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Abstract: Based on data from 2083 wind turbines installed in Sweden from 1988 onwards, the
accuracy of the predictions of the annual energy production (AEP) from the project planning phases
has been compared to the actual wind-index-corrected production. Both the electricity production
and the predicted AEP come from Vindstat, a database that collects information directly from wind
turbine owners. The mean error for all analyzed wind turbines was 13.0%, which means that, overall,
the predicted AEP has been overestimated. There has been an improvement of accuracy with time
with an overestimation of 8.2% for wind turbines installed in the 2010s, however, the continuous
improvement seems to have stagnated around 2005 despite better data availability and continuous
refinement of methods. Dividing the results by terrain, the error is larger for wind turbines in open
and flat terrain than in forest areas, indicating that the reason behind the error is not the higher
complexity of the forest terrain. Also, there is no apparent increase of error with wind farm size which
could have been expected if wind farm blockage effect was a main reason for the overestimations.
Besides inaccurate AEP predictions, a higher-than-expected performance decline due to inadequate
maintenance of the wind turbines may be a reason behind the AEP overestimations. The main
sources of error are insecurity regarding the source of AEP predictions and the omission of mid-life
alterations of rated power.
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1. Introduction

Wind power is likely to play a key role when replacing traditional power production
with renewable alternatives. When installing the large number of wind turbines needed for
this transition, it will be a challenge to gain public acceptance. Wind turbines will probably
to a large extent have to be located at inland sites, typically with lower overall wind speeds
compared to coastal sites. This means lower margins and therefore increased demands
for reliable prediction of the annual energy production (AEP) for planned wind power
developments. The inland sites can often be of more complex terrain, for example forest,
which also means greater uncertainty [1].

Sweden had an ambitious wind energy program with multi-megawatt prototypes
built in the early 1980s [2]. Although Sweden today has no wind turbine industry, in 2019
wind power made up about 12% of the Swedish electricity production [3]. With Swedish
nuclear reactors likely to be phased out in the coming decades and with the expected
electrification of the transportation sector, the installation rate of power production is likely
to increase. This also increases the demand for reliable and accurate AEP predictions,
especially since most future wind energy developments are likely to be in forest terrain.

When developing a future wind farm, a crucial step is predicting the AEP, typically
using wind-farm project planning software which for most cases uses a linear flow model
(for more complex terrain, CFD models are recommended). The used model evaluates wind
data (typically from wind measurement masts), which, if long-term correlated, can be used
to predict the normal-wind-year AEP for a planned wind farm. From these predictions, a
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P50 value (50th percentile), which by definition is supposed to have a 50% probability of
exceeding the production for a normal-wind year in reality, can be acquired. According
to the standard procedure [4], the predicted AEP (P50) is calculated as a mean value,
which can be explained by the fact that the mean and median values coincide for a normal
distribution, which over time is reasonable to assume for the AEP. From the P50 value
and expected uncertainties of different parameters, other P-values can be estimated. The
wind resource evaluation with subsequent AEP prediction is an uncertain process, and a
thorough assessment of the uncertainty is critical for assessing the risk of a planned wind
energy development [5].

It is reasonable to assume that the AEP prediction accuracy should improve with
time. This because of improvements such as access to better long-term corrected wind
data, more detailed terrain data, improved flow models with more advanced wind-shear
calculation models, improved tools for sector-based zero-plane displacement, improved
standards, refined measurement methods, and a better understanding of cold-climate
effects. There are continuously new and improved methods being developed to improve
AEP predictions, for example using refined wind speed probability distributions [6] or
implementing artificial intelligence to improve power predictions [7,8].

In a DNV GL report [9], a validation between AEP predictions and the actual pro-
duction is presented for Great Britain, Ireland (Republic of Ireland and Northern Ireland),
South Africa and UK offshore wind farms. For Great Britain, the AEP predictions had been
overestimated by 3.1% based on data from 87 wind farms. Although based on a smaller
amount of data, the other regions also displayed overestimations, Ireland, and South
Africa with 4% to 5%, whereas the UK offshore were only 0.4% under target. The AEP
predictions were adjusted to correspond with the latest methodology, making the results
valid for projects developed in 2019 independent of the construction year. According to
the report, the overestimations are most likely due to shortcomings at the pre-construction
energy-assessment stage. In [10], the neglect of the so-called wind-farm blockage effect (i.e.,
that not only downstream but also upstream turbines suffer from reduced wind speeds) is
suggested to be a key reason for the overestimation of AEP predictions. Moreover, AEP
predictions have been compared with production data for individual wind farms [11–13],
and the uncertainty of wind turbine AEP predictions have been the subject of several
studies [5,14–16].

Previously within the same project as this study but based on a smaller amount
of wind turbine data, production data from numerous existing wind farms in Sweden
were compared with the pre-construction AEP predictions and preliminary results were
presented in [17] which showed a larger overestimation than for the British Isles and
South Africa. However, in this continued study, a larger amount of wind turbines have
been included and a more in-depth analysis is performed with the results divided on
factors such as wind turbine manufacturer and wind farm size. This to broaden the
understanding of the cause behind these overestimations for Swedish wind turbines, as
well as further establishing them. The method used to calculate a normalized annual
electricity yield to compare with AEP predictions is based on the method used by industry
to make results comparable with other studies. In addition to the method in [17], wind
turbine performance decline has here been accounted for since older wind turbines are
included in this analysis. Time trends regarding year of installation have been analyzed
to determine whether expected accuracy improvements with time can be observed. The
results have been divided by the terrain type to indicate whether the accuracy is affected
by the complexity of the terrain. There are few available studies on the accuracy of AEP
predictions based on data from a large number of wind turbines and together with the
previously published [17], this work is likely unique for the case of Sweden and adds to
the general knowledge base of the performance of wind power AEP predictions.
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2. Wind Turbine Production Data

The data used in this study comes from the database Vindstat, which has been collect-
ing production data, including downtime, from wind turbines in Sweden since 1988 [18].
The data from Vindstat have previously been used for an evaluation of the wind turbine
performance decline in Sweden [19]. Vindstat membership have always been optional but
most Swedish wind turbines were included until 2016 when the Swedish energy agency
withdrew its financial support and Vindstat introduced a member fee. After this, several
of the large wind turbine owners left Vindstat, limiting the wind turbines in the database
to about half for subsequent periods. Besides production data, some general information
about each wind turbine, such as the predicted AEP as reported by the owner, is included
in Vindstat. This reported AEP is assumed to correspond to a normal wind year and come
from the wind energy calculation from the planning phase.

For this study, all Vindstat reporting wind turbines that were still in operation in 1999
were used, in total comprising 2083 turbines. The production data between 1999–2020
was then analyzed. The geographical spread of the available turbines is illustrated in
Figure 1. After excluding turbines according to a number of criteria (see “Section 3.3 Data
exclusion”), the number of wind turbines was decreased to that listed in Table 1. Using
satellite imagery, the number of wind turbines in each wind farm have been decided and
the terrain have been divided into three types: open terrain, forest areas, and offshore, with
the number of turbines in each category seen in Table 2.

Table 1. Vindstat data used for this study. The excluded data were removed according to “Section 3.3
Data Exclusion”.

No Data Exclusion with Data Exclusion

Wind turbines 2083 1723
Total capacity (GW) 3.28 2.52

Observations (months) 235,903 132,568

Table 2. Error of AEP predictions compared to the production-based WCP for the full data set of the
study and divided into terrain type, manufacturer, wind farm size, and decade of installation.

Result Data

Error (%) Turbines Power (MW) Observations

All data 13.0 1723 2524 132,568

Terrain
Flat 13.4 954 1065 84,388

Forestall 13.2 677 1263 41,473
Offshore 6.1 92 196 6707

Manuf.
Vestas 11.1 834 1221 67,643

Enercon 12.1 441 652 37,544
Other 17.3 448 651 37,544

Farm size

Single 14.3 380 297 34,035
2–4 13.2 579 728 49,248

5–10 12.5 388 648 29,577
>10 11.8 376 850 19,708

Install.
Decade

1990s 19.8 435 199 43,865
2000s 13.2 590 794 52,876
2010s 8.2 689 1529 35,583
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Figure 1. A map of the locations of wind turbines included in this study (green) and index sites used
for normal wind-year normalization (red); see Section 3.2.

3. Methods

To be comparable with the given AEP predictions (P50-values), the wind turbine
production data must be normalized to correspond to the wind energy available for a
normal wind year and the availability counted on for the P50 prediction. The production
data presented per month were recalculated to wind-index corrected annual production
(WCP) and compared to the P50-values according to the following subsections.

3.1. Normalization to Wind Turbine Availability, Wind Turbine Performance Decline and
Transformer Efficiency

The AEP (P50) value corresponds to the availability that the owner can count on, i.e.,
the manufacturer-guaranteed availability, which typically is 97% [15]. The time-based
availability, i.e., the percentage of a given period that a wind turbine is available for
operation, can for a given month be calculated as:

At =
Tm − Td

Tm
(1)

where Tm is the total number of hours for the month and Td is the downtime hours for
the same month. Moreover, in a number of studies, a performance decline with age has
been established [19–26], with [19], partly based on the same Vindstat data as used in this
study, showing an average annual performance decline of 0.1%, counted as capacity factor
percentage points and excluding increase of downtime. Assuming a capacity factor of 1/3,
this means 0.3% when considering AEP loss. To make results comparable for wind turbines
with various mean time difference between the installation year and the time period of
analyzed data, this must be accounted for. Using the yearly performance decline factor
from [19], dy = 0.003, and using the age of the wind turbine at the time of the analyzed
month, A, an age performance factor can be set as:

Fage = 1 + dy(10 − A), (2)
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where we assume that the AEP prediction should be valid over an expected life length of
20 years. The availability for the month can then be used to calculate the electricity yield
normalized for the typical industry standard availability (Astd) of 97%:

Ea =
E·Astd·ηt

At·Fage
, (3)

where E is the generated electricity for the month, and ηt is the transformer efficiency,
which have to be accounted for since the AEP prediction refers to the electricity measured
at the grid connection point. The transformer efficiency is set to 99%, which is typical for
Swedish AEP calculations for modern wind turbines.

3.2. Wind Index Correction and Comparison with Predicted AEP

Due to the interannual variations of wind speed, the typically available short-term
wind measurement data for calculating a predicted annual electricity yield of a proposed
wind turbine, must be correlated with a long-term wind dataset [27]. The insecurity of
the correlation may surpass that of the confirmation between the data and a normal wind
year for a sufficiently long time series [28]. However, when comparing different wind
turbines, they must then have data for the same sufficiently long time period. In this study
the available time periods differ between different wind turbines, which means that the
production data must be individually correlated before comparing.

The normalization was performed with monthly correlation indices for 77 sites (see
Figure 1 for site locations) spread across Sweden. The correlation indices were calculated
from the ERA5T reanalysis, which has shown to perform well for the often complex-terrain
sites of wind turbines in Sweden [29]. For each site, the index corresponds to the wind
energy at 100 m above ground for the actual month, compared to the wind energy for
the same month for a normal wind year. The mean distance between a wind turbine
and its closest index site was 24 km. The yearly mean values of the 77 indices counted
together can be seen in Figure 2. For an individual wind turbine, all monthly production
data normalized for availability (Ea) were plotted against the corresponding (i.e., same
month and for the index site closest to the wind turbine) correlation indices (In). An
example of this can be seen in Figure 3. From a linear regression line, the wind-index-
normalized production per month (En) could then be attained for In = 1 and thereafter the
wind-index-corrected annual production (WCP) could be calculated as:

WCP = 12·En (4)

The error between the real-life production WCP and the from the project-developing
phase predicted AEP (P50) can then calculated as:

error =
P50 − WCP

WCP
(5)

A positive error means that the AEP-prediction was an overestimation of the actual
electricity production, whereas a negative error means an underestimation. To evaluate
the magnitude of the error rather than the placing, an absolute error could have been used
instead. However, since the predicted AEP reported to the Vindstat database for some
cases was presented as a fraction of the AEP for an entire wind farm, the mean absolute
error is enlarged, and was therefore not used in this study.
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Figure 2. Yearly mean of all ERA5T correlation indices for the 77 sites.

Figure 3. The production values (MWh/month) can be seen plotted against the corresponding (same
month and closest index site) ERA5T correlation index. The red values have been excluded by the
WCP filter.

3.3. Data Exclusion

To remove Vindstat reporting errors, months for which the sum of the downtime and
the reported generator operation time were greater than the total hours of that month were
excluded from further analysis. Months with availability under 90% were also excluded.
To avoid the influence of corrupted data, the outliers in the production-index plot had to
be removed. This was done with a WCP filter set to ±15% where the index-normalized
monthly production was compared to the WCP and excluded according to:

0.85·WCP > 12·Ea

In
> 1.15·WCP (6)

The WCP was recalculated without the filtered values (see Figure 3). To further
exclude unrepresentative wind turbines from the study, turbines with fewer than 12 re-
maining month-production values or with coefficient of determination (r2) below 0.85,
were also removed.
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4. Results and Discussion

For each wind turbine, the errors of the pre-construction AEP predictions compared
to production-based WCP were calculated by normalizing and recalculating the monthly
wind power production data according to Equations (1)–(4) and comparing it to the given
AEP prediction (P50) in Equation (5). The mean error based on all wind turbines in the
study was 13.0%, which means that overall, the predicted AEP of the studied wind turbines
was overestimated. The mean overestimation is larger than the 7.1% previously shown
for the same dataset but then only looking at wind turbines with a rated power of at least
1.8 MW and installed after 2005, and without taking turbine performance decline into
consideration [17]. The results also emphasize the larger error for Swedish wind power
projects compared to the overestimations previously shown for the British Isles and South
Africa [9].

In Table 2, the error based on all wind turbines is shown, divided into terrain type,
manufacturer, wind farm size, decade of installation, and the number of wind turbines in
the wind farm can be seen. The error is slightly larger for the less-complex flat terrain than
for forestall terrain which indicates that a higher complexity, such as for the forest terrain,
is not the main reason behind the error. The accuracy was higher for offshore turbines, but
this is based on a relatively small amount of data. Dividing the error between the most
common wind turbine manufacturers in the analyzed data, the error was slightly larger
for Enercon turbines than for Vestas turbines, although both cases were more accurate
than turbines of other brands. Regarding wind farm size, the accuracy was higher with
more turbines.

In Table 2, the error divided on installation decade can also be seen and although still
overestimated, the error was overall smaller for 2010s with 8.2%. In Figure 4, the error
divided by the wind turbine installation year can be seen. The AEP predictions have with
the exceptions of 2013 and 2016 been overestimated (only four wind turbines installed in
2016). Although the accuracy can be said to have improved from 1990 until around 2005,
thereafter it has stagnated. The early improvement was anticipated due to the relatively
small-scale wind power projects in the early 1990s and the successive implementation of the
usage of wind-farm project planning software and usage of more reliable wind and terrain
data. The accuracy was highest for wind turbines installed between 2011 and 2013 which
was followed by a drop to the accuracy level of 2002 in 2014 and 2015. The lack of improved
accuracy in recent years is contradictory keeping in mind the continuous refinements of
the AEP predictions, for example access to better long-term corrected wind data, more
detailed terrain data, improved flow models (including improved wind-shear calculation
models), improved tools for sector-based zero-plane displacement, improved standards,
refined measurement methods and a better understanding of cold-climate effects.

In Figure 5, the development of the AEP prediction accuracy over time can be seen,
divided into terrain type, manufacturer, and wind farm size. In Figures 6–8, the same plots
can be seen with standard deviation and number of wind turbines for each year. For terrain,
installations before 2004 had a higher accuracy for flat terrain than for forestall terrain while
installations in forestall have been slightly more accurate thereafter. The improvement
over time for installations in forestall terrain is probably an effect of improved models
and data used for the AEP estimation. Furthermore, projects in the forest are more likely
to be based on on-site, hub-height wind measurements, which limits the insecurity. For
the influence on manufacturer, projects with Vestas turbines had large overestimations
around the year 2000 but have otherwise had a higher accuracy than for the case of Enercon.
Dividing the results on wind turbine size, there are no apparent difference in accuracy
between farm sizes, with wind farms of more than 10 turbines having the highest overall
accuracy. If wind-farm blockage effect was a main contributor to the overestimations of
AEP predictions, an increased overestimation with farm size could have been anticipated.

Besides inaccuracy of the AEP predictions, inadequate maintenance of the wind
turbines and thus a higher-than-expected performance decline may be a reason behind
the overestimations of AEP. The assumption that the predicted AEP, reported by the wind
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turbine owners to the Vindstat database, comes from the actual project planning phase adds
some uncertainty to the results. Moreover, for some turbines, the rated power, or other
operational strategies, may have been altered after installation. For example, the turbine
power may have been downrated due to structural issues or uprated due to a manufacturer
performance upgrade release. This will affect the comparison between the AEP predictions,
which were made for the original rated power, and the production data after the change in
rated power. A more detailed study, although based on fewer data, could be carried out
for a number of projects by gathering individual AEP prediction reports from the project
planning phase and accounting for mid-life alterations of rated power.

Figure 4. Error of AEP predictions depending on the installation year plotted with the standard
deviation (blue) and number of wind turbines (red).

Figure 5. The time development of the AEP prediction accuracy divided on terrain type, manufac-
turer, and wind farm size.
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Figure 6. The time development of the AEP prediction accuracy divided on terrain type with number
of wind turbines for each year.

Figure 7. The time development of the AEP prediction accuracy divided on manufacturer with
number of wind turbines for each year.
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Figure 8. The time development of the AEP prediction accuracy divided on wind farm size with
number of wind turbines for each year.

5. Conclusions

Based on evaluation of wind turbine production data between 1999 and 2020 and
comparing with the wind-index-corrected and availability-corrected production, the AEP
predictions from the planning phase of Swedish wind turbines was overestimated, on
average, with 13.0%. There has been an improvement of accuracy with the decades with an
overestimation of 8.2% for wind turbines installed in the 2010s. However, the continuous
improvement seems to have stagnated around 2005, whereafter no general improvement
can be seen, which could have been expected due to better data availability and continuous
refinement of methods. As previously indicated in a preliminary study based on a limited
part of the same data set as this study, the overestimation is higher than the previously
shown overestimated AEP predictions for wind farms in the British Isles and South Africa.
Dividing the results by the type of terrain, the error is larger for open terrain than for
forest areas, indicating that a higher complexity, such as for forest terrain, is not a major
contributor to the error. Also, there is no apparent increase of error with wind farm size
which could have been expected if wind farm blockage effect was a main reason for the
overestimations. Besides inaccurate AEP predictions, a higher-than-expected performance
decline due to inadequate maintenance of the wind turbines may be a reason behind the
AEP overestimations. A major source of insecurity is whether the AEP predictions reported
from the wind turbine owners to the Vindstat database comes from the actual wind energy
calculation from the planning phase. Moreover, possible mid-life alterations of rated power
may have affected the comparison between the predicted AEP and the production data.
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