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Abstract: A special element of road safety research is accidents at the interface of the road and rail
system. Due to their low share in the total number of incidents, they are not a popular subject of
analyses but rather an element of collective studies, whereas the specificity of the road–rail accidents
requires a separate characteristic, allowing, on the one hand, to categorize these types of incidents,
and on the other, to specify the factors that affect them, along with an assessment of the strength of
this impact. It is important to include in such analyses all potential predictors, both qualitative and
quantitative. Moreover, the literature considers most often a number of accidents while, according
to the authors, it does not fully reflect the scale of the danger. A better evaluation would be the
victim’s degree of injury. Therefore, the purpose of this article is to assess the likelihood of occurrence
of various effects of road–rail accidents in the aspect of selected factors. Due to the ordinal form
of the dependent variable, the classification trees method was used. The results obtained not only
allow the characterization and assessment of the danger but also constitute guidelines for taking
preventive actions.

Keywords: road–railway accidents; classification trees; road safety; transport means; accidents victims

1. Introduction

Railroad transport safety is an important factor taken into account when evaluating
the operation of this branch of transport. Due to the importance, scope and consequences
for society and economy of the low level of traffic safety, it is the subject of many stud-
ies and analyses and is systematically evaluated [1–3]. According to the latest annual
reports/statistics from the International Union of Railways (UIC), the number of railroad
accidents is decreasing [4,5]. The European Union Agency for Railways (ERA) reports are
similarly optimistic. The latest reported safety level is historically the highest, although
ERA points out that while safety levels have steadily improved, the rate of improvement
has slowed down [6].

World statistics are derived from research, and thus, the presented trends are very
important for decision-making also at the national level. It should be noted that the
level of safety should be shaped primarily at the local level. In Poland, according to
the latest data [7], both the overall number of railroad accidents and fatalities decreased.
However, the rates of accidents at railroad crossings have not decreased. For example,
in 2019, 11 more people died there than the year before. This shows that despite the
overall positive indicators (both at the global and national level), there are areas for safety
improvement and analysis in a smaller scope, in this case concerning only road–railway
crossings. This became the genesis of this publication. Additionally, the UIC report shows
that at the international level, railway crossing accidents account for as much as 15% of
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all diagnosed causes of railroad accidents, being the second most common cause (after
persons trespassing on railroad infrastructure) estimated at 75% [5]. This further supports
the analysis presented in the article. Another important argument is that, according to the
ERA report [6], the overall level of safety at railroad crossings in Europe has improved.
The average annual decrease in accidents between 2010 and 2018 was 3%, and 4% for
fatalities. This shows that Poland does not fit into the general trend in Europe in this regard.
Therefore, detailed analyses for the country are necessary.

Rail–road level crossings are an important element of the road infrastructure, enabling
an intersection of the road and rail vehicles’ tracks. There are over 14,000 such intersections
in Poland [8] at which, in the period under investigation (the years 2014–2020), almost
8000 incidents (collisions and accidents) were recorded. Approximately 259 people were
killed, and 404 were injured. Such accidents, apart from the tragic consequences, are
associated with high costs, especially regarding the repair of rail vehicles. That is why
the research is important, aimed to increase the level of safety and reduce the scale of
the danger.

The accidents at the meeting point of road and rail transport are not a popular subject
of analyses because they are relatively rare. This is shown in Figure 1, which shows
the number of total road accidents during the study period and the number of road–
railway accidents. The differences are so large that two scales had to be used to make the
figure visible.

Figure 1. Number of total traffic accidents and road–railway accidents during the studied period.

Calculations show that road–rail accidents account for only 5% of all traffic incidents.
Therefore, the interest in this issue is mainly due to the potential severity of their conse-
quences. The research in the literature concerns, for example, predicting the likelihood of
accidents, injuries and fatalities using logistic regression [9]. Ghomi and others in [10] used
the ordered probit model, CART and association rules to evaluate the factors that most
strongly affect the risk of an accident, which turned out to be train speed, age and gender
of the incident participant.

The large-scale study was conducted in [11] and in [12]. The first concerns the analysis
of the railroad level crossings in Great Britain over 64 years (1946–2009), while the second
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one concerns Australia (Victoria) in the years 1969–1974. However, the mentioned research
is not new. The dynamic development of motorization, the constantly increasing number
of road users, as well as the development of road safety systems [13] make it necessary to
update them. This conclusion indicates that new analyses are needed in this area.

The accessibility of information does not help such analyses, which in many countries
is very limited [14,15], which is why the data from simulators are used [14].

The most frequently studied element are factors affecting the number of accidents or
their consequences. They differ from one country to another. In Israel [14], the warning
device category, vehicle traffic intensity, train traffic intensity, and visibility conditions were
considered important. In Ethiopia [16], the studies have shown that most accidents are
due to human error, followed by technical problems and non-compliance with operational
procedures. In [17], Ling et al. evaluated the derailments of Australian passenger trains as
a result of a collision with heavy road trucks.

Classification models are popular both for the analysis of railroad accidents and all
accidents in general [18,19]. The decision to use them is primarily influenced by the form
of the dependent variable, as well as the nature of the factors that may affect the number of
such incidents or the injuries caused by them. These are often qualitative variables, which
limits the availability of some methods of mathematical analysis.

Most commonly used are logistic regression and decision trees, as the most popular
tools for assessing the impact of qualitative predictors [20–24]. Decision trees were used,
for example, in the investigation of car accidents from the years 2005 to 2006 in Taiwan,
where the key factors determining the effects of injuries turned out to be driving under
the influence of alcohol, not using seat belts, type of vehicle, type of collision, number of
vehicles involved in the accident and location of the accident [25].

The authors [24] also used such a method to analyze 4-year observations regarding
road accidents in India, indicating that in order to improve safety on motorways, first
of all, it is necessary to properly design and control motorway entrances and limit the
speed achieved by vehicles. The CART algorithm was used to investigate accidents in
2001 in Taiwan. This made it possible to evaluate the relationship between the severity of
injuries and driver characteristics, vehicle type and conditions during an accident. The
results indicate that the most important variable related to the severity of the collision is
the vehicle type. It has also been identified that pedestrians, motorcyclists and cyclists run
a greater risk of injury than other drivers in road accidents [26].

The logistic regression, in turn, was used in the study of falling asleep at the wheel
or fatigue as factors contributing to an accident [27]. In [20], the probability of death was
examined, indicating a significant impact of the location and cause of the accident. On
the other hand, the authors [28] used polynomial logistic regression to identify significant
factors of risk of accidents, indicating elements related to the road infrastructure, driver’s
characteristics and vehicle type.

Guided by the experiences resulting from reviewing the literature in terms of the
tools used and the research gap identified regarding the railroad accidents analysis, the
authors decided to use classification trees to evaluate factors influencing the effects of
such an incident. Additionally, other approaches like random forest [29,30] and boosting
technique [31–33] were used for improving the results obtained from the decision tree. All
research was performed in the R environment.

2. Data for the Study

In Poland, information on traffic incidents is collected by the Police in the Accident
and Collision Records System (SEWiK). Based on this, the Polish Road Safety Observatory
(POBR), operating at the Motor Transport Institute (ITS), develops databases that have
become the genesis of this study. The files made available contain a number of detailed
characteristics for each incident, including:

• Place and time of the incident,
• Type of incident: collision of vehicles, rear-end collision, overturning,
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• Consequences: fatalities, injured people (including slightly and seriously injured),
• Behavior of participants (drivers, passengers, pedestrians),
• Vehicle and road infrastructure condition,
• Atmospheric conditions (sun, rain, fog, strong wind), time of day and lighting (day,

night, darkness, dawn),
• Type and condition of the road (surface, signposting, traffic lights),
• Circumstances and causes of the incident.

This study uses factors related to:

• Date and time of the incident,
• Existence of traffic lights at a railroad level crossing,
• Geographical location of the accident (province),
• Type of area (built-up, undeveloped),
• Driver characteristics (age, driving under the influence of alcohol or other drugs),
• Type of the injured participant (pedestrian, driver),
• Type of vehicle involved in the incident (passenger car, truck, truck with semi-trailer,

motorcycle, motorcycle with an engine capacity of up to 125 cm3, moped, bicycle, bus,
agricultural tractor, train, emergency vehicle).

The data from 2014 to 2020 was examined. The total number of incidents per month,
with the participation of rail vehicles in this period, is shown in Figure 1 (green line).

Almost 11,000 people took part in these accidents, most of whom have not been
injured. Other victims, according to the type of injuries sustained, were divided into three
categories [34]:

• Fatal—people who died at the scene of the accident or within 30 days of the date of
the accident due to the injuries sustained,

• Seriously injured—persons suffered severe disability, a serious incurable illness or
long-term, life-threatening illness, permanent mental illness, complete or significant
permanent incapacity for work or permanent, significant deformation or deformity
of the body; this term also includes a person who suffered other injuries resulting in
violation of bodily functions or health disorder for a period of more than 7 days,

• Slightly injured—injuries other than listed above and causing a health disorder in the
period of no more than 7 days.

Due to the fact that almost 93% of participants in incidents did not suffer any injuries
during the period under investigation, it was decided to further analyze only those who
suffered health damage or died.

Results of the analysis of road traffic safety in Poland indicate that in the studied
period there were 8474 accidents and collisions. Participants in them were 10,960 people,
of which 210 died. This is less than 2% of all victims. For comparison, the total number of
all road accidents and collisions in this period was 219,863. As many as 18,527 people died
in them. Reducing the number of people injured in road accidents is the main goal of all
actions undertaken in the area of road safety improvement. For this reason, the authors
found it necessary to focus only on accidents and their worst effects. This will allow
identifying the most important causes (factors) of these accidents and thus the necessary
preventive actions (making the right decisions).

3. Decision Trees

We consider the feature Y (called the injured state), which depends on the value of the
features (independent variables) X1, . . . , Xm presented in the previous chapter. One of the
possible ways to determine the relationship between features is to construct a decision or
regression tree. In the presented case, the Y feature is qualitative, so in order to analyze
the impact of incident circumstances on the injured person’s condition, decision trees have
been used.

Let D =
{(

x(i), yi

)
: x(i) ∈ R1 × . . .× Rm , yi ∈ A, 1 ≤ i ≤ n

}
be the learning set.

For any 1 ≤ j ≤ m set Rj denotes the possible realization of Xj feature, but set A denotes
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the set of possible realizations of a response variable, where cardinality #A = h > 0
(power of the A set or the number of possible classes is equal h). For the i−th observation,
1 ≤ i ≤ n the vector x(i) ∈ R1 × . . .× Rm denotes the realizations of independent (input)
variables (usually feature values that influence to output variable) but yi ∈ A denotes the
value of the response variable. Our task is to define a model, where based on observations
x ∈ R1 × . . .× Rm we should predict a victim condition. To assess the features influence
on the sufferer state, we will apply the decision tree model.

The tree-based method consists of partition (splitting, division) of the feature space
S = R1 × . . .× Rm into a set of separable regions and fitting values of a response variable
to appropriate regions. Below, we consider a decision problem for response variable
Y. We split the entire S feature space into S1, S2, . . . , Sk regions, where Si ∩ Sj = ∅ for
1 ≤ i 6= j ≤ k. Based on input vector x ∈ S, we predict the output variable Y as follows:

f (x) =
k

∑
j=1

cj Ij(x), (1)

where,

Ij(x) =
{

1, f or x ∈ Sj
0, f or x /∈ Sj

(2)

and value cj ∈ A for 1 ≤ j ≤ k denotes the most commonly occurring class of response
variable in the Sj region. From (1), we see that the main task during decision tree building
consists of splitting the entire space of features into separated regions.

The regression tree is usually presented in graphic form. The internal tree nodes
describe how the division was made, while the leaves correspond to the classes to which
the objects belong. The tree edges, in turn, represent the values of the features based on
which the division was made.

For each Sj region we estimate the classification rates 0 ≤ pj1, . . . , pjh corresponding to
elements from set A (possible realizations of response variable) where pj1 + . . . + pjh = 1.
The value pji represents the proportion of observations in the j−th region that are from the
i−th class. The classification error rate is a fraction of observations in this region that do
not belong to the most common class

errorj = 1− max
1≤i≤h

pji (3)

The decision tree building method consists of portioning of an appropriate region by
minimizing the Gini index

Gj =
h

∑
i=1

pji
(
1− pji

)
(4)

or entropy

Ej = −
h

∑
i=1

pji log pji (5)

From (4) and (5) we can see that the Gini index and entropy take on a small value
when the classification rates pj1, . . . , pjh are close to zero or one. Both the Gini index and
entropy are referred to as purity of j−th node and typically used to assess the quality of a
particular split of a region.

The restrictions that can be applied during the division of S feature space are: the
minimum cardinality of node subject to dividing, the minimum cardinality of the node
resulting from dividing, the maximum number of tree levels. Selecting the right tree size
can also be adjusted by pruning the original model.

For this purpose, there are selected algorithms being used. Among the most popular
are: CART and C4.5 (and then C5.0) algorithms. Additionally, CHAID [35], QUEST, THAID
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and others [36] can be used. In our analysis, we employ the CART algorithm to select the
important features’ influence on accidents result.

The decision trees suffer from high variance. One of the possible techniques to improve
the predictions obtained from decision trees is bagging [33]. The main idea depends on
creating an ensemble of decision trees based on several bootstrapped training sets. These
training sets are chosen randomly with replacement from the data set and are used to train
the decision trees. The variance is reduced by aggregating a set of predictions obtained
from an ensemble of trees. For classification trees, we take a majority vote from the obtained
class predicted by each tree.

The random forest is an extension of the bagging method [29,30]. The main difference
is that during the making of the training set for each tree we randomly choose the set
of features from a full set of features. Thus, we make an ensemble of random trees. A
multitude of random trees is called a random forest. This technique avoids the problem of
selecting the dominant predictor in the split of space for each tree. The predictions obtained
from trees with randomly selected features are less correlated, thereby making the average
of the predictions obtained from regression trees or majority vote from classification trees
less variable and more reliable.

Another technique to improve the results obtained from the decision trees is boost-
ing [33]. Boosting, like bagging, depends on creating an ensemble of decision trees. For
bagging, we adapt the trees to training sets chosen randomly from the data set. By applying
the boosting technique, the trees are made sequentially, i.e., the current tree is built based
on information from the previously grown tree and the response variable in the current
tree is defined as residuals (not explained outcomes) from the previous tree.

The adaptation of a large decision tree to the data can be hard and potentially over-
fitting. The boosting approach results in the learning process being slow. By adding
the current decision tree into the ensemble of trees in order to update the residuals, we
define the model that explains the dependences between outcomes and features. Each of
these trees can be small but by adapting the small trees to the residuals, we improve the
outcomes (response variable) in areas where this does not work well. It is the main benefit
of this method. In general, the learning process is slow and sequential but tends to explain
the dependences well. In our analysis, we employ the XGB (eXtreme Gradient Boosting)
algorithm [31,32] to select the influence of important features on the accidents’ result.

Various measures are used to evaluate the classifier. Most often, the basis for their
definition is the confusion matrix. The columns of this matrix determine the actual decision
classes while rows determine the decisions predicted by the model. The Nij value at the
intersection of the i−th verse and j−th column specifies the number of observations of
j−th class classified into the i−th class, 1 ≤ i, j ≤ h. In general, the case has the form
presented in Table 1.

Table 1. Form of the confusion matrix.

Actual Class→
Predicted Class ↓ Class 1 Class 2 ... Class h

Class 1 N11 N12 ... N1h

Class 2 N21 N22 ... N2h

... ... ...

Class h Nh1 Nh2 ... Nhh

For each possible realization, we estimate the basic values. For the j−th class (1 ≤
j ≤ h), the TP (true positive) denotes a number of outcomes (instances) that are correctly
classified for this class, the FP (false positive) is the number of outcomes that are classified
for the class but they do not belong to it, the FN (false negative) is the number of outcomes
that belong to the class but are incorrectly classified, the TN (true negative) is the number
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of correctly classified outcomes that do not belong to the class. According to the notation
presented in Table 1 for the j−th class (1 ≤ j ≤ h), we determine the basic values as follows:

TP = Njj, FP = ∑h
i = 1,
i 6= j

Nji, (6)

FN = ∑h
i = 1,
i 6= j

Nij, TN = ∑h
i,j=1 Nij − TP− FP− FN (7)

Additionally, for each class, we estimate the following basic metrics:

1. Sensitivity (Recall, True Positive Rate—TPR), indicating to what extent the truly
positive class has been classified as positive:

TPR =
TP

TP + FN
(8)

2. Specificity (True-Negative Rate—TRN), indicating to what extent the truly negative
class has been classified as negative:

TNR =
TN

TN + FP
(9)

3. Positive Predictive Value (PPV), indicating with what certainty we can trust positive
predictions, i.e., in what percentage are the positive predictions confirmed by the
truly positive state:

PPV =
TP

TP + FP
(10)

4. Negative Predictive Value (NPV), indicating with what certainty can we trust negative
predictions, i.e., in what percentage the negative predictions are confirmed by the
truly negative state:

NPV =
TN

TN + FN
(11)

5. Prevalence is the fraction of cases possessing the examined feature (it shows how
often the positive class occurs in the sample).

Prevalence =
TP + FN

TP + TN + FP + FN
(12)

6. Detection rate shows the number of correct positive class predictions as a proportion
of all of the predictions made.

Detection rate =
TP

TP + TN + FP + FN
(13)

7. Detection prevalence or predicted positive condition rate (PPCR) is the percentage of
observations that the classifier predicted as positive (it illustrates the feasibility of the
model in practice).

Detection Prevalence =
TP + FP

TP + TN + FP + FN
(14)

8. Balanced accuracy is an average arithmetic sensitivity and specificity, specifying the
average number of predictions for each class, correctly classified by the model (it
finds better use when we have just one test set, and it is not balanced).

Ballanced Accuracy =
TPR + TNR

2
(15)
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Additionally, for the entire classifier, we determine accuracy (ACC), which denotes
the fraction of all instances that are correctly categorized:

ACC =
∑h

i=1 Nii

∑h
i,j=1 Nij

(16)

4. Results

The CART algorithm was used for the construction of decision trees. The influence of
the characteristics of the province and the time of the incident on the condition of the victim
was investigated. There were 631 observations used for the construction. The following
symbols were adopted for individual provinces: B—Podlaskie, C—Kujawsko-Pomorskie,
D—Dolnośląskie, E—Łódzkie, F—Lubuskie, G—Pomorskie, K—Małopolskie, L—Lubelskie,
N—Warmińsko-Mazurskie, O—Opolskie, P—Wielkopolskie, R—Podkarpackie, S—Śląskie,
T—Świętokrzyskie, W—Mazowieckie, Z—Zachodnio-Pomorskie. Figure 2 presents the
classification tree with maximum depth equalling 5. This tree contains only seven rules.

Figure 2. Classification tree for the variables of place and time of the accident.

The accuracy of the model taking into account only two variables is not satisfactory,
with the value of ACC = 0.517. The accuracy of the predictions is presented by the confusion
matrix—Table 2. The elements on the main diagonal indicate correctly classified observa-
tions.

Table 2. Confusion matrix for the decision tree based on location of incident and time.

Class

Prediction Death Seriously Slightly

Death 102 49 61
Seriously 16 48 16
Slightly 66 97 176

Because the quality of the prediction is not satisfactory, a decision tree was constructed
that includes a higher number of predictors. The following variables were taken into
account: time of day, month, type of vehicle, type of participant, existence of traffic lights
at the level crossing, age of the victim, area (developed, undeveloped), and location of the
incident (province).

The classifier includes 49 decision rules. Its extensive form prevents legible, graphical
presentation. Therefore, only a descriptive characteristic of the model was made using a
matrix of errors, basic measures of states and a graph with variable importance.
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The inclusion of additional predictors has improved the quality of the classifier. The
accuracy is ACC = 0.679. Table 3 shows the confusion matrix. On the main diagonal, there
are correctly classified observations.

Table 3. Confusion matrix for the extended decision tree.

Class

Prediction Death Serious Injury Slight Injury

Death 149 60 50
Seriously 13 95 18
Slightly 22 39 185

The predictors, ranked by their importance, are shown in Figure 3. This figure shows
the percentage of decrease of the Gini index (interpreted as gain) for the construction
of the classification tree. The evaluation of the importance of the predictors’ impact on
the dependent variable has indicated a significant impact primarily of the location of the
accident (province) and the time of the incident. A detailed evaluation of the model was
made by analyzing measures for each of the singled-out injury levels. The sensitivity
and specificity take values exceeding 73% (except for the “serious injury” class for which
sensitivity is about 49%). The precision of positive and negative prediction is high (up to
75% except for the “death” class). The remaining results are presented in Table 4.

Figure 3. Variable importance ranking for the extended decision tree.

Table 4. Detailed measures for the individual injury classes.

Class Death Serious Injury Slight Injury

Sensitivity 0.8098 0.4897 0.7312
Specificity 0.7539 0.9291 0.8386

Pos Pred Value 0.5753 0.7540 0.7520
Neg Pred Value 0.9059 0.8040 0.8234

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2361 0.1506 0.2932

Detection Prevalence 0.4105 0.1997 0.3899
Balanced Accuracy 0.7818 0.7094 0.7849
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In order to verify the influence of each feature, a random forest was also constructed,
consisting of 50 trees, where three features were randomly selected for the learning set. As
before, we present the results in the form of a confusion matrix (Table 5), a matrix of the
basic measures for each state (Table 6) and the variable importance plot (Figure 4).

Table 5. Confusion matrix for the random forest.

Class

Prediction Death Serious Injury Slight Injury

Death 175 16 8
Seriously 3 160 4
Slightly 6 18 241

Table 6. Detailed measures of the random forest for the individual injury classes.

Class Death Serious Injury Slight Injury

Sensitivity 0.9511 0.8247 0.9526
Specificity 0.9463 0.9840 0.9365

Pos Pred Value 0.8794 0.9581 0.9094
Neg Pred Value 0.9792 0.9267 0.9672

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2773 0.2536 0.3819

Detection Prevalence 0.3154 0.2647 0.4200
Balanced Accuracy 0.9487 0.9044 0.9445

Figure 4. Predictor importance ranking for the random forest.

By comparing Tables 3 and 5, we can see that the quality of the classifier for the
random forest is better than for the extended decision tree. For the random forest, the
accuracy is equal to 0.913.

From Figure 4, we can see that the predictors: age of the victim, time, province and
month have the greatest impact on the variable describing the state of the injured person.
Basic metrics for the random forest are presented in Table 6.

From Table 6, we see a significant improvement in metrics sensitivity, specificity,
balanced accuracy, PPV and NPV.
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The classifier was also constructed using the boosting technique. In this case, it
is assumed that the maximum depth of a tree equals 3, and the maximum number of
boosting iterations is 50. As before, we present the results in the form of a confusion matrix
(Table 7), matrix of the basic measures for each state (Table 8) and a variable importance
plot (Figure 5).

Table 7. Confusion matrix for the boosting tree model.

Class

Prediction Death Serious Injury Slight Injury

Death 179 5 1
Seriously 3 185 3
Slightly 2 4 249

Table 8. Detailed measures of boosting tree model.

Class Death Serious Injury Slight Injury

Sensitivity 0.9728 0.9536 0.9842
Specificity 0.9866 0.9863 0.9841

Pos Pred Value 0.9676 0.9686 0.9765
Neg Pred Value 0.9888 0.9795 0.9894

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2837 0.2932 0.3946

Detection Prevalence 0.2932 0.3027 0.4041
Balanced Accuracy 0.9797 0.9699 0.9842

Figure 5. Predictor importance ranking for the boosting tree model.

By comparing Tables 3, 5 and 7, we can see that the quality of the classifier for the
boosting tree model is the best. For this model, the accuracy equals 0.972.

From Figure 5, we can see that the province predictor dominates the others. The time,
month and vehicle type predictors have a significant impact on the variable describing
the state of the injured person. Basic metrics for the boosting tree model are presented in
Table 8.
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From Table 8, we see that the sensitivity, specificity, balanced accuracy, PPV and NPV
metrics are over 0.95.

The most powerful predictor, in the case of decision trees and the boosting tree model,
is the location of the accident, in this case defined by the province. This can be due to
two reasons. The first is the discrepancy in the state and quality of both linear and point
infrastructure in the individual regions of Poland. These elements remain in the sphere of
administration of the local government units. This condition applies to as much as 95.4% of
all roads in the country and means different management, financing and control. Because
the impact of infrastructure on both the number of accidents and injuries is significant [37],
the impact of location in the presented study is also significant. Another reason influencing
this result is the different densities of the railroad network in individual regions of Poland.
In eastern Poland, it is smaller than in western Poland. However, central Poland has the
largest number of railroad lines. Moreover, the number of road users as well as their
mobility vary between provinces. This activity, different not only in particular areas but
also during the times of the day, results in the next factor strongly influencing the model
being the time of the event.

Another important predictor related to time is the month. The increased number of
traffic accidents is probably influenced by the increase in traffic associated with vacation
activity from May to September. It may also be due to the reduced alertness of drivers
focused on resting. The fact that some drivers are not daily users of cars and have little
experience in driving also contributes to the accidents. The fourth most important is the
type of vehicle. Among the established rules, the most common means of transport is the
bicycle, the passenger car and the truck. Additionally, in many situations, cyclists’ deaths
are equal to or very close to 100%.

In the case of the random forest, the age of the victim was the first factor contributing
to injury in accidents. The other factors with the highest influence were the same but
ranked in a different order (time, province, month).

The influence of the remaining predictors was significant but smaller. The existence
of traffic lights and developed areas is conducive to the tragic consequences of accidents.
The drivers are more likely to die than passengers. The influence of alcohol is also an
important factor, but it should be emphasized that this result is affected by a small number
of accidents in which such a violation was noted. In the analyzed sample, there is less than
1.2% of them.

5. Conclusions

The classification trees are a flexible, user-friendly, and easy-to-interpret tool for
analyzing large sets of observations, consisting of many variables. Their biggest advantages
include transparency and readability of the result presented in the form of rules, as well as
no requirements for the form and distribution of variables. Additionally, it is necessary to
emphasize their insensitivity to the occurrence of non-typical observations and deficiencies
in the data set.

However, in the analyzed case, the application of this method resulted in an accuracy
of 68%. This result was improved by applying the boosting tree model for which the
highest accuracy of 97% was achieved. In both cases, the result was the same. The most
important predictors were: province, time, month and vehicle time. An additional method
proposed was random forest, for which ACC = 91%. This model indicated a different order
of predictors, placing the age of the victim first.

The results obtained, in addition to indicating the factors increasing the risk of certain
injuries in an accident, also indicate the need to develop comprehensive solutions for the
entire country in terms of improving road safety. Such a large impact of location may result
from the different functioning of individual local government units and the differences in
administration of the governed infrastructure. Therefore, it is necessary to develop and
implement common standards and equalize the differences between individual regions,
particularly in relation to the condition of the road, its surroundings and road equipment.



Energies 2021, 14, 3462 13 of 15

The obtained measurable results of measurements concerning the influence of the
examined factors on traffic safety at railroad crossings provide information on such actions,
which are conducive to improving road–rail traffic safety through:

• Shaping of the road–railway traffic safety strategy based not only on the analysis
of data on the number of road–railway incidents but also on the factors influencing
mortality and the strength of this influence,

• Ensuring funds in the state budget for the creation and improvement of national
and local databases collecting information not only on the number of road–railway
accidents but also covering detailed characteristics of each event (e.g., visibility range
at a railroad crossing, number of lines/tracks–track gauge, frequency of railroad links),

• Setting standards for improving the safety of road–railway infrastructure in terms of
traffic engineering and road and construction issues,

• Setting standards for improving the safety of road–railway infrastructure for owners
and managers of roads with road–railway connections on each administrative level,

• Shaping the behavior of all road users and awareness of existing risk factors and the
significance of their impact on road–railway incidents and their consequences,

• Conducting social campaigns shaping attitudes and opinions, also on the basis of
obtained research results showing which factors most strongly influence mortality in
road–railway accidents,

• Creating and enforcing stricter regulations, especially with respect to identified causes
of fatal accidents, and increasing the penalties in this area,

• Improving the operation of road–railway rescue systems by identifying areas (railroad
crossings) particularly conducive to fatal accidents,

• Improving the process of education and training using the results of analysis of factors
affecting the mortality in road–railway accidents for prevention purposes, as part of
training and prevention talks, as well as guidelines for determining the timing and
scope of police operations organized in support of safety.

A limitation of the analysis presented in this paper is, first of all, the qualitative form
of most of the variables. It limits the possibility of research to classificatory methods.
The quality of the presented research is also affected by the number of recorded factors.
Especially in the framework of further considerations, the authors would like to take into
account the volume of traffic. This factor is very important from the point of view of road–
railway traffic safety, but it is not monitored at most of the railroad crossings. Generally
speaking, traffic volume monitoring in Poland concerns mainly selected regions (mostly
intersections of big cities). However, the dynamic development of smart transportation
systems is conducive to obtaining the necessary information [38], so analyses that take this
factor into account for a smaller area will probably be possible soon.
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and A.Ś.; writing—editing, A.B., E.K. and A.Ś.; visualization, A.B. and E.K. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in a pub-
licly accessible Mendeley Data repository: http://dx.doi.org/10.17632/7vwx2pnbx5.1 (accessed on
11 May 2021).

Conflicts of Interest: The authors declare no conflict of interest.

http://dx.doi.org/10.17632/7vwx2pnbx5.1


Energies 2021, 14, 3462 14 of 15

References
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