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Abstract: The growing adoption of decentralised renewable energy generation (such as solar photo-
voltaic panels and wind turbines) and low-carbon technologies will increase the strain experienced
by the distribution networks in the near future. In such a scenario, energy storage is becoming a key
alternative to traditional expensive reinforcements to network infrastructure, due to its flexibility,
decreasing costs and fast deployment capabilities. In this work, an end-to-end data-driven solution
to optimally design the control of a battery unit with the aim of reducing the peak electricity demand
is presented. The proposed solution uses state-of-the-art machine learning methods for forecasting
electricity demand and PV generation, combined with an optimisation strategy to maximise the use
of photovoltaic energy to charge the energy storage unit. To this end, historical demand, weather,
and solar energy generation data collected at the Stentaway Primary substation near Plymouth, UK,
and at other six locations were employed.

Keywords: short-term electrical load forecasting; distribution systems; photovoltaic power generation;
constrained optimisation under uncertainty; battery energy storage system; machine learning

1. Introduction

The number of renewable energy sources (RESs) connected to the power grid has
been growing rapidly in the UK in the last decade. According to [1], renewables’ share of
total electricity generation was a record of 42.9% in 2020. In total, renewable generation
increased by 11% (13.8 TWh) since 2019 levels, to a new record of 134.3 TWh. In the
UK, the great majority of RESs consist of wind and solar energy. Onshore and offshore
wind plants are generally connected at the transmission system level, due to their size.
Photovoltaic (PV) generation (including both individual panels and PV plants) is connected
at the distribution system level, closer to the end user. Before the advent of RESs, generation
was mostly centralised and based on the use of fossil fuels or nuclear plants. Additionally,
power flow patterns were more defined, and power was unidirectionally delivered from
large power stations to the end users. Power stations were generally run below their
rated capacity, thus providing an operating reserve: in this way, system operators were
able to regulate power plants’ output even with relatively short notice, thus being able to
compensate for errors in load forecasting, or sudden events [2].

The increasing amount of RESs installed has an impact on the physical characteristics
and the dynamics of power systems, such as inertia and short-circuit levels. They also
contribute to making voltage and power flow management more complex, and forecasting
more challenging. It has therefore become clear that a further increase in the levels of RES
integration requires new approaches and methodologies for power system management,
control and operation [3,4]. At the same time, other emerging solutions are expected
to mitigate some of the concerns highlighted above and to provide increasing flexibility.
In particular, energy storage includes various technologies (batteries, fuel cells, superca-
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pacitors) that mainly allow regulating power flow in the distribution grid, but can also
provide ancillary services to promote further RES integration, as discussed in [5].

Load and generation forecasting play a crucial role in power generation, operation
and planning. Forecasting is a complex task that takes place over varying time scales,
and allows determining capacity expansion, scheduling maintenance, balancing electricity
supply, and reserve margins calculation. Electricity forecasting is generally classified
into three main categories: short-term (days), medium-term (few weeks to few months)
and long-term (one to several years) [6,7]. Accurate forecasting results in a reduction in
operation cost and lower risk to power system operation [8].

Wind and solar generation is subject to forecasting errors due to the difficulty to
accurately predict the weather even at a short time scale. In small countries such as the
UK, natural resources are largely correlated, and therefore, sudden variations in solar
irradiance and wind speed affect large areas of the country [9]. This introduces uncertainty
in generation forecasting, aggravated by the simultaneous reduction in operating reserves
due to the retirement of fossil-fuel plants. At the same time, due to the increase in power-
electronics-based loads, such as electric vehicles, and more variable work patterns, demand
forecasting has also become more challenging. This condition has been exacerbated by the
COVID-19 pandemic since 2020, which led to changes in domestic demand patterns and a
reduction in industrial electricity demand [10].

As a result of the above concerns, distribution network operators are currently looking
into new methodological approaches which integrate accurate load and generation fore-
casting with strategies to optimally control and shift power generated by RESs. In recent
years, approaches based on machine learning (ML) have shown promising potential for
both the prediction of load [7,11,12] and generation forecasting [13–15]. These methods
use historical data to develop predictive models that are able to forecast generation and
demand with different time horizons. Furthermore, a vast literature is available on the
problem of optimally operating a battery with diverse goals, including energy arbitrage,
peak shaving, frequency regulation, demand response, and minimising energy bill costs
among others [4,16–22]. The optimal day-ahead operation of distribution networks with
energy storage capabilities and substantial PV power penetration was tackled in [4,19].
The uncertainty originated by the integration of RESs in energy system management was
included in the modelling of diverse complex optimisation problems to minimise the
energy bill, ranging from residential level to micro-grids, and taking into account both
operating costs and capital expenditures in [20–22]. The aforementioned papers are mainly
centred on the formulation of the optimisation problems to model the relevant restrictions,
as well as the techniques and heuristics employed to solve them. The forecasting tasks
are dealt with using model predictive control techniques, statistical methods, heuristics
or commercially available software [23]. Whilst both the forecasting and optimal battery
scheduling problems are well studied, the specific integration and tuning of advanced ML
forecasting models to devising optimal battery strategies is not so well researched.

This paper focuses on the specific challenge of devising an optimal control strategy for
battery storage devices to simultaneously maximise peak load shaving and harness the PV
power. When battery operation restrictions are taken into account, the problem becomes a
constrained optimisation problem under uncertainty. In the present case study, it is not
possible to apply the robust model predictive control techniques described in [18–20,22,23]
due to the lack of a stream of real-time information about weather conditions and power
generated, and the restriction of operating a battery without online control capabilities.
Hence, the focus is shifted to the accurate forecasting of demand and power generation
oriented to reducing the peak load and optimising the use of PV power. This paper
proposes a novel end-to-end data-driven solution to optimally design the control of a
battery unit connected to a primary substation with a PV farm to reduce the evening peak
load by releasing solar energy stored during the day. To the best of our knowledge, this is
the first work in which state-of-the-art machine learning models are specifically tuned and
combined with ad hoc and convex optimisation techniques to achieve these two goals. The
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work proposed in this paper was motivated by a Data Science Challenge recently hosted
by the Energy Systems Catapult (ESC) and Western Power Distribution (WPD). The latter
is the largest UK distribution network operator, while ESC is one of the technology and
innovation centres established by Innovate UK. The Data Science Challenge is part of a
larger project named ‘Presumed Open Data’ [24]. The present article includes the results
obtained by the third place winning solution for the challenge alongside findings regarding
data pre-processing methods, model selection and validation.

This paper is structured as follows: in Section 2, the proposed methodology for solving
the battery schedule problem is presented. It involves the solution of three separate tasks:
PV generation forecasting, demand forecasting and optimisation. Section 3 contains the
obtained results, along with an analysis of the impact of each task in the final design of the
battery schedule. The main conclusions and further improvements ideas are discussed in
Section 4, and the work is summarised in the closing Section 5. Lastly, in Appendix A, the
mathematical formulation of the optimisation problem is detailed.

2. Problem Formulation and Methods

The present work considers the problem of the scheduling of the battery charging and
discharging profile one week ahead without online battery control capabilities. The choice
of this horizon and the precise problem formulation were motivated by a Data Science Chal-
lenge recently hosted by Energy Systems Catapult (https://es.catapult.org.uk/, accessed
on 8 June 2021). This is naturally a stochastic constrained optimisation problem, since it
takes into account some of the physical restrictions on the operation of the battery (such as
maximum capacity and charging/discharging rate) and there is uncertainty associated with
both future power demand and future PV power generation. In this particular case, the
optimisation problem is convex, which implies that its deterministic version (i.e., assuming
perfect information of the future) can be effectively solved.

The mathematical formulation of the optimisation problem was provided by the Data
Science Challenge and its derivation is detailed in Appendix A. The goal is to maximise
the percentage reduction in evening peak for the demand each day over a week period,
utilising the maximum amount of PV generation. Mathematically, this is achieved by
finding an appropriate daily charging profile for the battery, Bd = (Bd,1, . . . , Bd,48), so that
it charges at the correct rate during the day and discharges at the correct rate during the
evening. The battery schedule is in half-hour time slots and the schedule is required for a
complete week. The objective function, expressed in terms of the score S and optimisation
constraints, are included below in Equation (1). The score assigned to a given battery
schedule Bd by this optimisation model is the product of two factors that reward the
evening peak shaving and the use of solar energy, respectively, (see Equation (2) below for
the precise formula). The variables’ definitions are listed in Table 1, while a full description
of the optimisation problem is included in Appendix A:

maximize S

subject to:

Score: S · TotalCharge ≤ TotalCharge · Jobj.

New peak: Lk + Bk ≤ NewPeak, ∀k ∈ Evening.

Charging times: Bk ≥ 0, ∀ k ∈ Day.

Discharging times: Bk ≤ 0, ∀ k ∈ Evening. (1)

Maximum rate: Bmin ≤ Bk ≤ Bmax, ∀ k ∈ Day ∪ Evening.

State of energy: SOEmin ≤ SOEk ≤ SOEmax∀ k ∈ Day ∪ Evening.

Reset battery: SOE43 = SOEmin.

Solar energy use: Qk = min{Pk, Bk}, ∀k ∈ Day,

where Jobj is defined by the following equation:

https://es.catapult.org.uk/
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Jobj(B) = (OldPeak− NewPeak) ·
(

TotalCharge− TotalSolar
TotalCharge

+ CPV ·
TotalSolar

TotalCharge

)
(2)

Table 1. Description of the variables and parameters used in the optimisation problem.

Name Meaning

Bk Battery charge at time k in MW
Lk Energy load at time k in MW
Bmin, Bmax Minimum and maximum battery capacity in MW, resp.
SOEk State-of-energy of battery at time k in MWh
SOEmin, SOEmax Minimum and maximum state-of-energy of battery in MWh, resp.
Pk PV power generation at time k in MW
TotalCharge Sum of Pk over all times k in a day
TotalSolar Sum of Qk over all times k in a day
CPV Coefficient that measures the environmental efficiency of PV power
NewPeak Auxiliary variable to store the new peak demand
S Auxiliary variable to store the score

Figure 1 shows the proposed workflow. At the conceptual level, the stochastic op-
timisation problem is approached in two separate steps: first, both the demand and the
PV power generation are forecast by fitting several models to observed data, and then
the deterministic optimisation problem is solved using these predictions as parameters.
A further post-processing step is then applied to the output of the optimiser in order to
reduce the sensitivity to uncertainty in predictions of PV power. The deterministic solution
of the optimisation problem on available data is used as a benchmark to perform model
selection and validation as described in Section 2.3.

Figure 1. Illustration of the workflow of the proposed approach.

The following sections include the description of the models employed for forecasting,
the data cleaning steps and the validation strategy on which diverse models, feature
combinations and post-processing techniques are tested. The final subsection discusses the
techniques implemented to deal with uncertainty at the optimisation level, such as training
the proposed models according to task-specific criteria and post-processing the outputs
before generating a battery schedule.

It must be noted that, to some extent, key decisions were guided by the goal of
obtaining the best possible battery schedules for four specific weeks: 16 October 2018 to
22 October 2018 (week 1), 10 March 2019 to 16 March 2019 (week 2), 18 December 2019 to
24 December 2019 (week 3) and 3 July 2020 to 9 July 2020 (week 4). The model performance
in these weeks, which covers the four seasons and includes unusual situations such as
Christmas Eve and the lockdown caused by COVID-19, was scored in the Data Science
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Challenge. In general, only the most stable version of the models and post-processing
techniques are included in this paper. However, where judged appropriate, some details
on how improvements were achieved for specific weeks are also included.

2.1. Data Description

The proposed approach is based on three sources of data: historical demand data
from the Stentaway Primary substation, historical PV power generation from a solar
farm in Devon (located nearby the Stentaway Primary substation) and weather data
from six sites extracted using MERRA-2 (the data extraction based on code available at
https://github.com/emilylaiken/merradownload, accessed on 8 June 2021). The location
of four surrounding weather stations, substation and solar farm are schematically shown
in Figure 2.

Figure 2. Overview of the area considered for the study: the location of the substation, PV farms and
four surrounding weather stations are shown. Map data c©2021 Google.

The demand data consist of half-hourly average power values in Megawatts (MW)
between November 2017 and July 2020, totalling just over 47,000 samples. The PV power
generation dataset also has 30 min resolution and covers the same dates as the demand
dataset. It contains three variables: the PV generation (in MW) averaged over the next half
hour, the solar irradiance (in W/m2) which is also an average value over the next half-hour
period and the instantaneous temperature (in ◦C) measured at the surface of the PV module.
Finally, for the weather, reanalysis data are used, which are a combination of observations
with past short-range weather forecasts that are afterwards reprocessed using modern
forecasting techniques to achieve a consistent estimation of weather variables. These data
include averaged hourly irradiance (W/m2) and instantaneous surface temperature (◦C)
for six locations (numbered 1 through 6) corresponding to grid points on the numerical
weather prediction grid for dates between January 2015 and July 2020. Given the influence
of weather variables in both demand and PV power forecasting, it was necessary to linearly
interpolate the weather reanalysis data to 30 min frequency and merge then with the
remaining datasets. The weather data are used as a kind of weather forecasting, or, in other
words, they are assumed to be known for the target week.

The datasets are publicly available at the Western Power Distribution Open Data Hub
site upon login [25].

https://github.com/emilylaiken/merradownload
https://github.com/emilylaiken/merradownload
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2.2. Data Cleaning

The datasets are mostly clean but contain a few outliers and missing values. Since the
combination of outliers and missing values amount to far less than 1% of the samples, it
was not necessary to implement a complex strategy to deal with them.

For the demand dataset, a visual inspection revealed that two weeks in May 2018
and a couple of days in November 2018 present outliers (values both close to zero and
too high). In all cases, the anomalous samples were replaced by the demand values of the
corresponding days from the previous weeks. The weather dataset presents some missing
values for the temperature at location 4, which were filled using a multiple of the highly
correlated variable temperature at location 3.

The PV power generation dataset contains a small number of missing values in March
2018, July 2019 and May 2020. Since the PV power generation does not exhibit the strong
daily and weekly periodical patterns verified in the demand dataset, filling missing values
was less relevant and reliable for this task. Hence, it was decided to remove the samples
containing missing values.

2.3. Model Selection and Validation Strategy

The selection of models, combination of features and hyperparameter values was
carried out by testing for each challenge week the performance in the 28 days prior to the
target week using the walk-forward validation technique. More concretely, this means
that for each challenge week, the models for both demand and PV power prediction with
different combinations of features and hyperparameters were trained and evaluated four
times, once for each of the previous four weeks. Every test was performed using all the
available data up to the testing week (there were, however, a few exceptions, duly noted
in the text, where reducing the size of the training set was found to improve the accuracy
of the models), then the resulting predictions were used to generate the corresponding
battery schedule and finally that week’s data were added to the training set (see Figure 3).
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Once the best models, features and hyperparameter values were selected, the models
were retrained using all the available data to generate the final solution. For instance,
for week 1 (from 16 October 2018 to 22 October 2018), each of the models was evaluated
in four weeks, ranging from 25 September 2018 to 1 October 2018, 2 October 2018 to
8 October 2018 and 9 October 2018 to 15 October 2018, respectively, and the final forecasts
were generated using all the historical data up to 15 October 2018 included. The number of
weeks used for model selection was mainly determined from the autocorrelation plot for
the demand historical data (see Figure 4). It was found that considering the last four weeks
of data to fine-tune and validate the models offered a good compromise between having a
robust test set and assessing the results against weeks with conditions comparable to the
target week.
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Figure 4. The autocorrelation of the demand presents daily peaks, which steadily decrease as the lag
increases (here, a lag unit represents a 30 min period). The plot displays the autocorrelation for a
maximum lag of four weeks.

For the next stage, several battery schedules were designed using the combinations of
the best performing models for each forecasting task. The raw scores obtained by these
schedules, according to the objective function (2), are not accurate enough to control the
quality or the stability of the solution: for instance, the score for summer days will in
general be much higher than the score for winter days due to the high PV power generation
achievable in summer. Instead, to better assess the proposed solution, for each challenge
week, the score achieved by an optimal schedule designed with perfect information (i.e.,
actual values of demand and PV power generation) was computed for the four test weeks.
Then, the proposed battery schedules were evaluated according to the ratio of the optimal
achievable score to the one obtained for each solution, as explained in Section 3, and the
final battery schedule was decided accordingly.

In a real-life scenario, the main goal is to develop the best possible battery schedule
for the week ahead. Due to fluctuations in the climatic conditions and shifts in the trend
of energy demand, even very accurate predictive models would benefit from some fine-
tuning to forecast the next weeks PV power generation and demand. Small adjustments
and variations made to the core solution in order to provide reliable schedules for the four
target weeks are detailed for each specific task in the subsequent sections.

2.4. Photovoltaic (PV) Power Prediction

PV power forecasting can support the integration and optimal utilisation of solar power
sources into distribution networks [13]. However, due to the volatility and stochastic nature of
solar energy, which depends on weather and atmospheric conditions such as the level of clouds
and coverage, making predictions of PV power generated by solar energy sources is extremely
challenging. Several methods for the prediction of PV power have been proposed in the
literature, including physical models, statistical models, and machine learning models [13–15].
The performance of these methods depends on the precise task, the available data as well as the
data resolution and prediction window. Typically, the forecasts are obtained using a number of
external sources including solar irradiance, wind, humidity and atmospheric pressure [14,26].
Sky-image-based techniques have been employed for time horizons of under one hour, while
satellite-image-based techniques were found to be more suitable for the prediction of several
hours ahead [27].
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Methods based on statistics and machine learning have been applied for short- and long-
term predictions. In addition, many studies only focus on the prediction of solar irradiance,
since it is highly correlated to PV power. A detailed review of these methods can be found
in [26] which also provides guidance on the suitability of different methods depending on the
time horizon and the prediction window.

2.5. Models

In this study, three main methods for PV forecasting were chosen and compared,
including random forest (RF) and deep learning methods based on long short time memory
(LSTM) and convolutional neural networks (CNNs).

2.5.1. Random Forest

The Random Forest (RF) method is a well-established ensemble learning technique
which is widely used for classification and regression problems. Originally developed
by Breiman [28], it builds weak learners on bootstrap samples using a random subset
of variables to increase prediction accuracy and reduce bias by averaging results across
multiple trees. This approach overcomes the limitations of decision trees methods based
on single classifiers, which tend to have low accuracy and instability due to high sensitivity
to small changes in the datasets. In the literature, RF has been successfully applied to
the prediction of PV generation [29], and it has been chosen in this study due to the ease
of use and good predictive performance. During initial experiments, RF was preferred
over gradient boosting because it was less prone to overfitting. The RF was trained
using the same validation strategy explained in Section 2.3 and hyperparameters (the
minimum number of observations per leaf, number of trees and maximum number of
splits) were optimised using the Bayesian optimisation approach [30]. Temperature data
from locations 5 and 6 were removed, while irradiance data from all remote locations were
kept. Furthermore, from test week 2, a cyclic feature for indicating the time of the day
and month was included (see Section 2.6.1 below). Finally, the temperature was smoothed
by taking a moving average of the two previous and the current time steps to take into
account the possible delayed effect of the temperature. The complete available historical
data were used for training in all weeks except for week 4, where only the last year of
data was considered. This was due to the fact that, as the training data size became bigger,
the prediction performance of the model started to decrease in addition to an increase in
the time taken to train.

2.5.2. LSTM and CNN-LSTM

LSTM models are a type of recurrent neural network that have been demonstrated
to perform exceptionally at time series forecasting in recent years, and are a common
approach to weather and PV generation prediction [13,15]. The LSTM architecture includes
a mechanism that can forget unimportant features during the learning process, while
retaining information of long-term dependencies. This means that both short-term daily
dependencies between irradiance, temperature, and power output can be learned, as well as
the long-term trends such as seasonal variations. A sequence-to-ones LSTM approach was
used to predict PV power with hyperparameters optimised using a grid search approach.
While the optimal values of the various hyperparameters vary for each task, a common
finding was that an LSTM depth of 3 with the number of hidden units set to 200, 400,
and 600, and a moving window size of 96 time-steps (48 h) usually gave the best results.

In addition to the LSTM architecture, a CNN-LSTM was also compared at predicting
PV generation. A CNN-LSTM model uses the same aforementioned principles as the
LSTM with the addition of a front end CNN layer to carry out feature extraction before
the LSTM input layer. The reasoning for this additional layer was to combine the LSTM’s
superior temporal learning capabilities with the spatial learning capabilities of the CNN.
This approach was implemented in an attempt to address the spatial challenges of the
dataset, in that the model should learn the local relationships between the weather at the
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six locations at each individual time-step and use this to better predict the relationships
with the PV data at the site. For all CNN-LSTM experiments, a single convolution layer
followed by batch normalisation and ReLU activation was used to the perform front-end
feature extraction.

Some additional data cleaning steps were implemented for CNN-LSTM and LSTM
experiments. All data were normalised prior to training, and temperature data from
locations 5 and 6 were removed, as well as irradiance data from location 4. For the days
where any data were missing, the entire day of data was removed. In post-processing, all
predicted values for PV power between sunset and sunrise were also set to 0. A notable
difference between the two models was that the optimal value for the moving window
size was found to be smaller for the CNN-LSTM at 76 time-steps (38 h), compared to 96
time-steps (48 h) for the LSTM.

Model Comparison

The models’ performance, in terms of MSE and R2, for the PV power prediction task
across the four weeks is shown in Table 2. A comparable performance was obtained with
the different models, with variations depending on the specific weeks. In terms of R2, RF
was the best performing model for weeks 2 and 3, while the LSTM-based models were
better in weeks 1 and 4. Overall, RF had larger variations in performance while the LSTM-
based models seemed to be more consistent. The LSTM and CNN-LSTM methods produced
similar results when comparing using MSE and R2, however, the CNN-LSTM proved to be
more robust/consistent when repeating experiments. Figure 5 shows a comparison of the
three models for week 1. It can be noticed that LSTM gave the ’smoothest’ results, whereas
the CNN-LSTM performed better at predicting peaks or drops in PV power output at
different times of day. A significant challenge that was faced throughout the development
of the PV power forecasting models was that all tested models would consistently under-
predict days with the highest power output, while over-predicting days with a low output.
This is likely due to the fact that irradiance measurements were collected at geographically
spread locations, which prevented the models from capturing the exact trend of the solar
irradiance at the site under consideration. Furthermore, as shown in Table 2, it was found
that the prediction task was less accurate in winter (week 3). This can also be seen in
Figure 6. Sensitivity studies showed that further improvement of the accuracy of the model
would not lead to the significant improvement of the challenge score, hence it was decided
that these models were adequate for the optimisation task.

2.6. Demand Prediction

Electric load forecasting is a central task for electrical utilities. It plays a key role in
power systems scheduling and maintenance, financial planning and energy trading, among
others. This has motivated a wealth of research in this field, especially on the problem
of forecasting load in the short-time horizon (see [7,11,12]). A wide variety of methods
have been proposed and shown to be successful for different contexts and datasets. These
approaches range from statistical techniques, such as multiple linear regression and ARIMA
models to black-box models, including artificial neural networks and deep recurrent neural
networks passing through general purpose regression algorithms such as gradient boosting
machines and Gaussian process regression [6,31–36]. As it is sharply pointed out in [12]
there is, as of yet, no single method that would consistently outperform every other
technique for the short-time load forecasting problem. Rather, the choice of the most
suitable techniques depends on the specific dataset, the forecast time horizon and factors
such as the type of climate and of loads at the location where the data are collected.

In the case study at hand, some of the main challenges identified are the presence
of unusual events (such as the 2018 FIFA World Cup and the 2020 lockdown) and the
uncertainty introduced by the weather variables (see Section 2.4). Since the accuracy in
demand prediction is critical for the quality of the battery schedule (as evaluated by the
objective function (2)), most of the techniques mentioned above were tested, with the
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addition of the recently proposed TabNet model [37], according to the validation strategy
described in Section 2.3. As a result of these tests, it was decided to use the top three
models, which displayed similar performance: a CatBoost regressor model, an Artificial
Neural Network (ANN) and a TabNet model. They are described in detail in Section 2.6.2.

Table 2. Comparison of three methods in predicting the PV power for the challenge weeks. The high-
est R2 and lowest MSE for each week are highlighted in bold.

Method Week R2 MSE

Random forest 1 0.7625 0.2845

Random forest 2 0.8330 0.1125

Random forest 3 0.7168 0.0209

Random forest 4 0.8199 0.1806

LSTM 1 0.8323 0.1983

LSTM 2 0.8143 0.1060

LSTM 3 0.6948 0.0245

LSTM 4 0.8632 0.1610

CNN-LSTM 1 0.8539 0.1688

CNN-LSTM 2 0.8204 0.1077

CNN-LSTM 3 0.7140 0.0218

CNN-LSTM 4 0.8544 0.1535
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Figure 5. Plots of model predictions for week 1 showing a comparison of the three proposed models
with the target.
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Figure 6. Plots of model predictions for week 3. The prediction of PV power output is more
challenging at low generation.

2.6.1. Feature Engineering and Selection

The initial dataset, consisting of historical demand data and weather reanalysis data,
was considerably augmented by engineering features. The added variables can be roughly
classified into three groups: classical time series analysis features, time-related features and
task-specific features.

• Time series analysis: Rolling statistics (both exponential and regular moving average
and standard deviation of the demand for the previous week), lagged effects (demand
value at the same hour for the past week) and trends at different scales (first order
differences of temperature and solar irradiance and their averages over periods of 2,
12 and 24 h).

• Time-related: Hour of the day, day of the week, day of the month, month, year. Cyclic
versions of hour of the day, day of the month and month consist of encoding these
features as points in a 2D circle (see [32]).

• Task-specific: Bank holidays are labelled as Sunday and all features mentioned in the
time-series analysis were shifted accordingly so that they coincided with the previous
Sunday. Specific flags were added to distinguish the lockdown from regular days and
to mark large sports events, such as England matches in the FIFA World Cup 2018.

This resulted in a dataset containing approximately 100 features. The SHAP mod-
ule [38] was applied to the CatBoost model to reduce dataset dimensionality, keeping the
40 most important features. These include the exponential and regular moving average,
lagged demand for the past week at the same hour, most of time-related features, both
in regular and cyclic form and several averages of solar irradiance and temperature at
different time windows.

2.6.2. Models

The regression models employed were trained to predict the average half-hourly
demand value one week ahead. Although in the present scenario, the demand forecasting
is only relevant during evening hours (see Appendix A), it was found that the models
performed better when exposed to the whole dataset and trained to predict demand values
for both day and evening hours. In order to obtain more accurate predictions for the
evening hours, a weight was assigned to the samples corresponding to these hours and the
models were fit to minimise the weighted mean squared error. The value of the weight
was set using grid search in a set of powers of 10 ({1, 10, 100, 1000, 10,000}).
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2.6.3. CatBoost

CatBoost [39] is an implementation of gradient boosting on decision trees developed
by Yandex, which consistently achieves state-of-the-art performance in several practical
tasks and is often employed by top solutions in Kaggle competitions. Gradient boosting
is an ensemble method that iteratively improves base predictors (the case of CatBoost,
decision trees) by performing gradient descent greedily in a certain functional space [40].

In general, the default values were used in the model except for a few hyperparameters
that prevent overfitting or control the complexity of the model. Concretely, the following
hyperparameters were defined according to a grid search around initial sensible values
obtained by manual experimentation: n_estimators (maximum number of trees), depth
(which controls the size of each decision tree), max_bin (the number of splits for numerical
features) and rsm (the proportion of the features considered for each split).

2.6.4. Artificial Neural Network

Artificial neural networks are a type of machine learning model loosely inspired by
the structure of biological neural networks. These models consist of a directed graph
organised into layers whose nodes are connected to the nodes of the next layers. There
are two distinguished layers, the input layer which receives the data and the output layer
which is expected to yield the desired values. The remaining layers are known as hidden
layers. Each layer is composed of several nodes, called neurons, which receive values from
nodes on the previous layer (or the initial data in the case of the input layer), generate a
new value applying a certain function to the inputs, and then passes it to all neurons in the
next layer.

To prevent multicollinearity issues, several features are discarded. In particular, only
cyclic versions of time-related features are included, the temperature and solar irradiance
are removed for all but the two most uncorrelated locations. The architecture of the final
artificial neural network used is composed of three hidden fully connected layers, with 64,
32 and 16 neurons, respectively. To define these architectures, the total number of hidden
neurons was set to be proportional to the degrees of freedom of the problem (i.e., number
of samples in training set divided by number of features) and the progressive reduction
by factors of two in each layer was decided a priori. Having fixed these parameters,
the number of hidden layers and neurons in the first hidden layer were selected using grid
search. The ReLu activation was applied for all layers, and the Adam optimiser was used
with the default learning rate 0.001.

2.6.5. TabNet

TabNet [37] is a novel deep neural network architecture specially designed for han-
dling tabular data that reportedly outperform or is on par with standard neural network
and decision tree variants. This new architecture learns directly from the raw numerical
(not normalised) features, by employing batch normalisation layers and dedicated feature
transformers blocks. One of its main novelties consists of the combined use of attention
mechanism and a learnable mask to achieve instance-wise feature selection. Additionally,
the learned weights in these layers can be used to interpret the outputs of the model,
offering at the same time in-built feature selection and interpretability.

Similarly as in the case of the artificial neural network, the non-cyclic versions of time-
related features and the temperature and solar irradiance for most locations were removed.
Regarding the hyperparameters, using grid search, the value of width and steps were set,
which control, respectively, the number of hidden neuron and hidden blocks. The ranges
for the grid search were determined following [37] (guidelines for hyperparameters).

2.7. Model Comparison

The quality of the models was mainly evaluated according to the average MSE and
R2 errors attained in the validation sets, that is, in the four weeks prior to the target week.
In general, while CatBoost is the strongest model by a slight margin, the three models
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attained a similar performance in validation and considerably beat the naive baseline of
repeating the previous week demand values (see Table 3 below). In addition, the models’
predictions are sufficiently uncorrelated to obtain both variance and bias reduction by
averaging their outputs.

The performance was relatively stable across different seasons. Figures 7 and 8 display
the forecast and actual demand for an autumn and a winter week, respectively. The few
relatively large errors that can be appreciated in the plots correspond to day hours, which
was to be expected from the choice of the loss metric for the models’ training.

The demand values for week 4, corresponding to the lockdown, are difficult to forecast,
especially due to the less regular consumption patterns observed during this period, a fact
that is reflected in the relatively low performance of the baseline model. It was found that
reducing the size of the training set to only one year worked best for this task, as opposed to
using the whole dataset to fit the models. Intuitively, this reduction helps the models assign
similar importance to the energy consumption patterns from regular and lockdown times.

Table 3. Comparison of the three models for demand prediction in the four weeks. The highest R2

and lowest MSE for each week are highlighted in bold.

Method Week R2 MSE

CatBoost 1 0.9222 0.0435

CatBoost 2 0.9695 0.0200

CatBoost 3 0.9690 0.0239

CatBoost 4 0.9443 0.0236

ANN 1 0.9264 0.0412

ANN 2 0.9306 0.0456

ANN 3 0.9678 0.0248

ANN 4 0.9305 0.0295

TabNet 1 0.8943 0.0592

TabNet 2 0.9120 0.0577

TabNet 3 0.9476 0.0403

TabNet 4 0.8815 0.0502

Baseline 1 0.7938 0.1154

Baseline 2 0.9043 0.0628

Baseline 3 0.9060 0.0724

Baseline 4 0.8370 0.0691

2.8. Optimisation

The deterministic version of the optimisation problem that results from using the
forecast values of demand and PV power as parameters can be formulated as a program
with a linear objective function and at most quadratic constraints. Thus, it falls in the
class of second-order cone programs, which can be effectively solved using both commercial
and free (for academic purposes) software. In the present work, the SCIP Optimisation
Suite [41] was employed as a solver, which efficiently finds optimal or close-to-optimal
solutions to the problem by using interior point methods [42] combined with heuristics to
speed up the convergence. For more details on the modelling of the optimisation problem,
the reader is referred to Appendix A.
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Figure 7. Comparison between the prediction and the target for week 1. The ticks in the x axis
correspond to midnight for each day.

Figure 8. Comparison between the prediction and the target for week 3. The special treatment for
holidays leads to an accurate demand prediction for Christmas Eve.

2.9. Battery Charge Smoothing

This section concludes by detailing how the battery schedule is designed from the
predictions for future demand and PV generation.

As already stated, the forecast values are used as parameters of a deterministic op-
timisation problem. Not surprisingly, it was found that this naive strategy led to the
design of far from optimal battery schedules, mainly due to the volatility of the PV power
generation. For this reason, the following post-processing step was applied to the output
of the optimiser. Let ̂TotalCharge and ̂TotalSolar be, respectively, the total charge of the
battery prescribed by the optimiser and the total predicted PV power generation (in MW),

and let r :=
̂TotalCharge
̂TotalSolar

. The battery schedule B is modified so that, for each day hour h,

the charge Bh is set to Bh = r · P̂h, where P̂h is the prediction for the PV power generated at
time h measured in MW (see Appendix A for the notation). A common ratio r is chosen
for each hour because the distribution of the percentage errors of the models for the PV
power prediction did not considerably vary across the different hours. This modification
allows to split evenly during the day the total charge prescribed by the optimiser, which
intuitively counteracts the point estimation errors incurred by the model. The effectiveness
of this technique was experimentally verified (see Section 3).

Finally, with the aim of improving the quality of the battery schedule and reducing
the variance, the best way of combining the outputs from each model for the demand and
the PV power was evaluated in the validation sets. Since there were at most three different
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models for each task, only the different possible combination of averages of the predictions
were tested.

3. Results

In this section, the results obtained for the four challenge weeks referred at the begin-
ning of Section 2 were analysed. The main criterion to evaluate the quality of the battery
schedules proposed for these weeks is the score assigned by the objective function (2).

As explained in Section 2.3, in order to compare the performance across different
weeks, the scores were normalised by computing the ratio between the optimal achievable
score with the perfect information of the demand and PV power generation and the score
of the proposed solution. More concretely, a quantity called Score ratio to evaluate the
solutions is computed as follows:

Score ratio = 100 · Score of proposed solution
Theoretical optimal score

(3)

The score of a battery schedule can be decomposed as a product of two factors, one
linked to the evening peak reduction and another related to the amount of solar energy
used. To understand the impact of the forecasting errors in the quality of the solutions,
for each week the demand ratio and the PV ratio scores, computed in an analogous way
to Equation (3), were also assessed. The final results are summarised in Table 4 below.
Except for week 2, the performance was stable and in the range of 87–89%, which was
consistent with the results observed in the validation sets and represents on average an
improvement of up to 10% over the naive baseline solution.

Table 4. Scores obtained for each of the four weeks, expressed as a percentage of the optimal solution
and disaggregated into demand- and PV power-related factors. For reference, the corresponding
score obtained by copying the previous week demand and PV power are included.

Week Avg. Demand Ratio Avg. PV Ratio Avg. Score Ratio Baseline Score Ratio

1 90.7135 97.5196 88.4466 82.3380

2 85.5383 95.7059 81.8722 79.0595

3 88.0555 99.0025 87.1435 76.5495

4 90.2056 97.8797 88.3836 80.4124

The disaggregation of the scores clearly shows that the accuracy in the demand pre-
diction is critical to the quality of the battery schedule. On the other hand, the proposed
charging pattern of the battery is generally able to use the PV power generated almost opti-
mally. As an example, this characteristic can be appreciated for the schedule corresponding
to week 4 in Figure 9.

Regarding week 2, the solution was generated based only on the CatBoost model.
As Figure 10 reveals, the predictions were off by a relatively large margin at the beginning
of evenings on 14 March 2019 and 15 March 2019 (in addition to some large errors for day
hours due to the metric choice as in Figures 7 and 8). In turn, a single error of relatively high
magnitude during the evening is heavily penalised by the objective function. The reason
is that such single point errors result in a battery schedule that not only misses its target
by a considerable margin at that point, but also conspires against the optimality of the
distribution of the charge across the evening. This was corrected in the subsequent tasks
by implementing two measures. In the first place, since the errors were likely due to
overfitting, the performance and variance of all the possible averaged outputs of the three
models (that is, the averages of pairs of models and the average of the three models) were
assessed in the validation set to decide the best forecast. The second measure consisted
of considering a new metric with validation purposes that could detect big single point
errors. Concretely, the difference between the maximum and the average error incurred
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by each proposed forecast was computed to control that point errors were approximately
evenly distributed across the evening hours.

Figure 9. Comparison between the battery charge pattern and the PV power generation for week 4.
When the battery charge is greater than the PV power, the difference is taken from the grid.

Figure 10. Plot of Catboost model’s predictions for week 2. There are some large errors for the
evenings of the fifth and sixth day.

4. Discussion

In this section, some possible paths to further improve the three critical tasks involved
in the battery schedule design are discussed, namely PV generation forecasting, demand
prediction and optimisation strategy.

A significant challenge faced in predicting PV generation was that in some weeks,
there were large variations between the irradiance measurements at the various locations.
Additionally, high irradiance readings at the six weather locations did not necessarily result
in high irradiance readings at the PV site and vice versa. This can be seen in Figure 11.
The top part of the plot shows the prediction of PV power for week 1, while the bottom
part shows the irradiance at the different locations obtained from the weather data. It
can be seen from the plots that inaccurate PV power predictions are typically caused by
large variations between irradiance at the location of the solar panel (which is not available
for the prediction task) and the measured irradiance at the other geographically spread
locations obtained from the weather data. Although this is addressed by selecting machine
learning architectures that typically perform well at inferring these complex spatial and
temporal relationships, the scope of the challenge meant that less focus was placed on PV
power prediction compared to other areas, leaving room to improve these models further.
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An example could be to experiment with different methods of geostatistical interpolation
when re-sampling weather data from hourly to half-hourly time steps. Another possible
improvement could be to include physical models that describe how PV power generation
varies as a function of the temperature of the panel.
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Figure 11. The top plot shows the target and predicted PV power for week 1, while the bottom plot shows the irradiance
measured at the location of the solar panel (which is not available for the prediction) and the irradiance obtained from the
weather data at the other geographically spread locations (used in the prediction task).

Regarding the demand prediction, it was discovered that the combination of MSE and
R2 as metrics to evaluate the fitness of a forecast was not entirely appropriate. As verified
for week 2, these metrics fail to capture some large point estimation errors that lead to poor
battery schedules in terms of peak demand shaving. In consequence, a promising path
to improve the quality of the battery schedules consists of using of a loss metric that is
directly related to the objective function to train the demand predictive models. On another
note, the prediction of demand during exceptional periods such as the lockdown poses a
challenge of independent interest. More refined approaches than the one adopted in this
work could be applied to give a more systematic solution in such situations. In particular,
applying transfer learning techniques seems a promising path.

Finally, different general techniques to tackle constrained optimisation problems
under uncertainty could be applied for this problem. For instance, an end-to-end training
approach, where the optimal battery schedule is learnt directly from the historical data
without the need for the intermediate forecasting of demand and PV power generation
might be interesting for this problem. We refer to [43] for a discussion on other possible
approaches to optimisation problems under uncertainty and the exposition of a novel
technique based on fitting probabilistic models to data according to a task-based loss.

5. Conclusions

In this paper, an end-to-end solution is proposed to the problem of designing an
optimal battery schedule according to a natural criterion of combining evening peak
shaving and the maximisation of solar energy usage from historical data. The precise
formulation of the corresponding constrained optimisation problem was defined by ESC
and WPD in a recent Data Science Challenge aimed at demonstrating the value that can be
engineered from the data.
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A two-stage approach is taken, consisting of fitting predictive models to data and
then solving a deterministic optimisation problem using the forecast values as parameters.
To this end, well-known machine learning algorithms, both specific and general purpose,
convex optimisation and task-specific processing techniques are employed.

For the first part, several machine learning models to forecast PV power generation
and demand are evaluated. The models for PV generation forecasting showed variation in
performance across different testing weeks, hence highlighting the importance of devel-
oping a robust validation strategy for model selection, while CatBoost showed consistent
performance for demand forecasting. Finally, an ad hoc optimisation strategy that uses
both the prediction from machine learning models and the output of the optimiser to devise
an optimal battery schedule is presented to find the optimal battery schedule. This strategy
involves the fine tuning and validation of the predictive models in order to maximise a
non-standard metric, namely the score of the resulting battery schedule.

Despite the high level of uncertainty inherent to PV power generation and demand,
accentuated by the relatively long required forecasting period (one week ahead) and the
COVID-19 pandemic, the overall performance obtained demonstrates the potential to
generate value from the data in an idealised version of the battery schedule problem.
Indeed, it was shown that the proposed approach can improve by up to 10% simpler
solutions and reach close to 90% of the value of the ideal optimal solution with perfect
information of the future.

The simplifications made when formulating the optimisation model constitute the
main limitation of this work. For instance, the model does not take into account the
degradation of the battery and it restricts the discharging/charging patterns to fixed time
windows. These assumptions were adopted by the Data Science Challenge. The problem
solved is hence an idealised version of the real challenges faced by the distribution network
operators. It would be interesting to enrich the model by considering some relevant
realistic restrictions, such as battery degradation, round-trip efficiency and the cost of
electricity to test the scalability of the described solution. Other conceptual frameworks to
approach this problem, such as stochastic optimisation, task-based optimisation or end-to-
end learning, should be considered in future work. Among them, stochastic optimisation
has the potential of leading to a provable robust design of battery schedules through the
accurate estimation of the probability distributions for demand and PV power generation.
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Appendix A. Modelling of the Optimisation Problem

In this appendix, the formal definition of the constrained optimisation problem is
given. As already mentioned, the overarching goal was to design an optimal battery
schedule Bd for each day d in the following week, which will have the same time resolution
as the dataset. Thus, there are 48 decision variables Bd = (Bd,1, . . . , Bd,48) for each day
d, which represent the charge/discharge of the battery in MW. In what follows, the day
will be fixed and the subscript d dropped, since the battery schedules for different days
are independent in the model. The (unknown) parameters for the model are the load
L = (L1, . . . , L48) and the PV power generated P = (P1, . . . , P48), both averaged over half-
hour intervals and measured in MW. For convenience, two additional sets of variables are
introduced: Q = (Q1, . . . , Q48) and SOE := (SOE1, . . . , SOE48). The first set models the
effective amount of solar energy used by the battery schedule (that is, Qk := min(Bk, Pk)
for k = 1, . . . , 48), while the second set accounts for the state-of-energy of the battery at
each step. It is defined as SOEk+1 = SOEk + 0.5 · Bk, where the coefficient 0.5 converts
power (MW) into energy (MWh).

Appendix A.1. Constraints

Some restrictions on the schedule B are imposed to model physical limitations on the
operation of the battery, such as maximum capacity and charge or discharge rate limits. It
should be remarked, however, that for the sake of simplicity, the modelling disregards the
battery degradation.

One of the main inconveniences of PV generation stems from the fact that it typi-
cally takes place during day time when power demand is relatively low, while demand
peaks occur in the evening when there is little-to-no solar generation. To address this
situation, the battery will be allowed to charge only during the ‘day hours’ (from 5:00 a.m.
to 3:00 p.m.) and discharge during the “evening hours” (from 3:30 p.m. to 8:30 p.m.).
Accordingly, the sets Day := {11, . . . , 31} and Evening := {32, . . . , 42} are defined, where
the indices represent one of the 48 half-hour periods in the day (thus, for instance, 11 corre-
sponds to the half-hour period starting at 5 a.m.). The convention that Bk > 0 when the
battery is charging and negative otherwise is adopted. The complete set of constraints is
as follows:

Charging times: Bk ≥ 0, ∀ k ∈ Day.

Discharging times: Bk ≤ 0, ∀ k ∈ Evening.

Maximum rate: Bmin ≤ Bk ≤ Bmax, ∀ k ∈ Day ∪ Evening.

State of energy: SOEmin ≤ SOEk ≤ SOEmax∀ k ∈ Day ∪ Evening.

Reset battery: SOE43 = SOEmin.

For the particular case study, the limits are Bmin = −2.5, Bmax = 2.5, SOEmin = 0,
SOEmax = 6.

Appendix A.2. Objective Function

The objective function is composed of two factors, one related to peak shaving during
the evening and the other to the storage of solar energy during the day hours. In or-
der to formulate the peak shaving component, the parameter OldPeak as OldPeak :=
maxk∈Evening{Lk} is considered, which captures the peak of the demand during the
evening without using any energy stored in the battery. The peak shaving factor will
be simply the difference (OldPeak− NewPeak) between this peak and the maximum de-
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mand NewPeak experienced by the network if the use of the battery is allowed. More
precisely, NewPeak is computed from L and B as

NewPeak := max
k∈Evening

{Lk + Bk}.

(Recall that Bk is by convention negative when the battery discharges.)
As for the maximisation of the use of energy generated by the PV panels, consider

the variables:
TotalCharge := ∑

k∈Day
Bk, TotalSolar := ∑

k∈Day
Qk,

which store, respectively, the total energy charged and the total amount of solar energy
charged according to the battery schedule B. In terms of these variables, the solar energy
use associated factor is:

TotalCharge− TotalSolar
TotalCharge

+ CPV ·
TotalSolar

TotalCharge
,

where CPV is a user-defined parameter that ’rewards’ the use of solar energy according
to some relevant criterion. In the present case, since the lifecycle GHG emission intensity
of solar PV is estimated to be 1

3 of the average lifecycle emission intensity of the grid in
the UK, we set CPV = 3. Finally, the objective function J is simply the product of these
two factors, that is:

Jobj = Jobj(B) = (OldPeak− NewPeak) ·
(

TotalCharge− TotalSolar
TotalCharge

+ CPV ·
TotalSolar

TotalCharge

)
.

Appendix A.3. Optimisation Model

The final optimisation problem obtained by assembling all the information from the
previous subsections can be formulated formally as a second-order cone program (SOCP). This
class of problems admits (often) effective solutions by means of interior point methods [42],
and there are both dedicated commercial and free (for academic purposes) solvers.

Before presenting the final formulation of the optimisation problem as a SOCP, some
manipulations with the objective function will need to be performed. This is mainly due to
the fact that the objective function Jobj = Jobj(B) is not linear on the decision variables (it
is not even polynomial). Notice in first place that TotalCharge · Jobj depends quadratically
on the variables B and NewPeak. At first sight, this does not look very promising because
NewPeak is not a linear function of the decision variables B. However, NewPeak is piecewise
linear on the variables B and a well-known trick (see for instance [44] (p. 66)) allows to
handle this situation by adding a new constraint. Putting all together, the problem is
formulated as:

maximise S

subject to:

Score: S · TotalCharge ≤ TotalCharge · Jobj.

New peak: Lk + Bk ≤ NewPeak, ∀k ∈ Evening.

Charging times: Bk ≥ 0, ∀ k ∈ Day.

Discharging times: Bk ≤ 0, ∀ k ∈ Evening.

Maximum rate: Bmin ≤ Bk ≤ Bmax, ∀ k ∈ Day ∪ Evening.

State of energy: SOEmin ≤ SOEk ≤ SOEmax∀ k ∈ Day ∪ Evening.

Reset battery: SOE43 = SOEmin.

Solar energy use: Qk = min{Pk, Bk}, ∀k ∈ Day.

Note that it is also necessary to add a constraint to force the variable TotalCharge to
be strictly positive. Otherwise, setting all decision variables Bk = 0 and the score variable
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S as an arbitrarily large number would be a feasible solution. Formally, this lower bound
could be chosen as some value below the minimum total generation of PV power across the
dataset. However, it was observed experimentally that optimal solutions often prescribe
charging the battery to full capacity (even in winter), so usually a value at least half the
maximum as lower bound for TotalCharge is chosen in the runs, which additionally speeds
up the convergence to an optimal solution.
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