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Abstract: Electricity Distributions Networks (DNs) are changing from a once passive to an active
electric power system element. This change, driven by several European Commission Directives
and Regulations in the energy sector prompts the proliferated integration of new network elements,
which can actively participate in network operations if adequately utilized. This paper addresses the
possibility of using these active DN elements for optimization of a time-discrete network operation in
terms of minimization of power losses while ensuring other operational constraints (i.e., voltage pro-
files and line currents). The active elements considered within the proposed optimization procedure
are distributed generation units, capable of reactive power provision; remotely controlled switches
for changing the network configuration; and an on-load tap changer-equipped substation, supplying
the network. The proposed procedure was tested on a model of an actual medium voltage DN. The
results showed that simultaneous consideration of these active elements could reduce power losses
at a considered point of operation while keeping the voltage profiles within the permitted interval.
Furthermore, by performing a series of consecutive optimization procedures at a given time interval,
an optimization of network operations for extended periods (e.g., days, months, or years) could also
be achieved.

Keywords: active distribution network; active elements; reactive power provision; network reconfig-
uration; OLTC; minimization of losses

1. Introduction

The European Union is transitioning towards a low-carbon society, driven by Direc-
tives and Regulations in the energy sector concerned with the promotion of the use of
energy from renewable sources, with common rules for the internal market of electricity,
with risk-preparedness in the electricity sector, and with energy efficiency [1]. Novel re-
quirements for Distribution Network (DN) operation, presented in the “Clean Energy for
all Europeans” package [2], prompt the development and integration of new elements, an
electricity market, and services. If an element of a network can be controlled, it is an active
element. Otherwise, it is a passive element. The conventional methods of planning DNs,
based only on deterministic, network solution planning, worst-case, and fit-and-forget
methods, are considered obsolete and are being replaced by active planning approaches [3].
The consideration of active elements in these modern approaches should enable network
operations and operations in extreme, still permissible conditions to have greater flexibility,
which were previously not possible due to DN’s passive nature.

Furthermore, a proliferated introduction of Advanced Measuring Infrastructure (AMI)
aims to include system meters for all system users, a communication infrastructure that
allows for data transmission from system counters to measuring centers and a single
information system. If utilized and managed correctly, AMI should provide the input data
necessary for advanced network operation, design, and optimization algorithms.
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This paper deals with the optimization of DN operations in terms of minimization
of power losses at a considered point of operation by simultaneously determining the
optimal settings of active elements present in the network. A decrease in the voltage
level at which electricity is transferred through the network results in higher electric
currents and higher power and energy losses. Therefore, reductions in power losses in
Medium Voltage (MV) and Low Voltage (LV) parts of the electric power system are crucial
for improving its performance. Furthermore, reducing power losses also reduces CO2
emissions and improves DN efficiency, which coincides with the “Clean Energy for all
Europeans” package goals. The following literature review first provides an overview of
the approaches to DN optimization. It then focuses on the procedures that consider active
participation of reactive power provision, network configuration, and on-load tap change
(OLTC) equipped substations. Finally, it presents the novelties and contributions of the
proposed procedure by comparing it with similar approaches found in the literature.

Mathematical formulation and program implementation of various approaches to DN
optimization differ significantly in terms of implementation reliability, complexity, and
required computational effort, as certain techniques are more suitable for specific types of
problems. A comprehensive review paper [4] describes DN optimization from the view-
point of utilized optimization algorithms, including the selection of fitness functions and
decision variables, loading models, size of the test networks, planning type, and planning
period. This review concludes that, although various optimization algorithms have already
been applied to various aspects of DN optimization problems, the development of efficient
algorithms capable of escaping from local optima and finding near-global solutions re-
mains an important issue. Sedghi et al. [5] outlined the main advantages of meta-heuristic
algorithms for DN planning, compared to the classical, nowadays, considered outdated
algorithms, such as the transportation [6] or branch and bound algorithms [7]. Within
the metaheuristics, the authors of [5] distinguished between trajectory-based algorithms
(e.g., branch exchange, simulated annealing, and tabu search) and population-based (e.g.,
genetic and evolutionary algorithms, ant colony, particle swarm optimization, and hybrid
methods) and compared them. They concluded that the individual metaheuristics’ capa-
bility depends on the dimension and complexity of the problem and finds that hybrid
methods modified for specific problem solving show the most promising results, which is a
similar conclusion to the one given in [8]. Additional literature surveys on the metaheuristic
methodologies for minimization of power and energy losses are found in [4,9]. The papers
compare different approaches, such as network reconfiguration, optimal installation of
distributed generation (DG) units, their participation in reactive power provision, optimal
placement of capacitor banks, optimal operation of tap-changer equipped substations, and
demand response. Different approaches to solving a mixed-integer, nonlinear optimization
problem for network reconfiguration aim to improve the computational efficiency and
convergence characteristics and to reduce the possibility of selecting a local optimal solu-
tion. Examples of such approaches include simulated annealing [10,11], particle swarm
optimization [12,13], evolutionary algorithms [14–16],fuzzy frameworks [17], and artificial
neural networks [18,19]. Sultana et al. concluded that metaheuristic methods for network
reconfiguration require fewer calculations and may converge to a final feasible solution
quickly [20]. Although designed and built in a meshed topology, DN operates almost
exclusively in a radial configuration [21]. The development of modern switching gears
enabled more frequent changes in radial configuration, which could, provided AMI and
proper algorithms, be utilized to optimize real-time operation [22]. Studies performed
on real networks, considering fixed vs. hourly changes in network configurations [23,24],
concluded that network reconfiguration results in a reduction in power losses. However,
they emphasized caution when increasing the number of switching actions since these
cause transient phenomena and reduce the devices’ lifespan. Studies that also considered
the presence of DG of constant [25] or variable power generation [22], and multi-criteria
operation cost optimization [26] concluded that the benefits for the network outweigh the
concerns mentioned above due to the volatile nature of DG.
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The optimal reactive power provision by DG units in the network can reduce the
network’s power losses [27–29] and shows excellent potential as an ancillary service
provider [30]. Micro-inverters of photovoltaic (PV) systems result in greater network
operation flexibility through optimal reactive power generation. However, the inverter’s
efficiency characteristics should be taken into account, as they are dependent on the amount
of reactive power generated [31].

OLTC is a mechanical device that enables open-loop voltage control by varying
the transformer turn ratio under load [32]. Once present only in primary distribution
substations (DSSs), OLTC equipped transformers are nowadays also installed within
secondary DSSs. Vacuum-type OLTCs require no scheduled maintenance in their lifetime
(300,000 up to 600,000 tap operations, i.e., from 20 to 40 tap operations per day during
a 40 year-long lifespan [32]), which makes them particularly suitable not only in the
improvement of voltage profiles [33,34] but also in the reduction of network losses [35,36].
An example of the combined consideration of optimal reactive power provision and
reduction in unnecessary tap operations also shows that minimization of power losses can
be achieved while performing voltage control [37,38]. Although the approaches mentioned
above offer specific solutions to optimizing various aspects of network operation, they lack
the simultaneous consideration of active elements selected in the proposed procedure, with
the objective to minimize power losses and to ensure operational constraints.

The procedure proposed in this paper is formulated as a nonlinear and constrained
optimization problem, where the Differential Evolution (DE) algorithm [39] is used as
the optimization tool. The active elements considered are DG units, capable of active
participation in reactive power provision; remotely controlled switches for changing the
network configuration; and an OLTC equipped substation, supplying the network. The
search population, evaluated using a DE algorithm, finds optimal settings of these active
elements, while constraints ensure proper ampacities of line segments and voltage profiles
defined within EN 50160 [40]. Even though the same set of active elements can also be
found in [41,42], their role in network operation, the optimization method, formulation
of objective and constraint functions, and the type of test site considered are different. In
our paper, the role of active elements in optimizing DN operation is the minimization of
power losses while ensuring proper voltage profiles and line ampacities. Furthermore,
our procedure is intended as a tool for online optimization of network operation, while
the authors of [41] proposed a network planning tool and those of [42] offered a model
for reactive power optimization. The IEEE 33-node network model was utilized in [41,42]
while the proposed procedure was developed during the demo project on an actual DN to
analyze the time-dependent role of installed active elements in minimizing power losses.

This paper simultaneously considers the active network elements in a network and
gives them new roles in optimizing network operations through the proposed proce-
dure. Therefore, the novelties and main contributions presented within the paper include
the following:

• development of a computationally efficient and reliable optimization procedure for
minimization of power losses at a considered point of operation using reactive power
generation, network reconfiguration, and an OLTC equipped substation;

• at the same time, the procedure ensures proper voltage profiles and line ampacities;
• the procedure is scalable and flexible as it can be modified to include additional types

of active elements and their increase in numbers;
• the procedure is intended to be used as a standalone tool for optimizing a single

operation point or in a series of time-discrete optimization procedures in which
long-term network operation is improved; and

• the procedure is intended to be easily implemented in real-world networks and to
provide the proper measurement and communication infrastructure.

Improvement of a time-discrete and daily DN operation that can be achieved using
the proposed procedure is demonstrated on a model of a real MV network. The considered
network was a part of a smart grid demo project funded by Japanese technology agency
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NEDO and Slovenian Transmission system operator Eles d.o.o., implemented in Slovenian
distribution networks.

The rest of the paper is structured as follows. The second section introduces and
explains the proposed procedure for optimizing a DN operation through the utilization of
active DN elements. The procedure is tested on a model of an actual MV DN through a case
study presented in Section 3. The results obtained by implementing the procedure on the
chosen test site are presented in Section 4, followed by the fifth section, which concludes
the paper.

2. Methodology

A flowchart of the proposed procedure for optimization of a time-discrete DN opera-
tion using active elements is presented in Figure 1. The procedure comprises nine steps,
marked (a)–(i) in Figure 1 for clarity purposes.

No

Start

Create a model of the distribution network (a)

Input data for active elements (b)
reactive power generation  

network configuration 

OLTC tap position

Optimal active el. parameters (i)
reactive power generation (xp,1) 

network configuration (xp,2)

OLTC settings (xp,3)

Initialize optimization (search population xp, DE 

parameters, maximum number of iterations) (d)

Calculate new power losses 

Ploss(xp) (e)

Evaluate fitness function qfun(xp) (f)

Maximum number of 

iterations exceeded (g)

End

Yes

Optimization Module

(differential evolution-based)

Perform mutation, crossover and 

selection on search population xp

(h)

Calculate power losses in the network Ploss      (c)
orig

Figure 1. Flowchart of the proposed procedure for optimization of a network operation.

First, an evaluation of the operation state for the original network conditions is per-
formed. Then, a detailed model of the considered network is created (step (a)). The initial
settings of the considered active elements, i.e., the actual reactive power generation, net-
work configuration, and OLTC’s tap position at a considered time point and other loading
and generation data, are provided in step (b). Based on these information, power losses for
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the original network conditions are calculated (Plossorig
) using a backward–forward sweep

method [43] for load flow calculation. From here, optimization of the procedure follows,
i.e., the optimization module, which was implemented based on a DE algorithm [39]. The
role of the optimization module is to find a vector of search parameters xp that minimizes
the chosen fitness function q f un. In this paper, a vector of the search population defines the
operational parameters, i.e., settings of the considered active elements, and their formula-
tion is discussed in the following subsections. The optimization module comprises five
steps, marked (d)–(h) in Figure 1. Step (d) includes the initialization of the vector of search
population xp as well as the other optimization parameters, such as the maximum number
of iterations, the crossover and mutation parameters, and the strategy for selection of new
generations of a search population. For every vector of search population xp considered,
the DE algorithm recalculates power losses (step (e)) and evaluates the corresponding
value of the chosen fitness function q f un (step (f)), with the goal of minimizing power losses
while ensuring proper voltage profiles and preventing thermal overloading of power lines.
The evaluation is performed until the maximum number of iterations is exceeded (step (g)).
In the end, the optimization module returns the optimal settings of active elements (i.e.,
reactive power generation, network configuration, and tap position of the OLTC) for which
the network operates with minimum losses (step (i)).

The fitness function q f un is formulated with the objective to minimize the power
losses in a time-discrete point, i.e., in the form of a quotient between the power losses
of a currently evaluated solution Ploss and losses of the initial network operation Plossorig

,
as given in (1). During every evaluation of q f un in step (f), penalty p is applied if any of
the defined constraints is violated, i.e., a search parameter not on a permitted interval
xp,i /∈ [0, 1] or the occurrence of undervoltages, overvoltages, or thermal overloading.

q f un
(
xp
)
=

Ploss(xp)

Plossorig

+ p (1)

The vector of search parameters is a three-element vector xp = {xp,1, xp,2, xp,3}. Pa-
rameter xp,1 searches for the optimal share of reactive power generation by DG units, the
parameter xp,2 searches for the optimal network configuration, and parameter xp,3 searches
for the optimal tap position of the OLTC equipped DSS supplying the network. DE, in
its original formulation as given by its authors [39], searches for the optimal solution in a
continuous space, i.e., in a set of real numbers xp ∈ R, usually on a normalized interval
xp ∈ [0, 1]. However, network configuration and the tap position of OLTC are defined by
discrete values and are selected from the set of positive integers Z+ and a complete set
of integers Z, respectively. Therefore, some modifications of the original code, given by
the authors of the DE [39], had to be made to allow for selection of the optimal network
configuration and tap position from the set of integers. The idea of utilizing a DE for finding
a solution that is not in a continuous space is not a new one, and different approaches to
solving binary [44–46], or integer and mixed-integer differential evolution [47,48] can be
found. The transition from a continuous to discrete search space, utilized for determining
optimal network configuration and tap position, is discussed in Sections 2.2 and 2.3.

2.1. Reactive Power Generation

The optimal value of the first search parameter xp,1 determines such reactive power
generation from the DG units integrated within the network, for which the network
operates with minimum power losses. Its value is the same value for all DG units, thus
ensuring reactive power generation impartiality between the individual units. Reactive
power generation is defined as a relative share of active power generation on the interval
[−0.75, 0.75]. A positive sign represents the capacitive, and a negative sign represents the
inductive nature of the generated reactive power. The maximum allowed share (±75%)
is determined from [49], which states that DG units integrated within the network must
operate with a power factor up to cos ϕ = 0.8. Using the phasor representation of a complex
power in Figure 2, and basic relations between the amplitudes of its real component (active
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power) Pgen and imaginary component (reactive power) Qgen, the percentage (75%) can
be obtained by (2). A reactive power generation Qgen in any observed time point is then
defined as a share of active power generation Pgen in the same instance, using the value of
the search parameter xp,1 (3). The linear function q(xp,1), which occurs in Figure 2 and (3),
describes how the interval in which the independent variable is defined xp,1 ∈ [0, 1] and
translated into the dependent variable’s interval q ∈ [−0.75, 0.75], as illustrated in the
upper left corner in Figure 2.

Qgen = Pgen tan(arccos 0.8) = 0.75Pgen (2)

Qgen = q(xp,1) Pgen =
(
1.5xp,1 − 0.75

)
Pgen (3)

Pgen

cos φ

0.75 Pgen

-0.75 Pgen

1

Sgen

0.8

Qgen

Qgen=q(xp,1) Pgen

0.8Sgen

capacitive 

nature

inductive 

nature

10 xp,1

q

q(xp,1)=(1.5xp,1 - 0.75) 

Figure 2. Phasor diagram of a complex power.

2.2. Network Reconfiguration

The second active element considered in this paper is a remotely controlled switch
for changing the configuration in which the network operates. Its active participation
in this paper is referred to as network reconfiguration. When appropriately utilized, the
time-variant network reconfiguration can facilitate higher cost-effectiveness, efficiency,
reliability, and power quality. However, some challenges remain in terms of network
protection and stability [50,51].

In the proposed optimization algorithm, the second search parameter xp,2 is used
for finding such a network configuration, which yields the minimum power loss at a
considered operation point. The search parameter is defined on a normalized interval
xp,2 ∈ [0, 1]. This search interval is then divided into n CF subintervals, where n CF equals
the number of considered network configurations. Then, any value of xp,2 on the ith
subinterval corresponds to the ith configuration, as presented in Figure 3. For example, the
first configuration NCF{1} is returned for x p,2 =

[
0, 1

nCF

)
and the second configuration

NCF{2} is returned for xp,2 =
[

1
nCF

, 2
nCF

)
, where vector NCF = {1, 2, . . . , nCF} represents

pointers to all possible network configurations.
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......0 1

2nd 

config.

1st 

config.
ith  

config.

nth
 

config.

xp,2
NCF {1} NCF {2} NCF {i } NCF {nCF}

} }} }
nCF

1
nCF

2
nCF

i

Figure 3. Discretization of a search space.

Index NCF of the radial configuration yielding minimum power losses represents an
element of a vector of possible network configurations NCF. It is determined from the value
of search parameter xp,2, as given in (4). In other words, search parameter xp,2 is used in the
calculation of a pointer to an individual network configuration NCF. Even though the DE
has to search for an optimal solution in discrete space, some of the nature of continuity is
maintained by sorting the indices of radial configurations in the same order as the remotely
controlled switches occur along the feeder. This way, opening consecutive switches along
the line causes a gradual increase or decrease in power losses, as the network loads are
transferred gradually from one feeder to another. Therefore, a proper ordering of indices
in vector NCF plays an important role in preventing the local minima in which the DE may
get stuck.

NCF = NCF

{
bxp,2 · nCFc+ 1

}
(4)

2.3. Operation of OLTC

An OLTC is a mechanical device installed inside a transformer tank or mounted in a
separate compartment normally welded to the transformer. It enables voltage control by
varying the transformer turn ratio under load without interruption in the electric energy
supply. The change in turn ratio is performed by adding or subtracting turns from high- or
low-voltage winding, using the control or tap winding connected to the OLTC. The voltage
between the taps represents the step voltage Pstep [32]. The basic performance design of
an OLTC, “make before break”, allows for operation under load, as a resistor (or reactor)
can connect two adjacent taps and can transfer the load from one tap to the other without
supply interruption or a significant change in the load current. Simultaneously, they limit
the circulating current for the period when both taps are used [32]. Advanced algorithms
for active control of OLTC may be utilized to enable such an OLTC operation, which in
addition to performing voltage control, can also minimize the power losses [52]. Similarly,
the OLTC in this paper is utilized for both minimizing power losses and ensuring proper
voltage profiles through given fitness and penalization functions, respectively.

An MV busbar of an OLTC equipped DSS supplying a network represents the slack
node of a network model. The voltage amplitude V1 of the slack node, for the tap positions
Ntap ∈ N tap, is determined using (5), with VbaseMV being the base voltage of an MV part of
the network.

V1 = VbaseMV + Ntap
Pstep

100%
VbaseMV (5)

The vector of possible tap positions N tap is a symmetrical vector of negative and
positive integers determined from the number of all tap positions for a considered OLTC
device nTC using (6).The optimal tap position of OLTC Ntap ∈ Z is an integer number
determined from the search parameter xp,3 ∈ [0, 1]. The problem of transition from a
continuous to a discrete space is resolved by dividing the interval xp,3 into nTC subintervals
as depicted in Figure 3, with each subinterval corresponding to an individual tap position.
Parameter xp,3 plays a role in choosing the optimal tap position, i.e, it is used in a calculation
of a pointer to an individual tap position Ntap (7). Voltage control from the lowest tap
position − nTC−1

2 towards the highest one nTC−1
2 results in a gradual increase in the voltage,
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which is suitable for searching for an optimal tap position with the DE algorithm, as there
are no local minima in the search space.

N tap =

{
−nTC − 1

2
, . . . , 0, . . . ,

nTC − 1
2

}
(6)

Ntap = N tap

{
bxp,3 · nTCc+ 1

}
(7)

2.4. Loading Models

The behavior of the loads with respect to the supply voltage has a great impact
on the operation of network elements [53]. Therefore, polynomial models of the active
Pload,i (8) and reactive power Qload,i (9) consumed in a node i with voltage amplitude Vi
are utilized [54]. The pairs of coefficients for defining constant power, constant current,
and constant impedance loading models are (a0, b0), (a1, b1), and (a2, b2), respectively.
These coefficients represent the independence, linear dependency, and quadratic voltage
dependency of active Pload,i and reactive power Qload,i and correspond to the constant
power, constant current, and constant impedance loading models, respectively. Each
pair of coefficients describes the share of a single model in the whole polynomial model.
Therefore, the sum of coefficients for active and reactive power has the value 1, as given
in (10) and (11).

Pload,i = Pload,i

(
a0 + a1Vi + a2V2

i

)
(8)

Qload,i = Qload,i

(
b0 + b1Vi + b2V2

i

)
(9)

a0 + a1 + a2 = 1 (10)

b0 + b1 + b2 = 1 (11)

3. Test Site

The following section presents an actual MV network model used in a case study of
optimization of a network operation by utilizing active elements. The network considered
within simulations in Section 4 was included in the Slovene–Japanese smart grid project
NEDO and was equipped with the above standard devices, functionalities, and network ob-
servability. Although above standard, the measurement and communication infrastructure
is still insufficient to provide the exact value of power losses in the network, since power
generation and consumption data are not provided for all network users. Therefore, DN
operation simulations are still used when discussing and assessing network losses since the
required measurements cannot be performed. Furthermore, minimization of power losses
was not the primary goal of the abovementioned project, and our paper analyzes how the
newly installed active network elements could be used to improve additional aspects of
network operation.

The single line diagram of the considered MV network presented in Figure 4 was
used for the quasi steady-state analysis of the network operation. Three 20 kV feeders
were connected to the 110/20 kV transformer substation supplying 110 MV/LV DSSs and
30 DG units. The total rated power of the generation units was 1.25 MW, composed of the
PV systems and hydropower plants, in approximately the same share. Time-dependent
loading conditions in the discussed network were determined from power loading and
generation measurements for 5 July 2019, provided by the electric utility company. The
network model is composed of 296 nodes and 297 branches, forming two loops. Loops
can be opened or closed remotely by introducing relays with switching capability and
bi-directional communication between them, at 14 points (referred to as breakpoints), in
the considered part of the network. These elements enable the consideration of network
configuration as an active element of the network. A schematic presentation of the consid-
ered network is given in Figure 5, with 14 remotely controlled breakpoints, i.e., relays with
switching capabilities, marked by a red cross sign “×”.
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Figure 4. Single-line diagram of a test MV DN.

Figure 5. Schematic presentation of the locations of breakpoints in a test MV DN.

Numbers 1 to 22 in Figure 5 represent the indices of network configurations obtained
by decoupling two feeders. Opening some breakpoints can result in two or three possible
configurations, which is a result of the breakpoint being placed at the location of an MV/LV
substation, allowing the substation to be supplied by different feeders. In order to achieve
a radial configuration from the original meshed topology, two breakpoints from the sets
F1 (12) and F2 (13) must be opened. The number of possible radial configurations nCF is
then determined from the product of cardinalities of sets F1 and F2, marked |F1| and |F2|,
resulting in 72 possible radial configurations (14).
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F1 = {14, 1, 10, 11, 8, 7, 6, 5, 9, 4, 3, 18} (12)

F2 = {13, 2, 22, 21, 12, 20} (13)

nCF = |F1||F2| = 12 · 6 = 72 (14)

However, a detailed analysis, including the simulations and measurements performed
in the part of the network discussed during the NEDO project, has shown that the optimal
radial configuration always included decoupling Feeder 1 and Feeder 3 at a breakpoint
indexed 20. On the other hand, optimal decoupling of Feeder 1 and Feeder 2 was dependent
on an operational point and had to be carefully chosen each time. Therefore, an assumption
that decoupling Feeders 1 and 3 is independent of the operational point was made, reducing
the number of possible combinations from 72 to 12. In order to find the pointer in an optimal
network configuration NCF out of all of the vectors of possible radial configurations NCF
utilized by decoupling Feeders 1 and 2 (15), the expression given in (4) is rewritten as (16).

NCF = F1 = {14, 1, 10, 11, 8, 7, 6, 5, 9, 4, 3, 18} (15)

NCF = NCF

{
bxp,2 · 12c+ 1

}
(16)

The primary substation supplying the considered part of the network is equipped
with an OLTC, which allows for voltage control in a range ±16% of the rated voltage in
nTC = 25 discrete steps with 1.33% per step, i.e., tap positions ±12 · 1.33%. The amplitude
of the voltage of the slack bus V1 for the selected tap position Ntap is determined by (17).

V1 = VbaseMV + Ntap
1.33%
100%

VbaseMV , (17)

where

N tap =

{
−n TC − 1

2
, . . . , 0, . . . ,

n TC − 1
2

}
= {−12,−11, . . . , 0, . . . , 11, 12}, (18)

Thus, we rewrite (7) as (19).

Ntap = N tap

{
bx p,3 · 25c+ 1

}
(19)

4. Results

Four simulation scenarios were conducted to evaluate the impact of individual and
simultaneous considerations of an optimal reactive power generation by DG units, an
optimal network reconfiguration, and an optimal OLTC operation on power losses. The
following four cases were considered:

• Case 1: The impact of reactive power generation on power losses xp = {xp,1}
• Case 2: The impact of network reconfiguration on power losses xp = {xp,2}
• Case 3: The impact of OLTC operation on power losses xp = {xp,3}
• Case 4: The impact of simultaneous consideration of all three active elements on power

losses xp = {xp,1, xp,2, xp,3}
The initial network operation is considered the one in which the network operates in a

designed radial configuration (Feeders 1 and 2, and Feeders 1 and 3 decoupled as designed,
i.e., in breakpoints with indices 9 and 20—see Figure 5) and with the tap position of OLTC
set to +3 · 1.33%. Reactive power generated by DG units in the network is determined
from the available measurements. Power losses in a time-discrete operation state are first
determined for the initial conditions (Plossorig

), and then minimized through recalculation
of power losses with altered active elements’ settings (Ploss) as given in (1). Loads in the
network are represented using the constant power loading model (CPM) and constant
impedance loading model (CIM). The results given herein are grouped into two subsections
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and evaluate the impact of active elements’ optimal operations on a single, time-discrete
point of operation and daily operation.

4.1. Optimization of a Single Operation State

Optimization of the time-discrete operation state for loading and generation condi-
tions on 5 July 2019 at 9 a.m. is discussed in this subsection. The optimal settings of
the considered active elements determined individually (Case 1, Case 2, and Case 3) or
simultaneously (Case 4) are represented with variables q (3), NCF (16) and Ntap (19) and are
given in Table 1, together with the reductions in power loss achieved. The results are given
for CPM for demonstration purposes, while the effect of load modeling on active elements’
behavior is investigated in Section 4.2.

Table 1. Optimization of a single operation point for constant power loading model (CPM).

Optimization Results Case 1 Case 2 Case 3 Case 4

optimal search population xp xp,1 = 1.000 xp,2 = 0.805 xp,3 = 0.789 xp = {1, 0.789, 0.790}
optimal settings of active elements q = 0.75 NCF = 4 Ntap = 7 q = 0.75, NCF = 4, Ntap = 7
reduction of power losses 4.77% 0.48% 10.14% 14.71%

The results given in Table 1 show that the individual roles of active elements in the
minimization of power losses differ significantly. In Case 1, a reduction in power losses
by 4.77% is achieved when DG units generate the maximum allowed amounts of reactive
power of a capacitive nature. The compensation of reactive power flows in the network
depends on network loading conditions, location, and active power generation by DG units
that participate in the reactive power provision. In this case, DG units were insufficient to
reverse active or reactive power flows. Thus, DG units were allowed to generate as much
reactive power as possible.

A reduction in power losses by merely 0.48 % is achieved when the breakpoint with
index 4 neighboring the initially opened breakpoint indexed 9 is opened (see Figure 5).
The original topology of the MV test site was well designed and already operated in near-
optimal configuration. The algorithm, however, determined that a slight change in the
network configuration can reduce power losses.

By changing the tap position of OLTC from the initial 3 · 1.33% to the optimal 7 · 1.33%,
as determined in Case 3, the power losses are reduced by 10.14%. Increasing the voltage
level at a slack node increases the voltage profile throughout the whole network. When
the loads are described using CPM, a reduction in power losses is achieved since higher
voltages require smaller line currents. A proper voltage level is ensured using penalization
functions, which prevent tap positions that cause violations of voltage constraints.

The last simulation scenario, i.e., Case 4, simultaneously determined the optimal
settings of the active elements considered, and as expected, the reduction in power losses
achieved was the highest (14.71%).

4.2. Optimization of a Daily Operation

The procedure proposed in this paper is intended to be a tool for the optimization of a
single operation state. However, if a series of time-discrete optimization procedures are
performed for several consecutive time-discrete points, the energy losses in the considered
interval are minimized. Therefore, 24 optimization procedures, representing every hour
on 5 July 2019, were conducted to assess the daily reduction in energy losses that can be
achieved. The reduction in energy losses achieved for four simulation scenarios, when
considering CPM and CIM, is presented in Table 2. Furthermore, the distribution of hourly
values of reduction in power losses for all considered cases is presented in Figure 6. The
results show that simultaneous consideration of all active elements, as expected, yields
the best results in terms of minimization of power and energy losses. By simultaneously
determining the optimal operation of active elements, the maximum reduction in power
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losses in the considered network was 18.06% in the case of CPM and 27.49% in the case
of CIM.

Table 2. Reduction in daily energy losses for different loading models.

Case 1 Case 2 Case 3 Case 4

reduction of daily energy losses (CPM) 3.65% 0.62% 10.20% 13.52%
reduction of daily energy losses (CIM) 3.09% 0.34% 13.53% 18.33%

Case 1 Case 2 Case 3 Case 4
scenario
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constant power loading model (CPM)
constant impedance loading model (CIM)

Figure 6. Distribution of hourly values of reduction in power losses.

Figure 7 utilizes the secondary y axis to present the reactive power demand in the
original network, when considering CPM and CIM, as well as the optimal reactive power
generation, determined by the proposed algorithm (Case 1). Power losses were minimized
at all considered points of operation and for both loading models, achieved when the search
parameter had the value xp,1 = 1 (3). This value yields the maximum allowed reactive
power generation, i.e., 75% of the active power generated. Even after increasing the reactive
power generation to the highest allowed value, the reactive power demand could not be
overcompensated. Therefore, the optimization algorithm always kept the reactive power
generation as high as possible in both loading models. The reduction in power losses
depends on the difference between the reactive power demand and generation at every
considered point of operation. This difference was somewhat smaller during the early
morning hours due to low consumption in the network and during the afternoon hours,
when the active power generated by the DG systems increases, thus increasing the reactive
power generation. These were the hours at which a more significant reduction in power
losses was achieved. The reduction was smaller when the network loads were represented
using CIM due to the increased total reactive power demand (compared to the CPM). Since
the reactive power generation was the same for both CPM and CIM, the share of reactive
power compensated was reduced in the case of CIM, thus increasing the power losses.
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Figure 7. Reduction in power losses by optimal reactive power generation (Case 1).

The results for 5 July 2019 at 9 a.m. given in Table 1 showed that optimal active
elements’ settings were the same for their individual and simultaneous considerations.
These values are not necessarily the same, as shown in Figures 8 and 9. The figures
respectively illustrate the hourly values of opened breakpoint indices and optimal tap
positions for Case 3 and Case 4. The figures present the results for CIM consideration, as tap
positions in the CPM case are kept at the highest possible value (tap position 7 · 1.33%),
and the difference is not as noticeable.
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Figure 8. Opened breakpoint indices for different simulation scenarios and constant impedance
loading model (CIM).
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Figure 9. Optimal tap positions for different simulation scenarios and loading models.

5. Conclusions

The proliferated integration of active network elements and the measurement and
communication infrastructure enable innovative approaches for evaluating and optimizing
DN operations. This paper presents a straightforward and computationally efficient
procedure that utilizes active elements to improve the technical aspects of a network
operation, such as minimization of power losses while ensuring the proper ampacities
and voltage profiles. The active elements considered within the paper are DG units,
capable of reactive power provision; remotely controlled switches for changing the network
configuration; and OLTC equipped substation, supplying the network. The proposed
procedure is scalable and flexible and can include increased numbers and additional types
of active elements. The novelties include simultaneous consideration of the aforementioned
active elements for achieving minimization of power losses of a time-discrete operation
state while ensuring voltage and current constraints. Furthermore, by performing a series of
consecutive optimization producers on a given time interval, the optimization of a network
operation for an extended period with arbitrarily time-discretization can be achieved.

Evaluation of the optimal participation of active elements, considered individually or
simultaneously, on a network operation was analyzed on a real MV network model. The
impact of a voltage profile on load behavior was also considered through two extreme cases,
i.e., all loads in the network represented using the constant power or constant impedance
loading model.

The results show that active participation of the DG units in local reactive power
provision could be used to optimize network operation. The extent to which DG units
can affect DN operation depends on their number, size, and location. Therefore, with the
anticipation of an increased number of DG units, it is expected that their role in improving
the voltage profile and in reducing power losses will also increase.

The network reconfiguration for a considered case study is the least efficient method
for reducing power losses, yielding only up to 1% reduction. However, the results do not
imply that network reconfiguration is an inappropriate measure but rather that the network
was already designed well and that the radial configuration in which the network operates
is almost the optimal one. The importance of time-dependent network reconfiguration will
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also increase with the integration of new network elements, increasing power demand,
and the volatile nature of DG units.

OLTC is already a well-known tool for voltage control. However, if properly utilized,
it can facilitate reductions in power losses as well. The optimal tap operation behavior
depends significantly on the loading model used and points to the importance of proper
modeling of network elements. Original daily energy losses in the constant impedance
loading model are higher than in a constant power loading model due to the aforemen-
tioned voltage dependency. Additionally, the percentage of reduction achieved is higher
since lowering the network voltage by lowering OLTC’s tap position results in a reduction
in the power consumption. Therefore, the load behavior as a function of network voltage
should be permanently monitored and evaluated in network operation. This way, proper
loading models required for determining optimal tap positions can be provided.

Utilization of the individually determined settings of the active elements should be
avoided for optimization of the network operation. Even though each active element is
set to optimize network operation in its way, the combination of individually determined
parameters could yield suboptimal results, increased power flow in a network, or even
violations of the voltage constraints. Therefore, calculating optimal operation of the active
elements should be performed simultaneously to avoid such problems. Furthermore,
simultaneous consideration of the active elements yielded a significant 27.5% reduction
in power loss. Considering that the discussed active elements are already present in the
network, implementation of the proposed algorithm represents a path towards reducing
power consumption in the network, improving overall DN operation efficiency, and reduc-
ing CO2 emissions, provided proper communication of the measurement infrastructure.
Further improvements in the reduction of power losses could be achieved by incorporat-
ing additional active elements. The procedure proposed in this paper is formulated to
easily include these additional elements by adding new search parameters in the existing
objective function.
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