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Abstract: Designed to store and discharge electrical energy, rechargeable batteries consist of elemen-
tary storage cell assemblies. Aging is affected by various aggravating factors, mainly temperature.
There are many electric or electrochemical models which describe their operation. Most standard
models do not consider the aging phenomena of batteries and their consequences, while batteries
deteriorate when used or stored. Precisely, most battery models do not simulate the influence of
cell aging on other cells. The model presented in this paper incorporates aging and the effects of
mutual interactions between cells. The model can be established based on four measurement points
on the cell characteristic curve and allows the simulation of a single cell’s or multiple coupled cells’
behavior. The model can then be easily implemented in simulation software like Matlab.

Keywords: battery; electric power storage system; simulation; aging parameters; temperature

1. Introduction

By nature, electrical energy is not easy to store and nowadays there are several
approaches to resolving this problem. Electrical energy can either be stored temporarily
in an electrostatic form using supercapacitors [1–3], or be transformed into other types of
energy, into mechanical form, with kinetic energy in the flywheels [4], or potential energy in
water storages [5] or compressed air [6]. Sometimes, energy is naturally stored in the form
of radiant energy in matter. Significant amounts of energy can be stored in thermal form
using various methods to keep it in sensible heat, latent heat, or sorption [7–9]. However,
electric energy is mainly stored in chemical and electrochemical forms. The main focus of
electric energy storage research works is directed towards materials or structures to gain
the best storage per mass capacity to condense the most energy in a cell as small and light
as possible.

Storage of energy in electrochemical form is achieved by electrochemical cells in the
form of primary and secondary (rechargeable) batteries. A primary cell is a battery made
to be used once, discarded, and not recharged. Once their energy is depleted, the primary
cell must be physically recycled. The rechargeable cell can be charged and discharged
several times. The period of charging and subsequent discharging is called a cycle. In both
primary and secondary cells, a redox reaction occurs between two electrodes immersed
in an electrolyte. A certain amount of electrical energy is accumulated by the cell and
is released when an electrically conductive external circuit is connected to its terminals.
Generated voltage depends on the electrode’s nature. In comparison to primary cells, in
rechargeable cells, the chemical reaction is reversed if the cell’s current changes direction.

The problem hindering electric energy development as the primary energy source
lies in the low amount of power stored in a single cell [10]. Typically, electrochemical
rechargeable cells can deliver a maximum current of several amperes under a voltage of
one to a few volts. Therefore, electrochemical cells are connected within the batteries in
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different ways to meet the user’s requirements [11,12]. The separate research branches are
focused on the arrangement and control of storage batteries.

Limited energy density is one of the main problems of today’s rechargeable batter-
ies. Currently, the best lithium rechargeable batteries reach the energy density of about
240 Wh/kg [13], while gasoline reaches 13.200 Wh/kg. Moreover, gasoline can deliver
energy only once, so table wedge calculation indicates that a lithium battery is ecologically
more cost-effective than gasoline when it has been cycled more than 55 times. Other techni-
cal solutions used in the rechargeable cell are lead-acid and alkaline (NiCd and NiMH) with
an energy density of 35 Wh/kg, 100 Wh/kg, and 150 Wh/kg, respectively [14]. There is on-
going research on different ways to improve batteries’ performance in terms of power and
energy storage density. New technologies aimed at improving materials’ energy density
by increasing their electrochemical characteristics are being developed by many research
groups [15,16]. In research work by Hussain et al. [17], a method for creating high-capacity
electrodes using inexpensive means of cation substitution is described. Results obtained in
the research are effectively applied in micro digital devices.

To assess the batteries’ performance in terms of reliability, energy return, and lifespan,
it is essential to have an electrical model simulating cells. The batteries should be modeled
with their structure and architecture, considering coupling between cells and the cells’
number and arrangement. Since each cell has an individual electrical characteristic, a
combination of the cells in a battery may result in an unexpected performance [18]. Dif-
ferent cells in a battery arrangement suffer different stresses and therefore age differently.
How et al. in [19] describes the newest state of charge (SoC) estimation for Li-Ion batteries,
which is required to increase the service life of batteries and prevent emergencies caused
by battery failures. Studies of Lavety and Zhou [20,21] are dedicated to modern problems
of rechargeable batteries simulation and estimation of batteries capacity.

It can be seen from literature analysis that, nowadays, the main trends in battery
development are increasing life cycle efficiency and reducing mass and dimensions. Such
characteristics are also important from the application point of view, such as electric
vehicle development [22–24]. The described developments show the study’s importance to
rechargeable batteries and their optimization based on the simulation of these processes.
To simulate the electrical behavior, it is necessary to use a proper equivalent electric model
of the battery. Therefore, this paper describes available models of rechargeable batteries.

2. Materials and Methods
2.1. Classical Models of Rechargeable Cells

The open-circuit voltage (OCV) characteristic curve based on battery’s SoC is com-
monly used to describe its characteristics, regardless of cell technology [25]. In a charac-
teristic of LiFePO4 cell shown in Figure 1, the upper flat portion, where the cell’s OCV is
almost constant (regardless of its charge level), presents the area where the cell should be
used. The OCV average value on the upper flat portion depends on the cell technology. For
a LiFePO4 cell, the operational voltage is close to 3.3 V, for a lithium-ion cell with electrode
this is in the range from 3.3 V to 3.8 V, and for lead-acid it is 2.1 V.

This curve’s precise shape depends on individual electrode properties [26] and is
usually measured in test conditions starting from a fully charged cell while discharging
a part of the stored energy in successive steps. After a sufficient relaxation period [27],
generally a few minutes, the cell terminal voltage is measured. Several models accurately
describe the electrochemical cell behavior [28]. However, these models are usually accurate
for a single cell but do not represent the dynamic battery aging process.
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Figure 2. Thevenin’s first-order cell electrical equivalent model. 

The simplicity of Thevenin’s first-order model does not allow to describe all the cell’s 

physical and chemical phenomena. Therefore, the most used model for describing OCV 

depending on SoC [30] is the Nernst model, represented by Equation (1): 

𝑉 = 𝐾0 + 𝐾1 ln(𝑆𝑜𝐶) + 𝐾2 ln(1 − 𝑆𝑜𝐶) (1) 

Figure 1. LiFePO4 cell characteristic curve OCV (SoC): V0—OCV at zero SoC; VL–OCV at the
beginning of linear part; VH—OCV at the end of linear part; VM—OCV at full SoC.

Some cell models based on the Thevenin first-order electrical equivalent model, shown
in Figure 2, have various improvements. Typically, such models are complete and precise
enough to represent the cell behavior and are used in battery management systems (BMSs)
for managing the control algorithms of the batteries; moreover, they are used in most
simulation software [29]. Electrical series resistance (ESR) incorporates internal voltage
drop in current and is specified by electrodes, electrolyte, and fluid resistances related to
the terminal nature.
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Figure 2. Thevenin’s first-order cell electrical equivalent model.

The simplicity of Thevenin’s first-order model does not allow to describe all the cell’s
physical and chemical phenomena. Therefore, the most used model for describing OCV
depending on SoC [30] is the Nernst model, represented by Equation (1):

V = K0 + K1 ln(SoC) + K2 ln(1 − SoC) (1)

The parameters K0, K1, and K2 are experimentally determined by matching the math-
ematical model with the actual measured curve. The open-circuit voltage is then an
increasing function of SoC.

Other electric models are based on experimental impedance spectroscopy (EIS) tech-
niques [31,32]. The methods are based on adding a low-frequency component to the cell’s
current and measuring the resulting output voltage. Hence, complex impedance describing
the cell is calculated. From this impedance, it is possible to determine the SoC and SoH
(state-of-health) of the cell by calculation using Kalman filters [33,34].
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To improve any cell model, the implementation of the relaxation phenomenon can
be considered [26]. The relaxation phenomenon is the rearrangement of internal chemical
reactions after a charge or a discharge, and it is proportional to the capacitance between
the two electrodes. Specifically, after a charge, the cell voltage will gradually decrease by
a few percent and stabilize at an actual charging OCV. The same phenomenon occurs in
discharging phase, where the OCV rises slightly after relaxation for a few minutes. In an
electrical equivalent scheme, it can be represented as an additional parallel RC (resistor
and capacitor) circuit, in series with the classical model [35]. There also are other types
of battery models, such as physics-based models, which can describe the degradation
behavior of a battery, which is related to aging [36–39].

The drawback of all mentioned models is their inability to represent the aging phe-
nomena. In all cases, the new model needs to be created after some period of battery usage.

2.2. Aging Process

Rechargeable battery ages in two different manners: calendar and cycle, depending on
the battery utilization [40]. This is not the only reason for the battery aging. For example,
when gas bubbles are produced in parts of the electrolyte for various reasons [41], the
battery will age faster, although to a lesser extent. The calendar aging is secondary to
internal phenomena characteristic of the battery after self-discharging [42]. When the
cell is not connected to the circuit (stored), the charge will decrease over time. Besides,
these phenomena contribute to the gradual reduction of the maximum energy that the
cell can store. In this case, the storage temperature is an aggravating factor of aging [43].
The cycle aging reduces the cell performance while a passivation layer is created at the
electrode’s surface, which may cause internal heating. The cycle aging is temperature
dependent [44]; the higher the current flowing through the cell [45], the higher energy is
discharged [46]. This aging is reflected by a cell maximum operating charge reduction
and ESR increase. After several cycles, the active site number decreases. The metal of
the positive electrode wear (loses its porosity), and the resistance between the electrode
and the electrolyte increases [47]. Moreover, such factors as overload, deep discharge, and
secondary chemical reactions in electrolytes also result in cycle aging [45].

The cell operative charge (also called the capacity of the cell), expressed in ampere-
hour (Ah), represents the total energy that a single cell can store. It is noted Q in this paper
and is explained by Equation (2). A brand new (just produced) cell has the highest capacity.
To determine the capacity, the discharged cell (SoC = 0) is fully charged (SoC = 1) during
time t = tmax. The charge must be carried out until the time tmax, when OCV approaches the
peak area (VH on Figure 1), marking an internal thermal runaway.

Q = −
tmax∫
0

i(t)dt (2)

In this paper, the current that flows out from the cell is considered positive, and the cur-
rent charging the battery is considered harmful (hence the minus sign in the Equation (2)).
SoC of all types of cells expressed in percentage or in per-unit and used to express the
cell’s remaining charge. The available charge amount in a battery at a time is given by
Equation (3), where Q0(t) is a maximum capacity of the cell and Q(t) is the actual capacity.

SoC(t) =
Q(t)
Q0(t)

(3)

Since the OCV depends on a SoC, a SoC of 100% corresponds to a maximum voltage
(VM in Figure 1). A SoC of 0% corresponds to the minimum voltage (V0 in Figure 1); if
the OCV drops to that voltage, the cell will suffer irreparable damage. For instance, in
lead-acid batteries, when the voltage drops below a minimum value, a non-reversible
sulphuration phenomenon occurs. This significantly reduces Q0. A similar phenomenon



Energies 2021, 14, 3493 5 of 16

exists in lithium-based cells where a deep discharge can cause damage on the electrodes
and can even lead to a polarity reversal.

The SoH defined by Equation (4) reflects the fact that, with age, the cell is no longer
able to store as much energy as a new cell.

SoH(t) =
Discharge capacity (t)

Discharge capacity (t = 0)
(4)

The parameter degradation follows a gradual process, exhibiting no significant regen-
eration phases. A cell is considered reliable if its SoH is high enough. In practice, this value
typically must be higher than 80%. Usually, the maximum storage capacity is the most
crucial parameter in energy stored applications, where cells are used. For instance, in the
cells used for power supply applications, such as electrical vehicles, the ESR is used for
the battery health evaluation [48]. Typically, when ESR is doubled, the cell is considered
faulty. That means a SoH of 80% and a doubled ESR corresponds to the cell conventional
use limits. Sometimes, in power use cases, the SoH is also defined as the ratio between the
ESR at the time concerned and the initial ESR0 [49]:

SoH(t) =
ESR0(t)

ESR
(5)

The manufacturers indicate their cells lifespan expressed in cycle number correspond-
ing to the limits. The standard test cycles are carried in laboratory conditions (moderate
and constant temperature) and usually do not include deep discharges.

2.3. Modeling a Battery

From the Nernst equation, the simulated curve does not always correspond to the
real curve. In the work of Lu et al. [34], an example of a LiFePO4 cell is presented. Several
points on the real curve are considered to obtain the model. The accuracy of the model is
related to these points. By modeling the OCV curves of this cell, several sets of parameters
Ki (for i varying from 0 to 2) can be obtained as a function of the points considered. Table 1
presents two sets of parameters (Case 1 and 2). From the Nernst equation, it can be found
that the simulated curve does not always correspond to the actual curve. In this case, Ki
parameters represent equilibrium constants of the Nernst equation.

Table 1. k parameter of the Nernst model.

K K0 K1 K2

Case 1 3.37 0.1 −0.005
Case 2 3.33 0.075 −0.015

In Figure 3, the yellow and red curves (Nernst modeling cases) do not match perfectly
with the black curve of actual cell data. However, it is also possible to use a conventional
linear regression to fit the curve. Due to the curve inflection point number, a 5th order
regression is considered, as shown in Figure 3 by the blue curve, although it does not
provide complete matching.
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Figure 3. Nernst model applied to a LiFePo4 battery: S0—empty value of SoC; SL—minimal value
of SoC, for the beginning of linear part of SoC and OCV; τ—low value range of SoC, from S0 ti SL;
E0—value of OCV at zero SoC; ∆E—range of OCV for low OCV range; SH—maximum value of SoC
for the linear part; SM—maximum value of SoC for full charge; ∆A—range of OCV for high OCV
range; a, b—parametrs of linear OCV = aSoC + b function.

Since the curve grows continuously, it is possible to divide characteristic into parts with
low and high values of SoC, represented by an exponential function (Equations (6) and (7)),
and a part with average values of the SoC, represented by a simple linear function
(Equation (8)). The resulting equation of OCV = V1 + V2 + V3 adds up from three parts V1,
V2 and V3, which can be calculated as:

V2 = E0 + ∆0(1 − e−
SoC+SH

τ ) (6)

V3 = ∆A·eA(SoC−SM) (7)

V1 = aSoC + b (8)

For the more precise representation of the model’s change zone, the intersections’
points should be considered as marked in Figure 4. Due to thermal runaway at high SoCs,
resulting in a rise of the curve OCV, obtaining measurements up to the maximum voltage is
unlikely. So, four points must be considered on the curve OCV of SoC, which corresponds
to the boundaries between the three areas of regular operation and the forbidden zone (for
OCV > VM). The names of coordinates are listed in Table 2. The example of setting the
remarkable points is represented in Table 3.

Table 2. Definition of the model identification points.

Zones Deep Discharge Linear Runaway Forbidden

SoC (%) 0 SL SH 100
OCV (V) V0 VL VH VM

Table 3. Example settings remarkable points.

Zones Deep Discharge Linear Runaway Forbidden

SoC (%) 0 17.5 77.5 100
OCV (V) 2.600 3.222 3.315 3.400
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The resulting model is described by dependence, represented by Equation (9).

OCV(SoC) = αSoC + β + γ

(
1 − e

−SoC+SH
ζ

)
+ δeϑ(SoC−SM) (9)

where α, β, γ, and δ are calculated from OCV curve identification points in accordance
with Formulas (10)–(13).

α =
VH − VL
SH − SL

(10)

β =
VLSH − VHSL

SH − SL
(11)

γ = VL − V0 (12)

δ = VM − VH (13)

The parameters ϑ and ζ are empirical and are calculated from available measurements
on OCV curve substituted into Equation (5). The estimation of parameter ϑwill be accurate
if more measurement points are available for the runaway area (around one to two dozen).
Similarly, the better the curve is described, the more precisely ζ parameter, corresponding
to an exponential area time constant, will be estimated. The model’s application for the
data in Table 3 is represented by the Equation (14) and green curve in Figure 4, while the
black curve represents actual data.

OCV(SoC) = 2.4729 + 0.155SoC + 0.6222
(

1 − e
−SoC+0.015

0.0395

)
+ 0.08e14(SoC−1) (14)

Instead of the common logarithmic relation between OCV and SOC, this model uses
an exponential. With available battery lifespan (LS) data from the manufacturer, measured
in cycles, corresponding to a minimum-tolerated charging capacity Scrap and considering
Scrap is 80% of maximum capacity of the cell Q0, it is possible to model the decrease of the
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maximum capacity Q0 depending on the number of standard cycles T a cell is subjected to,
as represented in Equation (15).

Q0(t) = Q∗
(

1 − Scrap

√
T
LS

)
(15)

In this example, the degradation is assumed to be the square root form according
to the principle developed by Lemlich on the remaining time felt [50], which is the case
for most physical devices. The square root principle indicates that the more time goes by
for an observer, the faster it seems to go for them, and the more the aging phenomenon
accelerates. This degradation in the form of a square root of time has already been applied
for supercapacitors [51] and batteries [5].

Once the Q0(t) at each cycle is known, cell electrical parameters can be calculated
using Equations (3) for the SoC, (4) for the SoH, and (9) for OCV.

In a simplified way, the electrical series resistance ESR can also be given in proportion
to the SoH, considering it doubles from its initial value ESR0 while SoH passes from 100%
to 80%, as represented in Equation (16).

ESR(t) = ESR0

(
2 − SoH(T)− Scrap

1 − Scrap

)
(16)

This formula allows calculation of discharge depth during the cycle, corresponding to
a succession of discharges and charges with possible rest time.

2.4. Simulation of the Aging

The calendar aging process starts when the cell is inactive. Usually, it is characterized
by the decrease of a SoH by a few percent [52]. In the developed model, the 5% decrease is
considered after 1000 days by default. Table 4 represents the cell self-discharge for various
cell technologies. During inactive mode, the cell SoC decreases with time according to the
self-discharge value, and this decline can be considered linear.

Table 4. Cell self-discharge as depending on cell technology.

Technology Lead-Acid Nickel–Cadmium
(NiCd)

Nickel Metal
Hydride (NiMH) Lithium-Ion Lithium Iron

Phosphate (LiFePO4)

Monthly self-discharge
(720 h) 5% 10–20% 15–25% 1–2% 1–3%

SoC evolution depends on the electrical load, and together with relaxation, it forms
the open-circuit voltage. The maximum capacity Q0(t) depends on the SoH, determined by
the cell operating conditions. Cycle aging is aggravated by discharge depth in a cycle [46]
and the cell temperature [44]. At the same time, calendar aging is aggravated only by the
temperature. Therefore, in active mode, the SoH will change from cycle to cycle depending
on a battery lifespan LS in accordance with the Equation (17), for each cycle Ti:

SoH(Ti) = SoH(0)−
i

∑
k=1

Adk Atk

(
T1/2

k − T1/2
k−1

)
LS1/2

 (17)

In this formula, worsening parameters Ad and At are related to the depth of discharge
and temperature θ and calculated for each cycle k. These parameters can be calculated
based on Equations (18) and (19).

Adk =

[
SoC0

k − SoCmin
k

SoC0
k

]
(18)
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Here, the SoCk
0 is a SoC value at the beginning of the k cycle and the original value

before discharge in the k cycle, SoCk
min is the minimum value reached by the SoC before

recharging, and ρ is the deep of discharge influence parameter, which varies between −1 to
0 depending on how strong the effect of discharge is. The last parameter is empirical and
typically has a value −0.25 [53].

Atk = e
Eα
K ( 1

273+θre f
− 1

273+θk−1
)

(19)

Here, At parameter follows an Arrhenius law with values for the activation energy Ea
range from 0.4 to 1 eV (typically 0.7 eV)/The parameter θref in ◦C is the manufacturer’s
temperature data given in a reference to LS. K is the Boltzmann constant, which is equal to
8617 × 10−5 eV/K.

The relaxation phenomenon can be simulated as a dependence of OCV from SoC in
the form of a hysteresis curve [54], as described in detail in [55]. The curves in charging
and discharging mode are thus different in its linear portion by a hysteresis voltage, named
Vhyst. For a LiFePO4 cell, hysteresis voltage is about 30 mV [56]. It is also present in Nickel
(Ni) cells and has the range of 40–50 mV, but low in the lithium-ion cells [34]. According to
research by Thele et al. [54], it is possible to implement voltage hysteresis in a model by
adding a term to Equation (9). This term is a positive offset voltage when the battery charges
and is harmful if the battery discharges. The model would be improved by considering a
non-zero constant time to simulate the current direction’s hysteresis fluctuation. The model
represented by Equation (9) is simply replaced by the equation (20), where the sign is the
function with value 1 if the current i(t) is positive and −1 if the current i(t) is negative.

OCV(SoC) = αSoC + β + γ

(
1 − e

−SoC+SH
ε

)
+ δeϑ(SoC−1) − sgn(i(t))Vhyst (20)

The cell temperature change must also be considered [57]. Based on research by
Damay et al. [58], in a constant current mode, the cell temperature increases almost linearly
with time. That is to say, when current returns to zero, the cell temperature turns back to
equilibrium, which is an ambient temperature following exponential law. To determine
temperature parameters, measurement of the temperature evolution of a cell for different
values of the current during charge is required. After the relaxation, the same procedure
is taken for the discharge mode. These tests allow for the calculation of entropy-return
time constant and proportionality values between temperature and current in charging
and discharging modes.

For the first example, the charge constant is 4 ◦C per hour at nominal current, the
discharge constant is 25 ◦C per hour for nominal current, and the entropy-return time
constant is 0.5 h.

3. Results

Using the data presented by Li et al. [34], it is possible to verify the model’s operation.
Figure 5 shows the evolution of SoC, SoH, open-source voltage, and temperature of the cell,
assuming the LS has been deliberately reduced to 100 cycles to see relevant changes in each
cycle of the SoC. The cell is cycled as follows: it was discharged to 70% of its capacity under
its nominal current, expressed in 1C (1 C-rate current), which takes 2500 s (41 min and
40 s), then recharged during the same period before being placed in relaxation mode. For a
simulation of a real operation, cycling charge with 1C is not sufficient to test the battery
performance. Nevertheless, to validate the model and check that its behavior is similar
to expected, an analysis under this load is sufficient. The ambient temperature θa is set at
15 ◦C. The temperature greatly influences the aging conditions, as recalled in particular
in [40]



Energies 2021, 14, 3493 10 of 16

Energies 2021, 14, x FOR PEER REVIEW 10 of 16 
 

 

3. Results 

Using the data presented by Li et al. [34], it is possible to verify the model’s operation. 

Figure 5 shows the evolution of SoC, SoH, open-source voltage, and temperature of the 

cell, assuming the LS has been deliberately reduced to 100 cycles to see relevant changes 

in each cycle of the SoC. The cell is cycled as follows: it was discharged to 70% of its ca-

pacity under its nominal current, expressed in 1C (1 C-rate current), which takes 2500 s 

(41 min and 40 s), then recharged during the same period before being placed in relaxation 

mode. For a simulation of a real operation, cycling charge with 1C is not sufficient to test 

the battery performance. Nevertheless, to validate the model and check that its behavior 

is similar to expected, an analysis under this load is sufficient. The ambient temperature 

θa is set at 15 °C. The temperature greatly influences the aging conditions, as recalled in 

particular in [40] 

 

Figure 5. Simulation for the LiFePO4 example, with LS = 100 cycles. 

Figure 5. Simulation for the LiFePO4 example, with LS = 100 cycles.

The cell fails after 77 cycles only, essentially because of the temperature. To vali-
date the model, the second example of VL6H lithium cell with experimentally obtained
identification points, listed in Table 5, was used.

Table 5. Parameters of a VL6H cell.

Remarkable Points Deep Discharge Linear Runaway Forbidden

SoC (%) 0 10 86.8 100
OCV (V) 2.925 3.407 3.880 4.010
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A comparison of the model (red curve) and measured data (black curve) is represented
in Figure 6, where blue curve represents the deep discharge, the yellow curve represents
the linear part, and the green curve represents thermal runaway.

Energies 2021, 14, x FOR PEER REVIEW 11 of 16 
 

 

The cell fails after 77 cycles only, essentially because of the temperature. To validate 

the model, the second example of VL6H lithium cell with experimentally obtained identi-

fication points, listed in Table 5, was used. 

A comparison of the model (red curve) and measured data (black curve) is repre-

sented in Figure 6, where blue curve represents the deep discharge, the yellow curve rep-

resents the linear part, and the green curve represents thermal runaway. 

Table 5. Parameters of a VL6H cell. 

Remarkable 

Points  

Deep  

Discharge 
Linear  Runaway  Forbidden  

SoC (%)  0 10  86.8  100  

OCV (V)  2.925 3.407  3.880  4.010  

 

Figure 6. Matching measured and simulated data for the VL6H cell. 

Results of the simulation for this single cell with announced LS of 500 cycles, SoC, 

SoH, OCV, and temperature curves are presented in Figure 7. 

Figure 6. Matching measured and simulated data for the VL6H cell.

Results of the simulation for this single cell with announced LS of 500 cycles, SoC,
SoH, OCV, and temperature curves are presented in Figure 7.

The cell presents a SoH of 80% for 384 cycles only. The premature aging is caused
mainly by the depth of discharge (70% initially, almost 80% at its end of life), and the cell
temperature reaches a maximum of 42.3 ◦C.

While the presented model can simulate a cell, it remains to be part of the cell assembly.
For this case, the battery can be simulated as four cells connected in parallel. Three of these
cells are the basic cells, and the fourth will be a redundant cell. The latter will replace the
first cell in case it is no longer able to provide the current. The isolated cell will be the first
with its SoC fall to 0, or that the SoH decrease to 0.8. In this case, the cells connected in
parallel will self-balance [14]. The simulation stops when a second cell does not fulfill the
requirements. To simulate the disparities between cells, the initial conditions differ slightly
between each cell: Q *, initial temperature, and ESR0. For the case of cells from the second
example (with LS = 500), a simulation of SoC, SoH, OCV, temperature, ESR, and current in
each cell is represented in Figure 8. Simulation results for current curves indicate that the
redundant cell ensures the balancing of aged cells. The spare cell takes upon the other by
providing more current, which speeds up its aging.

Available simulation parameters allow to determine interactions between the cells
during the battery life cycle [59,60]. The further development of the model may include
the influence of strong currents on aging, similar to Ning et al. in [45], and adjusting the
model for energy applications rather than power. Moreover, more detail determining the
ESR evolution (or to separate it into two ESR according to the current direction) may be
helpful for noticing the positive electrode deterioration kinetic effects, similar to research
presented by Bourlot et al. [41].
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4. Conclusions

Today, batteries have an important place in the scope of human activities. Uninter-
ruptible power systems, electric vehicles, charging systems, and many other electrical
or electromechanical devices are based upon the use of batteries. The increase of energy
efficiency, reliability, operational performance, and cost reduction offered by these systems
is an extremely important task and the effectiveness of a solution to this problem depends
on the simulation accuracy of these systems. Therefore, it is essential to have an ability
to select an optimal battery cell structure and to determine cell parameters during the
operating life of battery.

To evaluate battery performance, it is important to define the best possible architecture
of the cells. For that reason, criteria such as availability, lifespan, or energy efficiency
are used. An application of an appropriate mathematical model of the cells with aging
parameters integration, as presented in the paper, is an essential tool for development in
that field.

The developed simulation model of cells with the implementation of the aging effect,
which is described in this study, can be used for the design, calculation, and simulation
of battery architecture. The criteria for optimal architecture are the parameters such as
accessibility of cells, operating life, and energy efficiency. The advantages of this model are
the simplicity of parameter determination as well as applicability for series and parallel
connection of different types of cells. The drawback of the model is the difficulty in
determining the linear part of the open-circuit voltage curve for some types of cells, but
this drawback is common for many similar models.

The simulation result of the developed model is comparable with the more complex
Nernst model, which includes the most common values describing the aging of a cell:
aging aspect, the influence of temperature, and depth of discharge. These parameters can
also be measured and implemented in the model.
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