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Abstract: The use of parallel applications in High-Performance Computing (HPC) demands high
computing times and energy resources. Inadequate scheduling produces longer computing times
which, in turn, increases energy consumption and monetary cost. Task scheduling is an NP-Hard
problem; thus, several heuristics methods appear in the literature. The main approaches can be
grouped into the following categories: fast heuristics, metaheuristics, and local search. Fast heuristics
and metaheuristics are used when pre-scheduling times are short and long, respectively. The third
is commonly used when pre-scheduling time is limited by CPU seconds or by objective function
evaluations. This paper focuses on optimizing the scheduling of parallel applications, considering
the energy consumption during the idle time while no tasks are executing. Additionally, we detail a
comparative literature study of the performance of lexicographic variants with local searches adapted
to be stochastic and aware of idle energy consumption.

Keywords: directed acyclic graph (DAG); scheduling; makespan; energy aware; energy idle;
local search

1. Introduction

According to the website www.top500.org, accessed on 10 June 2021, in November
2018, the top rank of High-Performance Computing (HPC) system Summit from the Oak
Ridge National Laboratory is composed of 2,397,824 CPU. This HPC consumes 9783 kW
and achieves a performance of 14.668 GFlops/watt under testing conditions. The final
energy consumption is directly related to the quality of the scheduling of the tasks in
the HPC system. It is hard to imagine a single scheduling algorithm that solves every
kind of task load, which relates to the no-free-lunch theorem [1,2]. Therefore, several
scheduling methods have been developed in the literature; in our particular case, we
review the approaches when HPC administrators have a restricted time to optimize the
final scheduling. To this end, we use the local search approach, which fits for the above
statement as in [3–5], where the stopping criterion is set to a small amount of fixed objective
function evaluations or a small amount of time. Unlike constructive heuristics, which
construct the solution, adding one decision variable at a time, or metaheuristics, which
require thousands of objective function evaluations (a long-run) [6].

An HPC system is composed of a network of processing units as CPU cores or ma-
chines to provide high parallel computing power. These systems are, in most cases, het-

Energies 2021, 14, 3473. https://doi.org/10.3390/en14123473 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-3265-8531
https://orcid.org/0000-0003-2496-0009
https://orcid.org/0000-0003-2859-7905
https://orcid.org/0000-0002-3696-1757
https://doi.org/10.3390/en14123473
https://doi.org/10.3390/en14123473
https://doi.org/10.3390/en14123473
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.top500.org
https://doi.org/10.3390/en14123473
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14123473?type=check_update&version=1


Energies 2021, 14, 3473 2 of 22

erogeneous in their processing capabilities and power consumption. To build HPC with
significant computing capabilities is common to combine numerous processing units to
the final system. However, adding more processing units or machines to the system in-
creases energy consumption in every aspect of the HPC (network devices, ram, hard drives,
etc.) [7–9]. From the general reader’s perspective, the HPC systems estimate that data
centers (a particular case of HPC system focused on data storage) will consume 1/5 of
earth’s energy consumption by 2025.

This work tackles the precedence-constraint task scheduling of parallel programs over
HPC systems formed by heterogeneous machines, minimizing the energy consumption
and makespan, both being NP-Hard [10,11]. We pay special attention to the case when
machines are not computing any task, but still are powered on (idle time); in our study
model of energy for dynamic voltage frequency scaling (DVFS) CPUs [12], we assume that
machines consume a minimum fixed amount of energy while idle. Though the nature of
this optimization problem is bi-objective, according to [13] the energy consumption during
idle times has a strong effect on the energy consumption. Therefore, we present the first
study on different stochastic lexicographic local searches for precedence-constraint task
scheduling of parallel programs to our knowledge, giving priority to the makespan (tasks
computing time) to reduce idle times in machines.

The paper organization is: Section 2 details our studied problem in heterogeneous
systems. Section 3 describes the list scheduling principle. A review of the literature on
scheduling using local searches appears in Section 4. The experimental settings and our
stochastic lexicographic local search variants are presented in Sections 5 and 6, respec-
tively. Section 7 analyzes the experimental results according to the makespan and energy
objectives. Finally, Section 9 contains the conclusions and future work in local search and
scheduling precedence-constraint tasks on heterogeneous systems.

2. Problem Description

The HPC system studied in this work, consist of a set of heterogeneous processing
units M completely interconnected. Each processing unit mj ∈ M is DVFS capable. Thus,
every machine mj operates on a set of multiple voltages. When the voltage is lower than
the maximum, machines operate at a fraction of their top speed rsk, the cardinality of the
set S of relative speeds is equal to the cardinality of the set V of possible voltages vk inside
the machine. The next table shows the set of voltage configurations with their respective
relative speed used in our experimentation.

Every machine mj has assigned a DVFS configuration from Table 1. For instances
with more than three machines, the remaining use of these configurations are assigned
in order, first the number zero, followed by the number one, and so on, in a circular
structure. Without loss of generality, we consider the assumptions presented in [14–19],
and the following:

• When a machine is not executing any task (idle time), it uses the lowest voltage possible.

Table 1. Machine settings.

Configuration 0 Configuration 1 Configuration 2

k vk rsk vk rsk vk rsk

0 1.75 100% 1.50 100% 2.20 100%
1 1.40 80% 1.40 90% 1.90 85%
2 1.20 60% 1.30 80% 1.60 65%
3 0.90 40% 1.20 70% 1.30 50%
4 - - 1.10 60% 1.00 35%
5 - - 1.00 50% - -
6 - - 0.90 40% - -
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2.1. Instances

An instance of the scheduling problem is composed of: (i) directed acyclic graph
(DAG), and (ii) the computation time of the tasks in every mj ∈ M. The set of tasks of the
parallel program with their precedencies is a DAG. Thus, the program is represented as
G = (T, C), where T is the set of tasks and C is the set of communication costs (see Figure 1).
A complete instance is formed by G and the computational times Pi,j of each task ti in every
processing unit mj at maximum capacity, when k = 0 (see Table 2).
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Figure 1. Precedence tasks graph G = (T, C).

Table 2. Computational times of the tasks at maximum capacity Pi,j.

Task m0 m1 m2

t0 11 13 9

t1 10 15 11

t2 9 12 14

t3 12 16 10

t4 15 11 19

t5 13 9 5

t6 11 15 13

t7 11 15 10

Each task ti ∈ T cannot be initiated until all their precedence tasks tj ∈ T and
communication have been finalized. For any pair of tasks executed in the same mj, their
communication cost is equal to zero.
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2.2. Solution Representation

Our solution representation consists of two data structures. The first data structure is
a matrix of size 2xn (see Table 3). n is the cardinality of T, the first row of the matrix stores
the assigned processing unit, while the second stores the value of the k selected energy
configuration. The machine configuration map to their respective voltage vk and relative
speed rsk from Table 1.

Table 3. Configuration machine/voltage.

Task t0 t1 t2 t3 t4 t5 t6 t7

machine m0 m0 m1 m0 m0 m2 m0 m2

k 1 4 2 0 0 0 0 0

The second data structure is an array of size n with the priority execution order of the
tasks (see Table 4). The execution order is a topological order from the task graph without
violated precedence constraints.

Table 4. Tasks order of execution.

Task t0 t4 t3 t1 t2 t5 t6 t7

The second data structure is not indispensable for scheduling but simplifies the
problem’s search space because it does not necessarily verify the earliest start and finish
tasks’ times to compute the makespan. However, this representation has the deficiency
that the optimal value of execution time, also known as optimal makespan, may not be in
the particular given execution order.

With the representation mentioned above, we detail the objective function to compute
the makespan in Algorithm 1 to compute the makespan of complexity O(|T||C|), similar as
in [18,20,21]. The computation times of the tasks are calculated as the original computation
time at maximum voltage Pi,j divided by their relative speed in Table 1. We show the
consider computation times P

′
i,j on the following Table.

Using the computation times P
′
i,j from Table 5 and a counter time in each machine

for the last executed task in the machine when it finishes its execution Timej. Algorithm 1
defines the objective function called makespan.

The function uses the variables: tsi (the starting time of task i), t f j (the finish time of
task j), C′i,j the communication cost between ti and tj, which is equal to zero in the case
the tasks are executed in the same machine. The function is computed in sequence from
the first task of the feasible execution order to the last one in the list. Finally, the parallel
program makespan is the maximum completion time between the set of tasks.

Table 5. Computation times of the tasks with relative speed P
′

i,j.

Task t0 t1 t2 t3 t4 t5 t6 t7

Time 13.75 31.42 15 12 15 5 11 10

For the energy consumption objective is not necessary the DAG representation, only
to know the final makespan. The energy consumption of the tasks is the square power
of the selected voltage multiplied by the task completion time in the machine P′i,j, to add
the machines respective idle energy consumption, it is necessary to compute the machine
time during idle, which is equal to the makespan subtracting the tasks computation
times. Algorithm 2 shows the pseudocode to compute the energy objective. The energy
model derives from the complementary metal-oxide-semiconductor (CMOS) circuits in
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Equation (1). Where capacitive power Pc is computed with the number switches per clock
cycle A, the total capacitance load Ce f , the supply voltage V, and the frequency f .

Algorithm 1 Makespan objective function

Require: G = (T, C), with an order execution of the tasks O = {oi, . . . , o|T|}, computa-
tional costs at relative speeds P′i,j, and the consider communication costs C′i,j.

Ensure: O respect the precedence constraints.
1: Timej ← 0, ∀mj ∈ M
2: for x = 1 to |O| do
3: tcurrent = ox
4: j← the index of the machine mj assign to tcurrent
5: if ∀u = {1, ..., |T|}@(tu, tcurrent) ∈ C then
6: tscurrent ← Timej
7: t fcurrent ← tscurrent + P′tcurrent ,j
8: Timej ← t fcurrent
9: else

10: tu∗ ← argmax{tu |(tu ,tcurrent)∈C} (t fu + C′tu ,tcurrent
)

11: tscurrent ← max(t fu∗ + C′tu∗ ,tcurrent
, Timej)

12: t fcurrent ← tscurrent + Ptcurrent ,j
13: Timej ← t fcurrent
14: end if
15: end for
16: return makespan← max{t fi}∀ti ∈ T

Pc = ACe f V2 f (1)

Ec =
n

∑
i=1

ACe f V2
i f · p∗i =

n

∑
i=1

KV2
i · p∗i (2)

The Equation (2) is our energy model consumption Ec. Which is simplified version
grouping the constants A, Ce f and f in a single constant K. For practical purposes, the con-
stant K is equal to one in the computed results. Finally, p∗i represents the computing
task time.

Algorithm 2 Energy objective function

1: energy← 0
2: for each ti ∈ T do
3: energy+ = v2

k · P
′
i,j

4: end for
5: for each mj ∈ M do
6: idle = makespan
7: for each ti assigned to mj do
8: idle− = P′i,j
9: end for

10: energy+ = idle · v2
min

11: end for

3. List Scheduling Algorithms

Algorithm 3 shows the pseudocode of the general framework for list scheduling algorithms.
In the list scheduling principle, tasks are assigned according to priorities and placed

in an ordered decreasing list. First, the tasks are sequenced to be scheduled in accordance
with the DAG, respecting their precedences regarding a topological order. Then, each
task of the list is assigned successively to a machine. Usually, the machine yields the
minimum makespan.
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Algorithm 3 List scheduling framework

1: Calculate the priority of each task ti ∈ T
2: Sort the tasks ti into a list L = {t1, t2, ......, tn} by priority order
3: while L is not empty do
4: Remove the first task from L and assign it to the machine with the best objective

value
5: end while

3.1. Local Searches Related to the List Scheduling Framework

In [22,23] Arabnejad surveyed the most relevant algorithms using the framework for
list scheduling in the literature. Among the most popular is the heterogeneous earliest
finish time (HEFT) [24], a deterministic reference algorithm in many studies. It assigns
to every task the machine, which allows its most immediate finish time. However, HEFT
can modify the task’s priority order when detecting available idle time on a machine
without precedence-constraint violation. It is out of the scope of the present study to
modify the priority order of the tasks. In this paper, we assume the given priority of the
tasks is fix. The above makes our objective function in Algorithm 1 feasible in all our
studied cases. Recently, several papers regarding energy optimization have used the DVFS
technique in several contexts, mathematical programming [25], metaheuristics [26–28],
heuristics [29–37], parallel algorithms [38], among others. However, mainly constructive
heuristic methods appear in the literature to schedule tasks in heterogeneous machines.
Our perspective is that it could be because of the heavy computational cost of the objective
function when no fixed task order execution is given (priority modification as in HEFT). Us-
ing the objective function described in Algorithm 1 the complexity is reduced to O(|T||C|)
in the worst-case when every task has an equal number of precedences. However, the real
complexity is considerably lower because DAGs do not have cycles.

Local searches are heuristic approximation methods that move a current solution to
its nearest local optima solution. However, local searches cannot escape local optima as
other more advanced approximation methods as metaheuristics.

Inside the machine tasks scheduling literature, local search is generally a part of
a metaheuristic method; for example, we found: iterated local search [39–43], particle
swarm optimization [44,45], ant colony optimization [46–48], memetic algorithm [49–53],
GRASP [18], and variable neighborhood search [54], among others. In the previous exam-
ples, local search plays a crucial role in their performances, so we can infer a straightforward
improvement is through new local search designs and studies to enlighten ways of improv-
ing the final performance of these methods.

Some studies investigate the use of isolating local search improvements; we found
examples in [6,13,55,56]. To produce a complete experimental study, we choose to compare
and adapt the more relevant ones from the above-mentioned local search works. To be
lexicographic and stochastic.

4. Literature Review

In this section, we describe three relevant local search works in the state-of-the-art.
A deterministic local search using an aggregation objective function to minimize the
makespan and energy [19]. Two stochastic local searches using the best improvement pivot
method with lexicographic importance of the objectives [13]. A stochastic local search
using two neighborhood operators [6]. The selected works represent the broad ideas on
the state-of-the-art scheduling precedence-tasks using local searches.

4.1. Energy Conscious Scheduling (ECS)

The energy conscious scheduling (ECS) is a heuristic using a special objective function
formulation called relative superiority (RS) [19]; it consists of two phases. The first phase
optimizes RS’s value in a given topological order (blevel used in the original paper) the
possible machines mj ∈ M with their respective voltages. The second phase uses the
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makespan-conservative energy reduction (MCER) technique [19], which visits the tasks in
the same topological order. Which is considering the energy consumption in idle times,
the variant is called ECS+idle, the one used for the experimental comparison. The RS
computation for ECS+idle is shown in Equation (3).

RSECS+idle(ti, mj, vk, m′, v′) =

If t fi(mj, vk) < t fi(m′, v′) Then

−
(

E1≤i(mj, vk)− E1≤i(m′, v′)
E1≤i(mj, vk)

+
t fi(mj, vk)− t fi(m′, v′)
t fi(mj, vk)− tsi(mj, vk)

)
Otherwise(

−
(

E1≤i(mj, vk)− E1≤i(ti, m′, v′)
E1≤i(ti, mj, vk)

)
+

t fi(m′, v′)− t fi(mj, vk)

t fi(m′, v′)− tsi(m′, v′)

)
(3)

In the original paper, the RS computation for ECS+idle is a little bit different. The neg-
ative sign of the case when t fi(mj, vk) ≥ t fi(m′, v′) its outside the entire equation, this has
been corrected in Equation (3) to compute the correct results.

The Algorithm 4 shows the pseudocode for the ECS+idle heuristic. At the constructive
first phase the objective functions are partially evaluated until the current evaluated task ti,
t fi for makespan, and E1≤i for energy. At the MCER second phase, the objective functions
evaluate the complete scheduling and visit neighbor solutions with different machine and
voltage configurations. Neighbor solutions that do not increase the makespan and improve
energy consumption become the current schedule.

4.2. Random Problem Aware Local Search (rPALS)

rPALS [6] is a stochastic local search for makespan minimization on heterogeneous
machines. It is a stochastic version of the deterministic local search PALS [57] for DNA
fragment assembly. rPALS achieves the best performance against other list-based heuristics,
namely: sufferage, min–min, and pµ-CHC. rPALS uses two neighborhood operators
swaps and moves, similar to the principle of the variable neighborhood search (VNS) [58],
without the stop criterion of finding a local optimal.

The Algorithm 5 shows the pseudocode for the rPALS local search. It starts with
an initial Schedule constructed by the minimum completion time (MCT) heuristic [59].
Considering the tasks in any order, MCT assigns each task to the processing unit, which
minimizes the finish time of the task.

Main loop iterates until it reach a maximum number of steps MAXSTEPS; at each itera-
tion, a machine mj and a neighborhood operator between swap and move are select randomly.

In the case where the operator swap is selected, it starts a loop selecting a random task
ti from the ones assigned to mj, and a random machine mswap 6= mj until MAXSWAPS
is reached. Then a second inner loop iterates selecting random tasks tswap assigned to
mswap for swapping with ti and mj, if the neighbor solution Schedule′ improves the overall
makespan, it is assigned at the current best solution Schedule.

In the case the operator move is selected it starts a loop, selecting a random machine
mmove 6= mj until the stop condition MAXMOVES is reached. This loop iterates select-
ing a random task tmove assigned to mmove, producing a neighbor solution Schedule′ by
assigning the task tmove to the machine mj. If the neighbor solution improves the makespan,
the solution Schedule′ is assigned as the current best solution Schedule.

4.3. BEST_RT_MVk and BEST_RMVk_T

Our last consideration is of work from the literature is [13], where the authors propose
two best improvement stochastic local searches: BEST_RT_MVk and BEST_RMVk_T. Both lo-
cal search methods start with a solution constructed by the fast heuristic HEFT [24]. The main
difference between the proposed local search methods is in their stochastic selections.
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BEST_RT_MVk randomly selects a task to be evaluated within all the possible machines
and voltages configurations. Although BEST_RMVk_T randomly selects a machine and
voltage configurations to be considered within all the possible tasks. The Algorithms 6 and 7
shows the pseudocode for BEST_RT_MVk and BEST_RMVk_T, respectively.

The original methods in [13] are stochastic local searches (SLS) for makespan and
energy optimization. However, every time the methods found a local improvement,
the algorithm restarts the stop condition. The above could produce significant computation
times when the algorithm does not search a local optimum, an issue presented in our
preliminary experimentations.

Algorithm 4 ECS+idle

1: Calculate the blevel of each task ti ∈ T
2: Sort the tasks ti into a list L = {t1, t2, ......, tn} by blevel
3: First Phase ECS
4: for each ti ∈ L do
5: m′ ← m0
6: v′ ← v0
7: for each mj ∈ M do
8: for each vk ∈ mj do
9: if RS(ti,mj,vk,m′,v′)>RS(ti,m′,v′,mj,vk) then

10: m′ ← mj
11: v′ ← vk
12: end if
13: end for
14: end for
15: Assign ti on m′ with v′

16: end for
17: Second Phase MCER
18: for each ti ∈ L do
19: m′ ← The current assigned machine to ti
20: v′ ← The current assigned voltage to ti
21: for each mj ∈ M do
22: for each vk ∈ mj do
23: if t fn(m′, v′) ≤ t fn(mj, vk) then
24: if E(m′, v′) < E(mj, vk) then
25: m′ ← mj
26: v′ ← vk
27: end if
28: end if
29: end for
30: end for
31: Assign ti on m′ with v′

32: end for
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Algorithm 5 rPALS

1: Schedule← MCT
2: step← 0
3: while step < MAXSTEPS do
4: Select a random machine mj
5: Select a random neighborhood operator swap or move
6: if operator == swap then
7: tasks← 0
8: while tasks < MAXTASKS do
9: Select a random task ti assigned to mj

10: Select a random machine mswap (mj 6= mswap)
11: swaps← 0
12: while swaps < MAXSWAPS do
13: Select a random task tswap ∈ mswap
14: Schedule′ ← Schedule
15: Schedule′ assigns ti on mswap and tswap on mj
16: if mkspan(Schedule′) < mkspan(Schedule) then
17: Schedule← Schedule′

18: end if
19: swaps ++
20: end while
21: tasks ++
22: end while
23: end if
24: if operator == move then
25: moves← 0
26: Select a random machine mmove (mj 6= mmove)
27: while moves < MAXMOVES do
28: Select a random task tmove assigned to mmove
29: Schedule′ ← Schedule
30: Schedule′ assigns tmove to mj
31: if mkspan(Schedule′) < mkspan(Schedule) then
32: Schedule← Schedule′

33: end if
34: moves ++
35: end while
36: end if
37: step ++
38: end while
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Algorithm 6 BEST_RT_MVk

1: Schedule← HEFT . Line removed for the experimental comparison
2: function BEST_RT_MVk(Schedule)
3: step← 0
4: while step < MAXSTEPS do
5: step ++
6: Select a random task ti
7: for each mj ∈ M do
8: for each vk ∈ mj do
9: Schedule′ ← Schedule

10: Schedule′ assigns ti on mj with vk
11: if mkspan(Schedule′) ≤ mkspan(Schedule) then
12: if E(Schedule′) < E(Schedule) then
13: Schedule← Schedule′

14: step← 0 . Line removed for the experimental comparison
15: end if
16: end if
17: end for
18: end for
19: end while
20: end function

Algorithm 7 BEST_RMVk_T

1: Schedule← HEFT . Line removed for the experimentation
2: function BEST_RMVk_T(Schedule)
3: step← 0
4: while step < MAXSTEPS do
5: step ++
6: Select a random machine mj
7: Select a random voltage vk ∈ mj
8: for each ti ∈ T do
9: Schedule′ ← Schedule

10: Schedule assigns ti on mj with vk
11: if mkspan(Schedule′) ≤ mkspan(Schedule) then
12: if E(Schedule′) < E(Schedule) then
13: Schedule← Schedule′

14: step← 0 . Line removed for the experimentation
15: end if
16: end if
17: end for
18: end while
19: end function

5. Algorithms in Comparison

In the experimental comparison, two mandatory restrictions must be satisfied:

• The use of a fixed maximum number of neighbor solutions visited;
• Providing only one random initial solution.

The algorithms in Section 4 are adjusting in the following manner.

5.1. ECS+idle Stochastic Local Search

The original proposed ECS+idle is a deterministic heuristic. To investigate its effects as
a stochastic lexicographic local improvement method, we proposed two new stochastic
local search (SLS) using the RS objective function in Equation (3). We follow the best
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improvement pivot rule in [13], and the two SLS variants in the paper: random selection of
task (ECS_RT_MVk) and random selection of machine and voltage (ECS_RMVk_T).

Algorithm 8 shows the procedure for the SLS ECS_RT_MVk. The function’s input is
a feasible Schedule, the search select a random task ti to be evaluated in all the possible
machines in M with their respective voltage configurations if the stopping condition has
not been reached. The task ti is assigned to the best machine m′ and voltage v′ according to
the RS objective function. The main loop iterates over random tasks until the counter step
reaches the maximum number of visited neighbors MAXSTEPS.

Algorithm 8 ECS+idle random ti

1: function ECS_RT_MVk(Schedule)
2: step← 0
3: while step < MAXSTEPS do
4: select a random task ti
5: m′ ← assigned machine to ti in Schedule
6: v′ ← assigned voltage to ti in Schedule
7: for each mj ∈ M do
8: for each vk ∈ mj do
9: if step < MAXSTEPS then

10: if RS(ti,mj,vk,m′,v′)>RS(ti,m′,v′,mj,vk) then
11: m′ ← mj
12: v′ ← vk
13: end if
14: step← step + 1
15: end if
16: end for
17: end for
18: Assign ti on m′ with v′ in Schedule
19: end while
20: end function

Algorithm 9 shows the procedure for the SLS ECS_RMVk_T. The function’s input is a
feasible Schedule, the search select a random machine mj with a feasible random voltage
vk inside the range of the machine mj to be evaluated in all the possible tasks in T if the
stopping condition has not been reaching. The task ti is assigned to the best machine m′

and voltage v′ according to the RS objective function. The main loop iterates over random
tasks until the counter step reaches the maximum number of visited neighbor solutions
MAXSTEPS.

5.2. rPALS Lexicographic Local Search

The original rPALS was proposed only for the improvement of the final makespan.
To improve both objectives (energy and makespan), we follow the same lexicographic
criteria to accept variable changes in the solutions as in [13]. If the makespan is not wors-
ening and there is an energy improvement, the neighbor solution becomes the current
best Schedule. The inner loops from rPALS are removing to control the visit neighbors.
The following pseudocode shows the procedure for our proposed LS rPALS Lexicographic
Algorithm 10 (rPALS_Lex).
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Algorithm 9 ECS+idle random mj/vk

1: function ECS_RMVk_T(Schedule)
2: while step<MAXSTEPS do
3: select a random machine mj
4: select a random voltage vk ∈ mj
5: for each ti ∈ T do
6: m′ ← assigned machine to ti in Schedule
7: v′ ← assigned voltage to ti in Schedule
8: if steps < MAXSTEPS then
9: if RS(ti,mj,vk,m′,v′)>RS(ti,m′,v′,mj,vk) then

10: m′ ← mj
11: v′ ← vk
12: Assign ti on m′ with v′ in in Schedule
13: end if
14: steps← steps + 1
15: end if
16: end for
17: end while
18: end function

Algorithm 10 rPALS Lexicographic

1: function rPALS_LEX_LS(Schedule)
2: step← 0
3: while step < MAXSTEPS do
4: Select a random machine mj
5: Select a random neighborhood operator swap or move
6: if operator == swap then
7: Select a random task ti assigned to mj
8: vi ← assigned voltage to ti on mj
9: Select a random machine mswap (mj 6= mswap)

10: Select a random task tswap ∈ mswap
11: vswap ← assigned voltage to tswap on mswap
12: Schedule′ ← Schedule
13: Schedule′ assigns ti on mswap with vswap
14: Schedule′ assigns tswap on mj with vi
15: if mkspan(Schedule′) ≤ mkspan(Schedule) then
16: if E(Schedule′) < E(Schedule) then
17: Schedule← Schedule′

18: end if
19: end if
20: end if
21: if operator == move then
22: Select a random machine mmove (mj 6= mmove)
23: Select a random task tmove assigned to mmove
24: Schedule′ ← Schedule
25: Schedule′ assigns tmove to mj with random voltage vk
26: if mkspan(Schedule′) ≤ mkspan(Schedule) then
27: if E(Schedule′) < E(Schedule) then
28: Schedule← Schedule′

29: end if
30: end if
31: end if
32: step ++
33: end while
34: end function
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5.3. Fixed iterations BEST_RT_MVk and BEST_RMVk_T

For a fair experimental comparison, the commented lines in Algorithms 6 and 7 with
the legend Line removed for the experimental comparison are not considered. Therefore
the LSs are not initialized with the HEFT heuristic and visits the same number of neighbor
solutions, fixed by their main loops stop criterion (MAXSTEPS).

5.4. Table of Notations Used in the Described Literature

The Table 6 shows the common mathematical notations in the mentioned literature.

Table 6. Notation used in the described literature.

Notation Meaning

L List of tasks
blevel b-level ordering of L

ti Task i
tmove Task move
tswap Task swap

t′ Temporal Task
tsi Staring time of the task i
t fi

Finish time of the task i
mj Processing machine j

mswap Processing machine swap
mmove Processing machine move

m′ Temporal processing machine
vi Voltage i
vk Voltage k

vswap Voltage swap
vmove Voltage move

v′ Temporal voltage
Schedule Candidate solution
Schedule′ Temporal candidate solution
mkspan() Makespan objective function

E() Energy objective function
E1≤i() Partial energy objective function
step Integer counter

MAXSTEPS Integer constant

6. Experimental Setup

The reviewed works from Section 4 differ in their stop criteria. In the original publica-
tion of BEST_RMVk_T and BEST_RT_MVk, the maximum number of neighbor solutions
visited is variable, a maximum of 100 continuous neighbor visited without improvements.
In the work of rPALS, the maximum number of visited neighbors is 4,000,000. Although, in
the deterministic search, ECSidle the number is |T| · |M| · |V|.

On the one hand, few visited neighbors could increase the variance at the final com-
puted results. On the other hand, a high number of visited neighbors increase computa-
tional times. We suggest a reasonable fixed number of visited neighbors; we use the ratio
between the maximum number of visited neighbors in [6] and the maximum number of
visited neighbors without improvement in [13]. Giving a total number of maximum visited
neighbors of 4,000,000

100 = 40,000.
The set of machine and voltage configurations used for the experimentation has a

cardinality of six, the ones in [13]. When a particular scheduling problem considers more
than six machines, the first configuration is assigned to the next machine, later the second,
and so on (round-robin rule) until every considered machine has a valid configuration.
Finally, we perform 60 independent executions for every considered scheduling problem.
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6.1. Parallel Instance Set

The applications in the experimental set are:

• Fpppp [60];
• LIGO [61];
• Robot [62];
• Sparse [62].

We used the set of instances from [18], consisting of 400 different scheduling problems.

6.2. Friedman Statistical Test

In order to assess the performance of this algorithms it is necessary to validate their
outcomes through a statistical test. There are specific statistical tests for comparing two
samples and others for more than two samples. A widely accepted statistical test to find
significant differences between more than two samples is the analysis of variance (ANOVA)
test. However, to use ANOVA it is mandatory that the data follow a normal distribution.
There are other statistical tests that do not need to follow such an assumption, they are
non-parametric tests. Among those tests, Friedman [63] is a non-parametric test used to
compare the performance of several algorithms’ performance. The Friedman statistical test
is computed using the following equation when no ties:

Fr =

[
12

nk(k + 1)

k

∑
i=1

R2
i

]
− 3n(k + 1) (4)

Where the number of independent executions is n, the number of algorithms is k,
and the rank of each i algorithm is Ri. Once the statistical Fr is computed, a reference table
is consulted for the achieved p-value [63]. A direct performance evaluation metric in many
algorithms’ studies is the Friedman rankings [64] (Ri). The original data of the independent
executions is transformed into a table of places (ranks) according to the performance of
each algorithm (see Table 7).

Table 7. Example of ranks for three algorithms.

Execution Algorithm 1 Algorithm 2 Algorithm 3

1 3 2 1

2 3 2 1

3 1 2 3

4 3 2 1

5 3 1 2

6 3 1 2

7 3 1 2

With Table 7, the Friedman ranking for the Algorithm 1 is compute as the sum of
their ranks: RAlgorithm1 = 3 + 3 + 1 + 3 + 3 + 3 + 3, RAlgorithm1 = 19. The presented ranks
in this work are in terms of the average of makespan and energy consumption. For our
computational example, RAlgorithm1 = 2.71. This technique is a straightforward way to
compare the performance of several algorithms over benchmarks. Using the tool in [65] the
process is as simple as input the original data in CSV format, using the command line java
Friedman data.csv > output.tex, the output.tex file has to be compiled with a compiler
for LATEX.
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6.3. Task Priority Methods

We evaluate two widely used methods to generate a priority task list in our experi-
mentation: the bottom level (b-level), and the top-level (t-level).

The b-level computes the critical path in the DAG from a current task node tcurrent
to the final task in the parallel program tn, taking into consideration the mean of the
computing times pi in the machines (See Table 8) and the communication costs (edges of
the DAG in Figure 1).

Table 8. Mean values of the tasks computing times.

Task m0 m1 m2 pi

0 11 13 9 11.0

1 10 15 11 12.0

2 09 12 14 11.6

3 12 16 10 12.6

4 15 11 19 15.0

5 13 09 05 9.0

6 11 15 13 13.0

7 11 15 10 12.0

For the DAG in Figure 1 the b-level values of the tasks are shown in Table 9. The tasks’
priority is according to their b-level values in descending order. In a very similar manner,
the algorithm calculates the t-level, finding a path from an actual task node tcurrent to the
initial task in the parallel program t0 (See Table 10). The assigned priorities are according
to their t-level values in ascending order.

Table 9. b-level values for the DAG in Figure 1.

Task 0 1 2 3 4 5 6 7

b-level 102.00 67.00 63.66 73.66 80.00 42.00 38.00 12.00

Table 10. t-level values for the DAG in Figure 1.

Task 0 1 2 3 4 5 6 7

t-level 11.00 34.00 39.66 37.66 37.00 65.66 77.00 102.00

The computation of the b-level and t-level needs to verify every possible path in
the DAG; a straightforward way to do it is to use recursive functions as shown in the
Algorithms 11 and 12.

Algorithm 11 b-level recursive function

1: temp← pi[tcurrent]
2: function B-LEVEL(tcurrent, temp)
3: max ← temp
4: for (tcurrent, tu) ∈ E do
5: temp←B-LEVEL(tu, (temp + (tcurrent, tu) + pi[tu]))
6: if max < temp then
7: max ← temp
8: end if
9: end for

10: return max
11: end function
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Algorithm 12 t-level recursive function

1: temp← pi[tcurrent]
2: function T-LEVEL(tcurrent, temp)
3: max ← temp
4: for (tu, tcurrent) ∈ E do
5: temp←T-LEVEL(tu, (temp + (tu, tcurrent) + pi[tu]))
6: if max < temp then
7: max ← temp
8: end if
9: end for

10: return max
11: end function

7. Results

This section analyzes the computed results with the experimental settings in Section 6.
Due to the considerable number of tables needed to present results, we decide not to
include them in the final paper.

A more acceptable and brief way to examine the results is to produce Friedman’s
average rankings [64] from the non-parametric Friedman statistical test (see Section 6.2).
The ranking gives an insight into the algorithm’s performance (the lower the ranking,
the better). We compute the Friedman ranking using a free tool presented in [65]; the
website has extensive information on the Friedman test and rankings.

We found at every presented comparison in this work that there is a statistical dif-
ference after analyzing all the computed p-values by the Friedman statistical test, which
satisfies the condition p-value ≤ 0.05, giving a statistical significance of 95% [63]. In the
following subsections, we present the results by goal objective.

7.1. Makespan Results

First, we start by analyzing the computed results according to the makespan objective.
Table 11 shows the Friedman ranking when considering the whole scheduling cases and
the b-level priority execution.

Table 11. Makespan Friedman ranking on the 400 scheduling problems (b-level).

Local Search Ranking

ECS_RMVk_T 2.12
rPALS_Lex 2.36
BEST_RMVk_T 2.55
ECS_RT_MVk 3.26
BEST_RT_MVk 4.70

Table 11 shows that ECS_RMVk_T gets the best performance when using the b-level
priority execution while rPALS_Lex is the second best. Notice that both Local Searches,
when selecting a random task to verify their machine and voltage possible configurations
(ECS_RT_MVk, BEST_RT_MVk), perform the worst. The same algorithms produce low per-
formance when using the t-level priority, as shown in the ranking from Table 12. However,
in this case, rPALS_Lex obtains the best performance, followed by BEST_RMVk_T.
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Table 12. Makespan Friedman ranking on the 400 scheduling problems (t-level).

Local Search Ranking

rPALS_Lex 1.69
BEST_RMVk_T 1.79
ECS_RMVk_T 3.39
ECS_RT_MVk 3.91
BEST_RT_MVk 4.22

We infer from the results from Tables 11 and 12 that the worst strategy for makespan
optimization is when local searches evaluate from a random task their best neighbor among
all their possible machine and voltage configurations. To give more insight into the results,
we compute the Friedman average ranking on the individual subsets of instances: Fpppp,
LIGO, Robot, and Sparse. The bests rankings in the table are highlighting in gray.

The Friedman rankings in Table 13 confirms the reports from Table 11, regarding the
use of b-level, the worst performance is for the ECS_RT_MVk and BEST_RT_MVk local
searches. ECS-RMVk-T achieves the best performance with three best average rankings
(Fpppp, LIGO, Sparse) and one second-best (Robot). A highly competitive local search
when using b-level priority is rPALS-Lex with three second-best average rankings (Fpppp,
LIGO, Sparse) and one best (Robot). Considering only the Robot subset of instances,
the local search BEST-RMVk-T achieves the best makespan average ranking.

Table 13. Makespan Friedman rankings (b-level).

Algorithm Fpppp LIGO Robot Sparse
BEST_RMVk_T 2.80 2.48 2.02 2.93
BEST_RT_MVk 4.75 4.78 4.55 4.73
ECS_RMVk_T 1.75 2.11 2.40 2.22
ECS_RT_MVk 3.65 3.15 3.38 2.86
rPALS_Lex 2.04 2.47 2.65 2.27

The results in Table 14 also confirms the results from Table 12, according to the use
of t-level, rPALS-Lex achieves the best performance with three best average rankings
(Fpppp, LIGO, Sparse) and one second-best (Robot) followed by BEST-RMVk-T with one
best average ranking (Robot) and three second-best (Fpppp, LIGO, Sparse). In contrast,
the worst performance is the b-level case with ECS_RT_MVk and BEST_RT_MVk.

Table 14. Makespan Friedman rankings (t-level).

Algorithm Fpppp LIGO Robot Sparse
BEST_RMVk_T 2.06 1.75 1.43 1.91
BEST_RT_MVk 4.44 4.25 3.99 4.22
ECS_RMVk_T 3.27 3.42 3.40 3.48
ECS_RT_MVk 3.83 3.88 4.13 3.80
rPALS_Lex 1.41 1.69 2.06 1.59

7.2. Energy Results

In the case of the energy objective, the order of the rankings of the algorithms when
using b-level (See Table 15) and t-level (See Table 16) is the same.



Energies 2021, 14, 3473 18 of 22

Table 15. Energy Friedman ranking on the 400 scheduling problems (b-level).

Local Search Ranking

rPALS_Lex 1.78
BEST_RMVk_T 1.90
ECS_RMVk_T 2.85
BEST_RT_MVk 3.88
ECS_RT_MVk 4.59

Table 16. Energy Friedman ranking on the 400 scheduling problems (t-level).

Local Search Ranking

rPALS_Lex 1.56
BEST_RMVk_T 1.69
ECS_RMVk_T 3.47
BEST_RT_MVk 3.64
ECS_RT_MVk 4.64

As in the makespan results section, the worst achieved performance was obtained by
ECS_RT_MVk and BEST_RT_MVk. For energy optimization, the best achievable perfor-
mance is by rPALS_Lex followed by BEST_RMVk_T with an equal number of best and
second-best rankings in Tables 17 and 18.

Table 17. Energy Friedman rankings (b-level).

Algorithm Fpppp LIGO Robot Sparse
BEST_RMVk_T 2.40 1.75 1.55 1.90
BEST_RT_MVk 3.83 4.10 3.87 3.71
ECS_RMVk_T 2.56 2.84 2.82 3.17
ECS_RT_MVk 4.80 4.36 4.48 4.72
rPALS_Lex 1.41 1.95 2.28 1.49

Table 18. Energy Friedman rankings (t-level).

Algorithm Fpppp LIGO Robot Sparse
BEST_RMVk_T 1.99 1.56 1.40 1.82
BEST_RT_MVk 3.79 3.71 3.58 3.49
ECS_RMVk_T 3.18 3.61 3.49 3.58
ECS_RT_MVk 4.80 4.50 4.56 4.69
rPALS_Lex 1.24 1.61 1.97 1.42

8. Research Findings

A relevant result emerges from our empirical experimentation, the priority order
technique in list scheduling may significantly change the performance of some algorithms,
according to the makespan objective. The above is the particular case of the ECS function,
which changes from first place (ECS_RMVk_T) in the b-level priority results to third place
in the t-level results. A deeper examination of the ECS function in Equation (3) shows
that if the energy consumption magnitude is significantly greater than the makespan
magnitude, it will emphasize the energy objective over the makespan. According to
the energy objective, different priorities for the tasks do not change the comparative
performance of the algorithms, for the Friedman ranking remaining the same for the
algorithms. Therefore, we infer that energy optimization is more sensitive to the DVFS
configurations than the tasks’ order of execution.
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9. Conclusions and Future Work

As far as we know, we present the first study of stochastic lexicographic local searches
for precedence-constraint task scheduling on heterogeneous machines. We adapt three lo-
cal searches from the literature to be stochastic, iterative, and lexicographic bi-objective
(makespan and energy). The above produces three new variants: ECS_RMVk_T, ECS_RT_MVk,
and rPALS_Lex. The experimental results show rPALS_Lex as the most competitive algo-
rithm for makespan and energy optimization compared with the other local searches in
the experimentation.

The relative superiority objective function from the ECS heuristic works slightly better
when using the b-level priority of execution in the tasks, denoted by ECS_RMKV_T best
performance achieved in makespan.

The worst strategy for the studied local searches is when an individual random task
is selected to verify their possible machine and voltage configurations. Therefore, we
recommend the approach when a random machine and voltage configuration is selected
and verifies for improvements over the whole set of tasks.

Finally, as the experimental comparison shows, the task’s execution order is essential
for the final performance of the algorithms, with radical place changes in the Friedman
rankings when using the b-level and t-level priority.

As future work, we would like to study the design of new priority task heuristics,
which could improve the performance of the proposed local searches for scheduling.
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