networks are faced with voltage regulation challenges. Recently, the
rapid development of artificial intelligence technology has introduced new solutions for optimal
control problems with high dimensions and dynamics. In this paper, a deep reinforcement learning
method is proposed to solve the two-timescale optimal voltage control problem. All control variables
are assigned to different agents, and discrete variables are solved by a deep Q network (DQN)
agent while the continuous variables are solved by a deep deterministic policy gradient (DDPG)
agent. All agents are trained simultaneously with specially designed reward aiming at minimizing
long-term average voltage deviation. Case study is executed on a modified IEEE-123 bus system,
and the results demonstrate that the proposed algorithm has similar or even better performance than
the model-based optimal control scheme and has high computational efficiency and competitive
potential for online application.

Keywords: deep reinforcement learning; two timescales; voltage control; distribution network

1. Introduction
1.1. Background and Motivation

The high penetration of distributed generation (DG) energy sources, such as photo-
voltaic (PV), has made distribution networks faced with the problem of voltage regulation.
Usually, the voltage profiles in distribution networks are regulated by the control of slow
regulation devices (e.g., on-load tap changers (OLTCs) and shunt capacitors) and fast
regulation devices (e.g., PV inverters and static var compensators (SVCs)). While these
regulators are all applied to adjust the distribution of reactive power in the grid, the real
power flow can also impact the nodal voltages in distribution networks [1,2]. Thus, the
real and reactive power control of different devices should be taken into account in order
to mitigate possible voltage violations.

The lack of measurement systems (e.g., supervisory control and data acquisition
(SCADA) and phasor measurement units (PMUs)) in traditional distribution networks
leads to the insufficient measurement of network information, and voltage control methods
generally adopt model-based regulation, which rely highly on the precise physical model.
In essence, voltage control through real and reactive power optimization is a highly nonlin-
ear programming problem with abundant variables and massive constraints. Solving such
problems using mathematical programming methods (e.g., the second-order cone relax-
ation technique [3] and duality theory [4]) is often limited by the number of variables, and
may even fail when the scale of the distribution network is too large. Therefore, heuristic
algorithms which are less dependent on the model are applied to solve these problems (e.g.,
particle swarm optimization (PSO) [5] and genetic algorithm (GA) [6]). However, these
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algorithms have the shortcomings of high randomness and long search time, and easily fall
into local optimal solutions, and as a result cannot meet the requirement of real-time voltage
control in a fast time scale. In addition, in these mathematical programming methods and
heuristic algorithms, each optimization solution is independent of each other, and if the
actual operating condition (e.g., DG outputs) changes slightly, the previous optimization
results are often unable to be made full use of in order to achieve a rapid solution.

Recently, artificial intelligence (AI) technology has developed rapidly and been suc-
cessfully applied in different fields. Therefore, many scholars are interested in exploring
its application in power systems. Among AI technology, as a branch of reinforcement
learning (RL) theory, DRL employs the “trial and error” mechanism to interact with the
dynamic environment to find the optimal policy for the agent [7]. It has great advantages
for solving complex multivariable problems, and has already been employed in various
power system optimization problems, such as, electricity market planning [8], multi-agent
equilibrium games [9], battery energy arbitrage [10], and scheduling the charging of electric
vehicles [11].

The expansion of the coverage of SCADA and PMU [12], as well as the construction of
internet of things technologies, has provided an effective way for the advanced applications
of voltage control based on data-driven and model-free methods. For example, the authors
in [13] employ Q-learning to solve a reactive power optimization problem with the discrete
control variables being the transformer tap ratio and shunt capacitor. However, the Q-
learning method easily falls into the curse of dimensionality since it applies a table to
store the corresponding action-value function, and it is only suitable for the problems
where the action space and state space are both discrete. Inspired by the strong exploration
capacity of neural networks (NNs) towards high-dimensional searching space, deep Q
network (DQN) employs an NN to approximate the action-value function to deal with
continuous state domains. In [14], a DQN is used to control shunt capacitors. In [15], a
double DQN is applied to achieve the optimal control of thermostatically controlled loads
(TCLs) to provide voltage-control-based ancillary services. In [16], a multi-agent DQN-
based algorithm is put forward to control switchable capacitors, voltage regulators, and
smart inverters, where the continuous variables of voltage regulators and smart inverters
are discretized. Further, to deal with the problems with continuous state and action space,
deep deterministic policy gradient (DDPG) is put forward, where two NNs are used to
approximate the policy function and action-value function. In [17], DDPG is applied to
learn the control policy of generators in order to regulate all bus voltages into a predefined
safe zone. In [18], a voltage-sensitivity-based DDPG method is proposed to realize the local
control of PV inverters, and with a specifically designed reward, the goal of minimizing
the network power loss and ensuring safe operation in the grid can be achieved. In [19],
a novel adaptive volt-var control algorithm based on DDPG is proposed to realize the
real-time control of smart inverters in reactive power management. However, the existing
voltage control methods using DRL only focus on the reactive power control, and cannot
deal with the discrete and continuous control variables simultaneously.

1.2. Novelty and Contribution

To overcome the above limitations, a DRL method combining a DQN method with
DDPG is proposed in this paper to deal with discrete and continuous control variables
simultaneously. In this method, the discrete variables are resolved based on a DQN agent
and the continuous variables are resolved based on a DDPG agent. Considering the
response time and control cost of different equipment, a two-timescale voltage control
problem is put forward, where the capacitor configuration is decided in the long timescale
and the outputs of PV inverters and energy storage batteries are adjusted in the short
timescale. The problem is further turned into the Markov decision process (MDP) and
solved by the proposed DRL method. A reward is specially designed to achieve the goal
of minimizing the long-term average voltage deviation. Both the DQN agent and DDPG
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agent share the same environment (i.e., the distribution network), and are trained by their
interaction with the environment.

The contributions of this article are outlined as follows.

(1) Multiple types of control equipment including capacitors, energy storage batteries,
and PV inverters are considered, and a two-timescale voltage control problem is
formulated in order to take the control requirements of these devices into account.

(2) The control variables are assigned to different agents according to their properties,
and these agents share the same environment and are trained simultaneously.

(3) A DRL method is proposed to solve the optimal voltage control problem, where the
discrete variables are solved using a DQN agent and the continuous variables are
solved using a DDPG agent, and this method can realize real-time control.

2. Voltage Problem Formulation

In this section, the two-timescale voltage control problem is formulated, where the
control devices, including capacitors, batteries, and PV inverters, are considered.

2.1. System Description

In this voltage control problem, the real power regulation is achieved by adjusting
the charging/discharging power of batteries, and the reactive power regulation is realized
by adjusting the on/off states of capacitors and the outputs of PV inverters. Taking the
response time and control cost of different devices into account, the total control process
can be divided into long timescale control and short timescale control. Specifically, the
entire time period can be divided into NT intervals, and each interval can be further divided
into Nt slots. In the long timescale, the capacitors’ configurations are made at the beginning
of each interval T, and in the short timescale the outputs of PV inverters and batteries are
adjusted at the beginning of each slot t.

(1) Capacitor modeling

During each T, the reactive power supported by the capacitor installed at bus i,
QCap,i(T, t), can be expressed as a function of binary control variable acap,i(T)∈{0,1}, which
indicates the off/on status of the capacitor; that is,

QCap,i(T, t) = acap,i(T) ·Qrated
Cap,i, (1)

where Qreted
Cap,i is the rated reactive power of the capacitor. When acap,i(T) = 1, the capacitor is

connected to the grid and the reactive power provided by it is Qreted
Cap,I ; when acap,i(T) = 0,

the capacitor is disconnected from the grid.

(2) Battery modeling

During every t, the state variable (state of charge) of the battery installed at bus i is
denoted as SOCi(T, t), which is subject to the upper and lower boundaries [20]; that is,

SOCi,min ≤ SOCi(T, t) ≤ SOCi,max (2)

The charging/discharging power of the battery, Pbatt,i(T, t), can be expressed as

PBatt,i(T, t) = abatt,i(T, t) · Pmax
Batt,i (3)

− 1 ≤ abatt,i(T, t) ≤ 1 (4)

where abatt,i(T, t) is the control variable and when abatt,i(T, t) is positive, the battery is
charging. When abatt,i(T, t) is negative, the battery is discharging. The new state of charge
after taking the control action can be represented as

SOCi(T, t + 1) = SOCi(T, t) + PBatt,i(T, t). (5)
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(3) PV inverter modeling

Suppose all PV units in the grid are equipped with a smart inverter. On every t, the
active power provided by the PV unit installed at bus i is known as PPV,i(T, t) and its
apparent power rating is Srated

PVi . Then, the reactive power provided by the smart inverter,
QPV,i(T, t), can be expressed as

QPV,i(T, t) = apv,i(T, t) ·QPV,i(T, t) (6)

QPV,i(T, t) =

√(
Srated

PV,i

)2
− (PPV,i(T, t))2 (7)

− 1 ≤ apv,i(T, t) ≤ 1 (8)

where apv,i(T, t) is the control variable of the PV inverter.

2.2. Two-Timescale Voltage Control Model Formulation

In this paper, a radial distribution network with N + 1 buses is considered, where Bus
0 is the root, representing the point of common coupling. The voltage magnitude, active
power, and reactive power are all converted to per unit (p.u.). The objective of the voltage
control problem is to minimize the long-term average voltage deviation by configuring
the on/off status of capacitors on every interval T in the long timescale and adjusting the
charging/discharging power of batteries and the outputs of PV inverters on every t in the
short timescale. Then, the two-timescale voltage control problem based on power flow
equations can be formulated as follows:

min
{acap(T)}

{abatt(T, t), apv(T, t)}

E
[

∞

∑
T=1

Nt

∑
t=1

N

∑
i=1

(Ui(T, t)− 1)2

]
(9)

s.t.
(1)–(3) (10)

∑
i∈ψ(j)

[
Pij(T, t)− I2

ij(T, t)rij

]
− Pj(T, t) = ∑

k∈φ(j)
Pjk(T, t) (11)

∑
i∈ψ(j)

[
Qij(T, t)− I2

ij(T, t)rij

]
−Qj(T, t) = ∑

k∈φ(j)
Qjk(T, t) (12)

U2
j (T, t) = U2

i (T, t) +
(

r2
ij + x2

ij

)
I2
ij(T, t)− 2

(
rijPij(T, t) + xijQij(T, t)

)
(13)

I2
ij(T, t) =

(
P2

ij(T, t) + Q2
ij(T, t)

)
/U2

i (14)

Pj(T, t) = PL,j(T, t) + PBatt,j(T, t)− PPV,j(T, t) (15)

Qj(T, t) = QL,j(T, t)−QCap,j(T, t)−QPV,j(T, t) (16)

where Uj(T, t) is the voltage magnitude of bus j; Iij(T, t) is the current amplitude of segment
(i, j); rij and xij are the resistance and reactance of segment (i, j), respectively; Pij(T, t) and
Qij(T, t) are the active and reactive power flowing from bus i to bus j, respectively; ψ(j) is
the parent bus set of bus j, where the power flows from the parent bus to bus j; and φ(j) is
the child bus set of bus j, where the power flows from bus j to the child bus.

It can be observed that the optimization problem (9) involves many control variables,
including the continuous variables of batteries and PV inverters and the discrete variables
of capacitors, which makes problem (9) non-convex and generally NP-hard. When the grid
is large and thus involves many control variables, traditional model-based methods may
obtain suboptimal solutions, which will consume more time or even be impossible to solve.
Additionally, this is a multi-stage planning problem, where the decisions of each type of
controller are not made at the same stage. To overcome these difficulties, a model-free
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method based on deep reinforcement learning is introduced to solve the problem, which is
detailed in Section 3.

3. Deep Reinforcement Learning Solution

In this section, the voltage control problem is first formulated as an MDP, and then
a model-free solution based on deep reinforcement learning is put forward, in which the
control variables of different controllers are assigned to different agents. The solution of
discrete variables is based on a DQN agent while the solution of continuous variables is
based on a DDPG agent.

3.1. Markov Decision Process

In order to solve the voltage control problem with DRL algorithms, the optimal
configurations of different controllers have to be modeled as an MDP. An MDP is defined
by the tuple (S, A, P, R, γ), and it is used to describe the interaction process between the
agents (i.e., different controllers) and the environment (i.e., the power flow of distribution
systems). In this paper, for each agent, the state space S is continuous while the action space
A is either discrete or continuous. P, usually unknown, is the state transition probability
indicating the probability density of the next state st+12∈S under the current state st and
action at. R is the reward on each transition, which is denoted as rt =R(st, at), and γ∈[0, 1] is
the discount factor. Then, the goal of the voltage control problem is to solve the MDP—that
is, to learn the optimal policy of each agent to maximize the reward, which is associated
with the long-term average voltage deviation.

In DRL algorithms, the policy µ, expressed as µ(a|s), is a mapping function of the
action at taken by the agent in the state st. During the training process, the action-
value function, also called the Q-function, represents the expected discounted reward
after taking action a in the state s with policy µ, and can be denoted as Qµ(s, a) =

Eµ

[
∑Tall

k=0 γkrk

∣∣∣s0 = s, a0 = a
]
, where Tall is the episode length. Using the Bellman equation,

the Q-function can be further expressed as Qµ(st, at) = Eµ

[
rt + γQµ(st+1, at+1)

∣∣st, at
]
.

Then, solving the optimal policy µ* is equivalent to solving the optimal Q-function, that is,
Qµ
∗ = max

µ
Qµ(s, a).

3.2. DQN-Based Agent for Discrete Variables

The configurations of the capacitors are made at the beginning of each interval T. For
the discrete variables of capacitors, a DQN—a value-based DRL method—is introduced to
handle the control problem with continuous state space and discrete action space.

The classic DQN method, based on the Q-learning method, uses a deep neural net-
work (DNN) to estimate the continuous Q-function, and the DNN can be indicated as
a Q network, that is, Qµ(s, a; θQ), whose input is the state vector and output is the Q-
values for all possible actions. The experience replay buffer D is used to store experiences
eT = (sT, aT, rT, sT+1), and a mini batch is applied to store M randomly sampled experiences.
In order to update the parameters of the Q network, a target Q network is employed with
the parameters of θ′Q. Then, using stochastic gradient descent (SGD), the parameters of the
Q network can be updated based on the mini batch and the loss function, which can be
expressed as

L
(
θQ
)
= E

i∈M

[(
ri + γmax

a′
Qµ

(
si+1, a′;θ′Q

)
−Qµ

(
si, ai;θQ

))2
]

, (17)

where the parameters of the target Q network θ′Q are updated by copying the parameters
of the Q network θQ periodically for every B.

For the capacitor agent, the state consists of the average positive power of each
bus during the interval T and the action during the last interval T-1, that is, scap(T) =[
PT

(T), aT
cap(T − 1)

]T
. The action acap(T) = [acap,1(T), . . . ,acap,Ncap(T)]T is defined as the
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configurations of capacitors, where acap,i(T)∈{0, 1} and Ncap is the number of capacitors.
When the state scap(T) is fed into the input layer and passes through the hidden layers, the
output layer generates the Q-values of the particular configurations of all capacitors with a
total number of 2Ncap neurons. Then, the action having the maximum Q-value is selected for
the next interval. To meet the control object, the reward is designed as the negative of the

voltage deviation of all buses, which can be expressed as rcap(T) = −
Nt
∑

t=1

N
∑

i=1
(Ui(T, t)− 1)2.

In order to ensure that the agent can both explore the unknown environment and
make use of the knowledge it has already grasped, the ε-greedy strategy is employed to
select action; that is,

aT =

 random A β < ε
argmax

aT∈A
Qµ

(
sT , aT ;θQ

)
β ≥ ε (18)

where ε∈[0, 1] and is a constant, and β∈[0, 1] and is randomly generated by computer.
When β < ε, the agent randomly selects an action in the action space; otherwise, the agent
selects the action that has the maximum Q-value in the current state.

The capacitors’ configuration based on the DQN is depicted in Figure 1. During the
training period, the agent selects actions based on (18), while during the execution process,
based on the current state, the agent selects the action that has the maximum Q-value.

Figure 1. The control of capacitors based on the DQN agent.

3.3. DDPG-Based Agent for Continuous Variables

Based on the configuration of capacitors in the intervals, the outputs of PV inverters
and batteries are adjusted at the beginning of each slot t. For the continuous control
variables of PV inverters and batteries, DDPG is applied to deal with the control problem
with continuous state space and continuous action space.

The DDPG method not only employs a DNN to simulate the Q-function, but also uses
a DNN to estimate the policy function. It adopts a typical actor–critic framework, which
realizes the policy action and action evaluation by designing the actor network µ(s; θµ) and
critic network Qµ(s, a; θQ), respectively. Like the DQN, the target actor network µ’(s, θµ’)
and target critic network Q’µ’(s, a; θQ’) are also applied.



Energies 2021, 14, 3540 7 of 15

During the training process, the continuous action is decided based on the follow-
ing function:

at = µ
(
st;θµ

)
+ ξt (19)

where ξt is the noise used to randomly search actions in the action space. Experience replay
buffer and mini batch are also employed. Then, the critic network can be updated by
minimizing the loss function as in (17); that is,

L
(
θQ
)
= E

i∈M

[
yi −Qµ

(
si, ai;θQ

)]2 (20)

yi = ri + γQ′µ
(
si+1, µ′

(
si+1;θµ′

)
;θQ′

)
. (21)

The actor network can be updated using the policy gradient, which can be expressed as

∇θµ
µ = E

i∈M

[
∇aQ

(
si, ai;θQ

)
· ∇θµ

µ
(
si;θµ

)]
. (22)

Then, the target networks are soft-updated as follows:

θ′Q = λθQ + (1− λ)θ′Q (23)

θ′µ = λθµ + (1− λ)θ′µ, (24)

where the parameter λ� 1.
For the PV inverters and batteries agent, the state consists of the voltage amplitude of all

buses and the state of charge of batteries at time t, that is, sPVbatt(t) = [UT(t), SOCT(t)]T. The
action includes the action variables of PV inverters and batteries, that is, aPVbatt(t) = [aT

PV(t),
aT

batt(t)]
T, aPV(t) =

[
aPV,1(t), . . . , aPV,NPV (t)

]T, and abatt(t) =
[
abatt,1(t), . . . , abatt,Nbatt

(t)
]T,

where NPV and Nbatt are the number of PV inverters and batteries, respectively, and
aPV,i(t)∈[−1, 1] and abatt,i(t)∈[−1, 1]. The reward is designed similarly to that of the ca-

pacitors agent, which can be denoted as rPVbatt(t) = −
N
∑

i=1
(Ui(t)− 1)2.

Furthermore, the action implementation method of forced constraint output is adopted
in order to take the capacity boundaries of batteries into account—that is, when SOCi(t + 1)
= SOCi(t) + aPV,i(t)·Pmax

batt,i is outside of the upper and lower boundaries, only the amount
of chargeable (dischargeable) power SOCi.max – SOCi(t) (SOCi(t) – SOCi.min) is charged
(discharged).

The control of PV inverters and batteries based on DDPG is demonstrated in Figure 2.
During the training period, the state sPVbatt(t) is fed into the actor network and an action
aPVbatt(t) is generated based on (19). Then, the state and action enter the critic network and
the corresponding Q-value is generated. During the execution period, with well-trained
networks, the agent chooses its action based on the state, that is, aPVbatt(t) = µ(sPVbatt(t); θµ).
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Figure 2. The control of PV inverters and batteries based on DDPG agent.

3.4. Algorithm and Computation Process

The two-timescale voltage control for distribution systems based on DRL is demon-
strated in Algorithm 1.

Algorithm 1 Two-timescale voltage control scheme for distribution systems based on DRL.

1: For the capacitors agent based on DQN, initialize the parameters θQ,DQN randomly; initialize the target Q network
with θ′

Q,DQN = θQ,DQN; initialize replay buffer DDQN
2: For the PV inverters and batteries agent based on DDPG, initialize the actor and critic networks with θµ,DDPG and θQ,DDPG;

initialize target actor and critic network with θµ’,DDPG =θµ,DDPG, θQ’,DDPG =θQ,DDPG; initialize replay buffer DDDPG
3: Initialize capacitors agent state sDQN1
4: for T = 1 to NT do
5: Get the action acapT from (18)
6: Execute acapT in the power flow environment and get the initiation state of DDPG agent: sPVbattT1
7: for t = 1 to Nt do
8: Get the action aPVbattTt from (19); execute aPVbattTt in the power flow environment and get the reward rPVbattTt

and new state s’PVbattTt
9: Store the experience in the replay buffer DDDPG
10: Sample a random mini batch from DDDPG and update the actor and critic networks using (20), (21) and (22).
11: Soft update the target actor and critic networks using (23) and (24)
12: end for
13: Get the reward of capacitors rcapT; get the new state s’capT
14: Store the experience in the replay buffer DDQN
15: Sample a mini batch randomly from DDQN and update the Q network for DQN
16: if mod(T,B) = =0 then
17: Update the target Q network for DQN: θ′

Q,DQN=θQ,DQN
18: end if
19:end for

4. Numerical Study

In this section, the implementation details of the proposed two-timescale voltage
control scheme based on DRL are described.

4.1. Simulation Setup

A modified IEEE 123-bus distribution test system was applied to carry out the numer-
ical tests. Based on the original 123-bus multi-phase unbalanced network [21], the system
was changed into a balanced system and the numbering of each node was reorganized as
shown in Figure 3. Twelve PV units with smart inverters were installed at 12 buses, and
their capacities and locations are listed in Table 1. Four capacitors were installed in the grid
at buses 20, 59, 66, and 114, each with a capacity of 40 kvar. Four energy storage batteries
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were installed at buses 56, 83, 96, and 116, each with a maximum capacity of 600 kWh and
rated charge/discharge power of 100 kW. The load power was modified from the real data
of an area in Jiangsu province, China (i.e., on each bus, the peak load value was set to the
sum of the loads on three phases in the original 123-bus distribution network, and the load
curve after standardization was the same as that after the standardization of the real load
of an area in Jiangsu province, China). Thus, the load value of each bus was equal to the
load curve multiplied by its peak load. All parameters in this distribution system were
converted to a consistent base, where the base voltage was 4.16 kV and the base power was
100 MVA.

Figure 3. The modified IEEE 123-bus system topology.

Table 1. The capacities and locations of 12 installed PV units.

PV Location PV Capacity PV Location PV Capacity PV Location PV Capacity

24 300 kW 63 300 kW 92 400 kW
31 300 kW 70 400 kW 100 400 kW
39 200 kW 79 400 kW 106 300 kW
50 400 kW 87 200 kW 113 200 kW

In the theory of DRL, the parameters that define the architecture of the NNs are
of great importance, and the selection of architecture depends on the actual application
scenario. For example, convolutional neural networks (CNNs) are often used to deal with
complex problems in the image domain, whereas recurrent neural networks (RNNs) are
often used to process sequence data. For the voltage control problem raised in this paper,
a fully connected NN was sufficient for the task at hand. Based on [22], the number of
hidden layers was chosen to be 2 and the number of neurons in each hidden layer was
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first selected according to that in the upper layer and the lower layer. Then, the model was
trained, the output was checked to see if there was overfitting, and the parameters were
adjusted until a satisfactory output was obtained. According to the above system setting,
the four capacitors generated 24 = 16 combinations of discrete actions, and the PV inverters
and batteries produced 16 continuous actions. For the DQN agent, the Q network consisted
of three fully connected layers: one input layer, two hidden layers with 95 and 22 neurons,
respectively, and one output layer with 16 neurons. The sigmoid function was used at the
end of the output layer to keep the Q-value within [0, 1]. For the DDPG agent, the actor and
critic networks were also composed of three fully connected layers, with hidden layers of
90, 30 units, and 46, 14 units, respectively. The output layer of the actor network consisted
of 16 neurons and the output layer of the critic network had 1 neuron. The tanh function
was applied at the end of the actor network to keep the action variables within [−1, 1].
All the hidden layers used rectified linear unit (ReLU) as the activation function. The
detailed settings of other hyper-parameters are declared in Table 2. Optimal power flow
was employed as the environment for these DRL agents. The proposed algorithm was run
in Python using the Pytorch framework, and the training process was executed on CPU.

Table 2. Settings of other DRL parameters.

Item Value

Replay buffer size for DQN agent 50
Mini-batch size for DQN agent 8

Target Q network updating cycle 10
Learning rate for DQN network 0.01

Replay buffer size for DDPG agent 1000
Mini-batch size for DDPG agent 64
Learning rate for critic network 0.001
Learning rate for actor network 0.001

Discount factor 0.99
Soft-updating parameter λ 0.005

4.2. Case Study

In this subsection, we evaluate the performance of the proposed DRL scheme using
the modified IEEE 123-bus system. A total of 2880 data points, comprising load data and
PV outputs, were used as training data, as demonstrated in Figure 4. Meanwhile, another
288 data points were used as test data, as depicted in Figure 5.

Figure 4. The load data and PV output data in the training set.
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Figure 5. The load data and PV output data in the test set.

First, based on the optimal power flow, the voltage distribution of this grid without
any voltage control was analyzed. In this paper, the interval T was defined as 30 min and
the slot t was assumed to be 5 min. The PV outputs were based on the clear day in Figure 5.
The buses experiencing voltage issues were bus 1, bus 2, bus 7, and bus 123, which violated
the maximum voltage limit of 1.05. Take for example the voltage amplitudes at bus 1 and
bus 24 (with PV unit installation), which are depicted by the blue curve in Figure 6.

Figure 6. Voltage profiles under different methods on a clear day. (a) Voltage amplitude at bus 1, (b) Voltage amplitude
at bus 24.
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Then, the learning performance of the proposed DRL method was investigated. Fol-
lowing the procedure shown in Algorithm 1, the DQN and DDPG agents were trained.
During the training process, the daily PV generation and load consumption combinations
were randomly chosen from the training set, as demonstrated in Figure 4, to represent
different grid operation conditions. Training was performed for 300 episodes, and each
episode finished after training 288 samples from one day. Figure 7 displays the episode re-
ward values and average rewards in the training period, where the episode reward value is
the sum of all the rewards obtained during a given episode and the average reward value is
the average of every four episode reward values. It can be observed that in the early stages
the reward value was very low because of the limited learning experiences. As the training
process continued, the agents gradually evolved and the reward value increased. Later, the
reward curves fluctuated due to the random control attempts of both the DQN and DDPG
agents to determine the correct policy actions. After about 60 episodes, the reward curve
flattened out gradually, indicating the DRL agents’ ability to realize voltage control.

Figure 7. The rewards of DRL agents during the training process.

During the test period, the trained DRL agents were employed to control the capacitors,
batteries, and PV inverters according to the test data in Figure 5, and the PV outputs were
based on the clear day. As demonstrated in Figure 6, compared with the case without
voltage control, these trained DRL agents demonstrated an effective performance for
voltage control and all bus amplitudes were maintained within the safety limit, especially
the buses having voltage issues. Thus, we can conclude that the proposed algorithm enables
the controllers to explore the relationship between their configurations and the inherent
uncertainty and variability in the PV outputs and load power, and to take corresponding
policies when faced with new operating conditions.

4.3. Comparison with the Model-Based Optimal Control Scheme

In order to compare the performance of the proposed DRL method, a model-based
optimal control scheme called a two-stage optimal control scheme was applied. The model-
based optimal control scheme aims to minimize the daily voltage deviation, and was
assumed to have full knowledge of the model and parameters of the distribution network.
In this method, the configurations of capacitors, batteries, and PV inverters were decided
at the beginning of each interval and the outputs of batteries and PV inverters were further
adjusted based on the capacitors configuration at the beginning of each slot.

As demonstrated in Figure 6, in most cases the control effect of the DRL-based method
was similar to or even better than that of model-based method, since the model-based
method considers the optimal control throughout a day, while the DRL-based method can
realize real-time control according to the current state of the power grid.

The execution time of the model-based control method and our proposed DRL-based
method targeting all of the day’s 288 samples is demonstrated in Table 3. It can be seen
that the proposed DRL-based method took only 0.1964 s, much less than the 1107.7629 s of
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the model-based method. Therefore, the proposed algorithm shows high computational
efficiency and has competitive potential in online application.

Table 3. Execution time of model-based control method and DRL-based method.

Method Time (s)

Model-based control method 1107.7629
Our proposed DRL-based control method 0.1964

In order to evaluate the dynamic response performance of the proposed DRL-based
controller under time-varying PV outputs, the case of a cloudy day was studied. The
outputs of the PV units were based on the cloudy day in Figure 5, which show a great deal
of fluctuation. The results of the model-based optimal control scheme and the proposed
DRL-based voltage control scheme are depicted in Figure 8. It can be seen that the proposed
DRL-based controller could respond quickly to the PV fluctuations, which is very important
in order to realize the demand of real-time control. Additionally, in the model-based
scheme, the controller needs prior knowledge of the PV outputs over a period of time,
which is often inaccurate in the case of PV fluctuations. In the proposed DRL-based
scheme, the controller adjusts its action based on the current state of the power grid, and is
more reliable.

Figure 8. Voltage profiles under different methods on a cloudy day. (a) Voltage amplitude at bus 1, (b) Voltage amplitude
at bus 24.

In order to evaluate the control performance of the proposed DRL-based voltage
controller under extreme weather conditions, a case study was carried out for a scenario
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where there were no PV outputs at all. The results of the model-based optimal control
scheme and the proposed DRL-based voltage control scheme are demonstrated in Figure 9.
The voltage amplitudes of all buses were controlled below 1.05 and it can be seen that the
proposed DRL-based controller still had better control performance without PV outputs.
From the results of Figures 7–9, it can be observed that the trained DRL-based controller
worked very well in different scenarios, and could adapt to similar but slightly different
data, which verifies the generalization ability of the proposed algorithm.

Figure 9. Voltage amplitude at bus 1 under different methods with no PV outputs.

5. Conclusions

In this paper, a two-timescale voltage control scheme based on a DRL method is
proposed to control multiple types of equipment, including capacitors, energy storage
batteries, and PV inverters, for optimal voltage control in the distribution network. Control
variables are assigned to different agents according to their properties, which share the same
environment and are trained simultaneously to cooperate with each other. Specifically,
the discrete variables are solved using a DQN agent and the continuous variables are
solved using a DDPG agent. A specially designed reward is applied to achieve the goal of
minimizing long-term average voltage deviation. Case studies showed that the proposed
algorithm had similar or even better performance than the model-based optimal control
scheme, and had high computational efficiency, enabling the realization of real-time control.
Additionally, the proposed DRL-based controller could adjust its action based on the current
state of the power grid. It had better dynamic response performance and could enact a quick
response to PV fluctuations. Future work will focus on designing the reward function to
achieve more control objectives and take various operating constraints into consideration.
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