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Abstract: This paper develops a model predictive multi-objective control framework based on an
adaptive cruise control (ACC) system to solve the energy allocation and battery state of charge (SOC)
maintenance problems of hybrid electric vehicles in the car-following scenario. The proposed control
framework is composed of a car-following layer and an energy allocation layer. In the car-following
layer, a multi-objective problem is solved to maintain safety and comfort, and the generated speed
sequence in the prediction time domain is put forward to the energy allocation layer. In the energy
allocation layer, an adaptive equivalent-factor-based consumption minimization strategy with the
predicted velocity sequences is adopted to improve the engine efficiency and fuel economy. The
equivalent factor reflects the extent of SOC variation, which is used to maintain the battery SOC
level when optimizing the energy. The proposed controller is evaluated in the New York City Cycle
(NYCC) driving cycle and the Urban Dynamometer Driving Schedule (UDDS) driving cycle, and the
comparison results demonstrate the effectiveness of the proposed controller.

Keywords: connected hybrid electric vehicle; energy management; receding horizon control; energy-
saving

1. Introduction

With the growing energy shortages and environmental pollution, the development of
new energy vehicles is getting more and more attention in the world. New energy vehicles
mainly include electric vehicles (EVs), fuel cell vehicles, hybrid electric vehicles (HEVs),
etc. [1]. Hybrid electric vehicles can provide extra electric energy and improve the engine’s
fuel efficiency compared to conventional cars, and effectively avoid the problem of the
short cruising range of electric vehicles. HEVs combine the advantages of electricity and
fuel to achieve both energy savings and emissions reduction [2].

Car-following mode is quite common in the real traffic scenarios [3]. However, it is
difficult for a human driver to maintain the following performance and optimize the energy
efficiency concurrently. Recently, although not universally, vehicle manufacturers have
started to offer ACC systems to improve the road traffic conditions, reduce driver fatigue,
improve passenger comfort [4], and so on. Common ACC methods include proportional
integral derivative (PID) control, sliding mode control (SMC), and model predictive control
(MPC) methods [5].

Among the common ACC methods, the PID control method works well in local con-
trol, while it is easily affected by changes in the system parameters and load [6]. The sliding
mode control method is more robust than the PID control method, but chattering is in-
evitable. The model predictive control method can obtain the optimal control under certain
constraints, and therefore can keep up with the leading car quickly while maintaining a
safe distance in the car-following control [7].
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Additionally, model predictive control can successfully realize energy optimization
while keeping a safe distance in car-following scenarios. An integrated model predic-
tive control method is proposed in [8] that combines power management and adaptive
velocity control during vehicle-following scenarios. Hu et al. developed an MPC-based
multi-objective framework for HEVs in car-following scenarios to investigate the interplay
between fuel economy, vehicle exhaust emissions and driving safety [9]. Xie et al. proposed
a pragmatic low-cost model predictive control management strategy for a plug-in hybrid
electric bus by simultaneously considering energy consumption cost and computational
efficiency [10]. Li et al. proposed a modified MPC method to integrate the driver’s behavior
into the energy management strategy [11]. Therefore, model predictive control is suitable
for the energy efficiency optimization of hybrid electric vehicles in car-following scenarios.

Much research has been done in the study of HEV energy management. As it coordi-
nates the output power of the motor and the engine, the energy management strategy is of
great significance for improving the economy and efficiency of hybrid electric vehicles, and
is a focus of HEV research [12]. Common energy management strategies for hybrid electric
vehicles can be divided into rule-based strategies and optimization-based strategies [13].

Rule-based control strategies have been widely used in hybrid vehicle controllers.
According to the different setting rules, these strategies can be divided into logic threshold
control strategies and fuzzy logic control strategies. The logic threshold control strategy
mainly determines the corresponding output variables by setting different thresholds and
rules, so that the operating point of the engine is in a high-efficiency area [14]. Then, the
genetic algorithm can be used to optimize the membership function, whose effectiveness
is proved by comparing the rule-based control strategies [15]. However, these rule-based
strategies rely heavily on human experience, and it is difficult to adapt to different road
conditions [16].

The optimization-based methods are often divided into global optimization and instan-
taneous optimization. Global optimization algorithms are implemented based on the entire
driving cycle [17]. Global optimization algorithms generally include a dynamic program-
ming algorithm (DP) and Pontryagin’s minimum principle (PMP). The global optimization
algorithm generally needs to know the global operating conditions in advance [18], which
limits the practical applications of the global optimal algorithms.

Currently, the research on hybrid electric vehicle energy management strategies fo-
cuses on the instantaneous optimization of energy management control strategies, mainly
including model predictive control and equivalent fuel consumption minimization strat-
egy (ECMS) [19]. By introducing an equivalent factor, Barsali et al. equate the consumed
electric energy to fuel consumption plus engine fuel equivalent as the objective function
for optimization, and use ECMS to optimize the objective function [20]. Zhang et al. adopt
a fuzzy PI controller for hybrid electric vehicles to adjust the equivalent factor in real time,
which realizes the control effect with strong robustness [21]. Xie et al. design an artificial
neural network to dynamically identify equivalent factors based on the current demand
power, the ratio of driving distance to total distance, and SOC status [22]. However, the
above work mainly focuses on energy optimization. For hybrid electric vehicles, the pro-
tection of batteries is also important, and the energy management strategies should avoid
the rapid degeneration of batteries.

In this paper, we propose a control strategy for optimizing the battery energy of a
hybrid electric vehicle traveling in the car-following condition. Different from the existing
work [23,24], the SOC of the batteries of the hybrid electric vehicle is almost stable during
the entire trip when optimizing the batteries’ energy. In our work, the hierarchical control
strategy is divided into two control layers. Both layers are based on an MPC framework
but the solving methods are different. On the high layer, the car-following layer adopts
sequential quadratic programming (SQP) algorithm to solve the MPC and to generate the
predicted speed profiles of hybrid electric vehicles. The SQP algorithm is an effective algo-
rithm for nonlinear constrained optimization problems, by which the original optimization
is divided into a series of quadratic programming sub-problems. On the lower layer, the
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energy allocation layer, ECMS strategy is adopted to allocate energy between engine and
battery in real-time.

There are three contributions in this paper.

(1) This paper proposes a hierarchical framework that integrates car-following control
optimization goals and hybrid energy storage optimization goals to achieve the goal
of joint optimization.

(2) The SQP algorithm is adopted to solve the optimization problem in the car-following
layer, with the advantage of reducing computational overhead and achieving real-time
performance.

(3) The ECMS energy management strategy can not only make full use of the energy of
the energy storage device, but also maintain the battery SOC level. It is also helpful
for reducing fuel consumption and emissions.

The rest of this paper is organized as follows. In Section 2, the model of the hybrid
electric vehicle is constructed. In Section 3, the hierarchical control strategy is formu-
lated. Section 4 presents comparative simulation results to verify the proposed algorithm.
Section 5 provides conclusions.

2. Model of the Hybrid Electric Vehicles

In this section, the car-following scenario and the drive system of the hybrid electric
vehicle are constructed. In the car-following scenario, the following vehicle is following the
leading vehicle while keeping a safe distance (Figure 1). The safe following distance can
be preset manually according to the driver’s experience and the vehicle type. The drive
system model consisting of the engine, battery, clutch, motor and automatic mechanical
transmission (AMT) is shown in the Figure 2.

radar

Wireless

communication

Figure 1. Scheme of the car-following scenario in this paper.

Engine

EM
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Figure 2. The structure of the hybrid electric vehicle.
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2.1. Longitudinal Dynamics of the Following Vehicle

The displacement and speed of the following vehicle can be expressed as follows
according to [9]:

d f ,k+1 = d f ,k + v f ,k · Ts +
1
2
· a f ,k · T2

s (1)

v f ,k+1 = v f ,k + a f ,k · Ts (2)

Here, the symbol f represents the following vehicle, k is the time step, d f ,k is the
displacement of the following vehicle at k, d f ,k+1 is the displacement of the following
vehicle at k + 1, v f ,k is the velocity of the following vehicle at k, v f ,k+1 is the velocity of
the following vehicle at k + 1, Ts is the sampling time, and a f ,k is the acceleration of the
following vehicle at k.

The following vehicle’s torque on the wheels can be obtained as

Td =

(
mgCr cos θ + mg sin θ +

1
2

ρACDv2
f + ma f

)
· rw (3)

Here, Cr is the rolling resistance coefficient, CD is the aerodynamic drag coefficient. ρ
is the air density, A is the frontal area, θ is the road slope and rw is the wheel radius.

For the hybrid electric vehicle in this paper, wheel torque consists of the engine torque,
the motor torque and the braking torque [9].

Td =
(
Teng + Tmot

)
igi0η

sign(Tmot)
T + Tbrk (4)

sign(Tmot) =

{
1 Tmot > 0
−1 Tmot < 0

(5)

Here, Teng is the engine torque and Tem is the motor torque. ig is the ratio of AMT , i0
is the ratio of the differential. ηT denotes the transmission efficiency.

2.2. Engine Fuel Consumption Model

In this paper, experimental modeling is adopted without considering the dynamic pro-
cess of the engine. The fuel consumption rate corresponding to different speeds and torques
is obtained by fitting the test data based on the fuel consumption data measured by a steady-
state engine experiment. A brake-specific fuel consumption (BSFC) map (g/kWh) is shown
in Figure 3 (https://ww2.mathworks.cn/help/autoblks/ref/mappedsiengine.html?s_tid=
srchtitle (accessed on 23 March 2021)). Therefore, the fuel consumption m f c (g/s) can be
calculated with the current engine torque and speed by consulting the map.
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Figure 3. Brake-specific fuel consumption (BSFC) map of the engine.
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m f c =
Peng ·QBSFC

(
Teng, ωeng

)
3.6× 103 (6)

Here, Peng represents the engine power (kW), Teng is the engine torque (Nm), ωeng is
the engine speed (r/min) and QBSFC is the fuel consumption value obtained by consult-
ing the map.

2.3. Electric Motor Model

When the vehicle is running normally, the driving power demand is provided by the
engine and the battery at the same time. When the vehicle is braking, the motor can be
used as a generator to convert the regenerative braking energy generated during braking
into electrical energy to charge the battery [25,26]. An efficiency map of the electric motor
is shown in Figure 4.
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Figure 4. Efficiency map of the electric motor.

The motor power Pmot can be obtained by the following formula:

Pmot = Tmot ·ωmot (7)

In this formula, Pmot is motor power (W), Tmot is motor torque (Nm) and ωmot is motor
speed (rad/s). In our paper, the unit of motor power Pmot is (kW) and the unit of motor
speed ωmot is (r/min), so motor power Pmot can be converted as:

Pmot =
2π

6000
Tmot ·ωmot (8)

Then, we can get the relationship between battery power and motor torque, speed
and efficiency as in Equation (9):

Pbat(ωmot, Tmot) =

{
Tmotωmot
9550ηmot

Tmot > 0
Tmotωmotηmot

9550 Tmot ≤ 0
(9)

Here, Pbat is the battery power and ηm is the motor efficiency.
The equivalent fuel consumption of the battery according to reference [27] can be

expressed as

mbat =
Q̄BSFC · Pbat

3.6× 103 (10)

Here, Q̄BSFC is the average fuel consumption rate, and its value is set to 240 g/(kWh).
mbat represents the equivalent fuel consumption of the battery (g/s).
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2.4. Battery Model

In this paper, the internal resistance model is used to construct the battery equivalent
circuit model, without considering the influence of temperature on battery performance [26].
The dynamic equation of the battery is as follows:

SoCk+1 = SoCk −
Vbat −

√
V2

bat − 4RinPbat,k

2RinQbat
· Ts (11)

Here, Vbat is the open-circuit voltage, Rin is the battery internal resistance and Qbat is
the battery capacity.

3. Control Strategy

An overview of the hierarchical control scheme can be seen in Figure 5. It consists of a
car-following layer and an energy allocation layer. The load power of the following vehicle
can be calculated from the car-following layer, and the energy allocation layer can optimize
the power allocation in real-time.

Driving safety 
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Driving comfort 

index Jcom

Objective function

minJ=Js+Jcom
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Vehicle 

dynamics

Demand torque 
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Powertrain vehicle
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Figure 5. An illustration of the real-time power management in hybrid electric vehicles.

3.1. Car-Following Layer

In this section, the model-predictive-control-based multi-objective framework shown
in Figure 5 is developed to achieve optimal overall performance by optimizing trade-offs
between tracking safety and comfort during the car-following process. The car-following
problem is formulated as a constrained nonlinear control system and is then solved by model
predictive control. The following describes the performance indicators used for optimization.
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3.1.1. Driving Safety

As seen in the car-following scenario in Figure 1, vl and al represent the speed and
acceleration of the leading vehicle, while v f and a f represent the speed and acceleration of
the following vehicle. The expected distance between two vehicles Ld can be expressed as

Ld(k) = L0 + hv f (12)

Here, L0 represents the static inter-vehicle distance. h represents the constant head-
way time.

The current actual distance L(k) between the two vehicles can be expressed as

L(k) = L0 +
T

∑
k=1

(
vl(k)− v f (k)

)
∆t (13)

Here, T represents the current time.
Considering driving safety, the minimum following distance should be greater than

the minimum braking distance [27]. The braking distance Lbrk(k) can be calculated as

Lbrk(k) = v f (k)τbrk +
v f (k)2

2abrk
(14)

Here, τbrk represents the response time of the braking system, and abrk represents
the braking deceleration. The minimum distance between two vehicles Lmin(k) can be
expressed as

Lmin(k) = L0 + Lbrk

(
v f

)
= L0 + v f (k)τbrk +

v f (k)2

2abrk
(15)

Here, L0 is the static inter-vehicle distance and set as 2.4 m, τbrk = 0.5 and abrk = 8
according to [27], so

Lmin(k) = 2 + 0.5 · vveh + 0.0625 · v2
veh (16)

For ACC systems, the maximum following distance can guarantee the traffic density
to improve the road efficiency [3]. In this paper, the maximum following distance Lmax(k)
is related to the behavior of the driver and the braking distance. So, Lmax(k) is expressed as

Lmax(k) = L1 + Lbrk

(
v f

)
= L1 + v f (k)τbrk +

v f (k)2

2abrk
(17)

Here, L1 is the dynamic inter-vehicle distance and is set as 10 m. τbrk = 1 and
abrk = 200/33 according to [27], so

Lmax(k) = 10 + v f (k) + 0.0825v f (k)2 (18)

In order to allow the following vehicle to reach the target speed and keep the following
distance within a safe range, when the following distance is greater than the maximum
following distance, the cost function will become very large. In order to ensure safety, the
following distance cannot be less than the minimum following distance. Therefore, the cost
function can be defined as

JS(k) =


in f L(k) < Lmin(k)
b1(Ld(k)− L(k)) L(k) ∈ [Lmin(k), Ld(k)]
b2(L(k)− Ld(k))

2 L(t) ∈ [Ld(k), Lmax(k)]
b2(Lmax(k)− Ld(k))

2 + b3(L(k)− Lmax(k))
2 L(k) > Lmax(k)

(19)

Here, Js(k) is the cost of driving safety. b1, b2 and b3 are cost coefficients, and it is
necessary to ensure that b3 is much larger than b1 and b2. For instance, b1, b2 and b3 can be
set to 1, 2 and 50, respectively, based on [8].
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The cost function is optimized with the SQP method, which utilizes the gradient of
the objective function. The following function is utilized to approximate “inf”:

y =
1

L(k)− Lmin(k) + 1
+ (Ld(k)− Lmin(k)) (20)

For piecewise points, the gradient of the segment close to Ld(k) is utilized.

3.1.2. Vehicle Comfort

Vehicle impact degree is an important parameter in the process of car-following, and
its loss function is shown as follows:

jerk = da f /dt (21)

Jcom =

{
h · jerk2(k), | jerk |> 1 m/s3

0, | jerk |≤ 1 m/s3 (22)

Here, h is a constant and is set as 0.1. The vibration of the vehicle body is inevitable in
the process of traveling, so when the impact degree is set to be less than 1 m/s3, the loss
function is 0. In addition, when the vehicle is not in a braking state, the maximum jerk
should be less than 3 m/s3.

3.1.3. Overall Cost Function

By combining driving safety with comfort, the instantaneous overall cost function J is
defined as

J(k) = Js(k) + Jcom(k) (23)

This definition reflects the car-following dynamic performance within the prediction
range of MPC in the form of a total cost function. In this paper, the ratio of driving safety
factor and comfort factor is set to 1 according to [28].

The obtained optimized control input can be described as:

u∗ =
[

a∗f
]
= arg min J (24)

3.1.4. Optimization over the Moving Horizon

The SQP algorithm is adopted to solve the objective function, and the optimized
acceleration can be calculated. The velocity sequence obtained by the solution is as follows:

vf(j) = [v f (j) + a f (r)∆t, v f (j) + 2a f (r)∆t, · · · , v f (j) + a f (r)l∆t] (25)

Here, the vector vf(j) is the speed sequence of the following vehicle over the j-th
preview horizon, and a f (r) is the value of the specified allowable acceleration value in
the grid.

Based on the optimal solution for each moving horizon, the first element of the optimal
acceleration is taken as real input to update the vehicle dynamics, in accordance with the
receding-horizon characteristic of MPC. The obtained speed sequence will be used for
battery SOC prediction and used in the energy management strategy.

3.2. Energy Allocation Layer

In this paper, we present an energy management strategy for the hybrid electric vehicle
based on MPC with ECMS. By applying the equivalent fuel consumption minimization
algorithm to the MPC framework and using the ECMS algorithm to solve the MPC, an
efficient instantaneous optimal control strategy is developed to optimize the allocation of
torque and gear switching for a parallel HEV. The energy management strategy framework
of a parallel HEV based on ECMS-MPC is shown in Figure 5.
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The ECMS energy control strategy is a transient optimization approach. The main
idea is that the energy consumed by a parallel HEV during driving ultimately comes from
the fuel consumption, and the power consumed by the power battery is supplemented
later by a certain amount of fuel consumed by the engine during driving.

The MPC-based automotive energy management strategy optimizes the energy man-
agement of a parallel HEV by minimizing the predicted objective function in the time
domain. The main optimization purpose of the energy management strategy in this paper
is to minimize the fuel consumption of parallel hybrid electric vehicles. Therefore, the
objective function can be expressed as the following formula:

Jopt(k) =
k+Np−1

∑
t=k

(
m f c(u(k)) + s(k)mbat(u(k))

)
· Ts, k = 1, 2, . . . , Np (26)

Here, m f c(u(k)) represents the engine fuel consumption, m f c(u(k)) represents the
battery power. u(k) is the control input and Np is the prediction time domain. s(k) is the
equivalent factor which reflects the variation of battery SOC. Frequent high DoD events
are detrimental to battery health. To avoid DoD events, we try to maintain the battery SOC
at a moderate level. If the SOC fluctuates greatly, the equivalent factor will increase and
the weight of battery cost will increase in the joint optimization objective Equation (26),
which will reversely punish the current control input u(k) to return to a moderate SOC.

The system constraints are as follows:

Treq(k) = Te(k) + Tm(k)
Tm−min ≤ Tm(k) ≤ Tm−max
0 ≤ Te(k) ≤ Te−max
0 ≤ nm(k) ≤ nm−max
ne−min ≤ ne(k) ≤ ne−max
SOCmin ≤ SOC(k) ≤ SOCmax
α(k) ≤ 1

(27)

Here, Te(k) and Tm(k) represent the optimized engine torque and motor torque,
respectively. Tm−min and Tm−max are the minimum torque and maximum torque. nm(k)
corresponds to the current speed of the motor. Te−max is the maximum torque, and ne(k)
corresponds to the current speed of the engine. nm−max is the maximum speed of the motor.
ne−min and ne−max are the minimum and maximum speed of the engine, respectively.
SOCmin and SOCmax are the minimum and maximum values of battery SOC, respectively.
α(k) is the ratio of the motor torque to the input demand torque.

To some extent, the future demand torque can be estimated from the generated speed
sequence. In this paper, model predictive control is used to obtain the speed information in
the predicted time domain [k, k + Np], so as to estimate the demand torque of the vehicle.
Under the constraint conditions shown in (27), the optimal solution of the control variable
is obtained by solving: [

uopt(k)
]
= arg min

r∈[k,k+Np ]

(J) (28)

uopt(k) = [α(k)] (29)

The optimal solution of the control variable is the ratio of the motor torque to the
input demand torque.

In the ECMS-based MPC energy management strategy, the selection of equivalent
factors has a significant impact on the optimization results of the energy management
strategy. In this paper, an adaptive regulation method using an equivalent factor based
on the proportional integral (PI) form is adopted to change the automobile working
condition. In contrast to the PI-equivalent factor proposed by [29], in this paper, to smooth
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the battery SOC further, a low-pass filtering mechanism is introduced to average the SOC.
The proposed equivalent factor is as follows:

s(k) = s0 + KP(SOCtar − SOC(k)) + KI Ts(SOCtar − SOC(k)) + sI(k− 1) (30)

SOC(k) =
1
p

p

∑
i=1

SOC(k + i) (31)

Here, s(k) represents the equivalent factor at time t, SOC(k) represents the mean of
battery SOC in the predictive time domain, s0 represents the initial value of s(k), Kp and Ki
are weight coefficients, Ts is the sampling time and sI(k− 1) represents the integral output
at the previous moment k− 1.

SOC(k + i) is the battery’s SOC values at each time point in the generated speed
sequence. The demand torque and motor power sequences can be obtained from the
generated speed sequence by Equations (3) and (9). The battery SOC value in the time
domain is calculated according to the torque ratio at the current moment k, as shown in the
following:

d(SOC)
dt

= − 1

η
sign(I(t))
coul Qnom

 Voc(SOC)
2R0(SOC)

−

√(
Voc(SOC)
2R0(SOC)

)2

− Pbatt
R0(SOC)

 (32)

Here, ηcoul is the battery coulombic efficiency and Qbat is the battery capacity. Voc and
R0 represent the battery open-circuit voltage and internal resistance, respectively.

Based on the ECMS-MPC control strategy, the future battery power consumption of
an automobile in the finite time domain can be equivalent to fuel consumption, which
reduces the difficulty of solving the algorithm and improves the calculation efficiency. In
the case of unknown vehicle driving conditions, the above model predictive control is used
to predict the vehicle speed in the predicted time domain, and the vehicle demand power
is obtained according to the information of vehicle speed change, so as to optimize the
control.

4. Simulation Validation

In this section, we evaluate the performance of the proposed energy management
strategy with simulation results, implemented in MATLAB 2019b. The following vehicle
consists of an engine, an electric motor, an automatic mechanical transmission and a battery
pack. Specific parameters are listed in Tables 1 and 2.

Table 1. HEV configuration.

Components Specifications

Engine FC-SI41 (Simulink)
Maximum torque Te−max: 170 Nm
Maximum speed ne−max: 5000 rpm

Electric machine MC-PM30 (Simulink)
Maximum power: 30 kW

Maximum torque Tm−max: 200 Nm
Minimum torque Tm−min: −200 Nm
Maximum speed nm−max: 6000 rpm

AMT Gear ratio: [1, 4.212, 2.637, 1.8, 1.386, 0.772]
Battery pack ESS-NIMH6 (Simulink)

Capacity, Qbat: 5.3 Ah = 19,080 C
Coulombic efficiency, ηcoul : 0.95

Nominal voltage: 273 V
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Table 2. Parameter settings in the simulation.

Symbol Characteristic (Unit) Value

m Vehicle mass (kg) 1623
g Gravitational constant 9.81

Cd Aerodynamic drag coefficient (-) 0.25
Cr Rolling resistance coefficient (-) 0.9
A Frontal area (m2) 2.46
ρ Air density (kg/m3) 1.29

rw Wheel radius (m) 0.34
i0 Final drive ratio 4.55
h Constant headway time (s) 2.5

Kp Weight coefficient 3
Ki Weight coefficients 0.1
s0 Initial value of equivalent factor 4
Ts Sampling time (s) 1

To validate the optimal performance of the ECMS-MPC energy management strategy,
the simulation is implemented with standard cycles and the speed sequence generated
in MATLAB.The proposed ECMS-MPC control strategy, the control strategy based on
MPC and the control strategy based on MPC-DP are simulated and optimized respectively.
Through the simulation analysis of the optimization results, the computational efficiency
and the superiority of proposed strategy can be validated.

4.1. Car-Following Performance under Different Driving Cycles

In the simulation, the speed profile of leading car follows the NYCC driving cycle and
UDDS driving cycle, as shown in Figure 6a,b. The optimized speed of the distance between
leading vehicle and the following are shown in Figure 7.
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(a) The velocity profile of the NYCC driving cycle.
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(b) The velocity profile of the UDDS driving cycle.

Figure 6. The NYCC driving cycle and the UDDS driving cycle.
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In Figure 7a, the speed difference of the leading vehicle and the following vehicle
under the NYCC driving cycle are presented. The optimized acceleration and deceleration
of the following vehicle are presented in Figure 7b. The acceleration and deceleration are
taken from the first value in the predicted time domain. The distance between the leading
vehicle and the following vehicle are presented in Figure 7c. In the car-following results
under the UDDS driving cycle in Figure 7d–f, we can see clearly that the following vehicle
follows the leading vehicle while ensuring a satisfactory inter-vehicle distance.
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(e) The acceleration of the following vehicle.

(f) The distance between the leading vehicle and following vehicle.
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(a) The speed difference between the leading vehicle and following vehicle. 

(b) The acceleration of the following vehicle.

(c) The distance between the leading vehicle and following vehicle.
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Figure 7. (a–c) The car-following results under the NYCC driving cycle. (d–f) The car-following results under the UDDS
driving cycle.

4.2. Energy Allocation Performance under Different Standard Driving Cycles

The ECMS-MPC control strategy proposed in this paper is designed to achieve the
energy management of a parallel HEV under the prediction of multi-objective optimization
of vehicle speed prediction.

Therefore, in order to further evaluate the performance of the ECMS-MPC control
method, the algorithm is used to optimize the energy management of a parallel HEV. NYCC
and UDDS were selected to provide the tested driving cycles. The predictive time domain
was chosen as 3 s and 5 s, respectively according to the simulation result. In contrast
to traditional MPC, due to the coupled effect of the car-following layer and the energy
management layer, increasing the length of the time domain does not always increase the
control performance. A longer preview horizon reduces the prediction accuracy of the
future speed, which may result in increased power demands at the wheels. Second, for a
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longer preview horizon, more frequent emergency braking occurs, reducing the energy
efficiency.

The equivalent factor is selected as 4 by trial and error. Its initial value is obtained by
applying PMP and the shooting method. Then, depending on the difference SOC(t f )−
SOCtarget, the initial value of the equivalent factor s0 is increased or decreased in the next
iteration, and the driving cycle is simulated again with a new initial value s0. At the generic
nth iteration, the value of s0 is set to

s0(n) =
1
2

(
sin f (n− 1) + ssup(n− 1)

)
(33)

Here, sin f and ssup are two variables introduced to implement a bisection method.
Taking the NYCC driving cycle as an example, the optimization results under DP

and ECMS-MPC control strategies are shown in Figure 8. It can be seen from Figure 8a
that the gear ratio of the two control strategies is basically the same, which illustrates the
optimization of our proposed allocation strategy. From Figure 8b,c, it can be seen that
the engine torque changes more frequently in the ECMS-MPC control strategy than in the
DP control strategy, while the motor torque changes less frequently in the ECMS-MPC
control strategy. There is a slight difference between the results of the ECMS-MPC and DP
torque optimization. Because the DP is a global optimization method, the optimization
results represent the global optimal; the ECMS-MPC is a local optimization method, and
the optimization results represent local optimality. Therefore, there are some differences
between the results of the two methods.
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(a)  Gear changes under the NYCC driving cycle.
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Figure 8. (a–c) The applied NYCC driving cycle and simulation in ECMS-MPC (5 s) and DP. (d–f) Comparison of the battery
SOC and current when using different energy management strategies in the NYCC driving cycle.
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From Figure 8d, for all methods, the initial value of battery SOC is set as 60%, which
is also the expected final value. In the simulation, the tolerance is set as ±5%. In terms of
SOC optimization, the global optimization method based on DP-MPC and ECMS-MPC
could successfully maintain the stability of the battery SOC (Figure 8d).

In order to intuitively and effectively evaluate the optimization performance of ECMS-
MPC, a comparative simulation analysis is carried out with ECMS-MPC and DP respec-
tively under two standard driving cycles. The fuel economy, computational efficiency and
SOC sustainability of the ECMS-MPC control strategy are presented in Figure 8. In all
simulations, the initial value of battery SOC is set as 60%. In the case that the final value of
the SOC cannot completely converge to the reference value, the adaptive equivalent factor
transformation strategy is adapted. In terms of SOC optimization, the global optimization
method based on DP-MPC and ECMS-MPC could successfully maintain the balance of
battery SOC, as can be seen in Figure 8d. We can also see changes of the battery current
in Figure 8e, and the ECMS-MPC control strategy still shows better results than the MPC
control strategy. As can be seen from Figure 8f, in terms of fuel economy, compared with
MPC, the fuel economy of ECMS-MPC in the NYCC driving cycle increases by about 2%,
while it is slightly lower than the result of DP because the optimization result of DP-MPC
is globally optimal. These results are similar to those obtained with the UDDS driving
cycle in Figure 9.

In order to better illustrate the optimization performance of ECMS-MPC, the MPC, DP
and ECMS-MPC control strategies are used to optimize and compare under the predicted
time domains of 3 s and 5 s. The optimization results are shown in Tables 3 and 4. In the
tables, the calculation time of DP is the solution time of the whole cycle, and the calculation
time of ECMS-MPC is the solution time in the predictive domain time. For the NYCC
predicted conditions, it can be observed that the calculation time of ECMS-MPC in the
time domain is 0.136 s, and the calculation efficiency is much higher than that of DP. For
the UDDS predicted conditions in different prediction time domains, ECMS-MPC also
achieves the same calculation efficiency. In addition, with the increase of the prediction
time domain, the calculation time of DP-MPC increases significantly, while the calculation
time of the ECMS-MPC control strategy remains basically unchanged, indicating that this
strategy allows optimization in a longer prediction time domain. Therefore, compared
with DP, the ECMS-MPC energy control strategy has a higher computational efficiency and
requires less computational effort in different prediction time domains, which is conducive
to the realization of real-time automobile energy management optimization.

Table 3. Results of different controllers in the NYCC.

Method FC (CNY) EC (CNY) TEC (CNY) Final SOC Time (s)

MPC 34.12 27.34 61.47 0.53 0.006
ECMS-MPC (5 s) 18.79 29.03 47.82 0.606 0.136
ECMS-MPC (3 s) 14.18 28.64 42.83 0.605 0.122

DP 10.10 29.13 39.24 0.603 17.79

Table 4. Results of different controllers in the UDDS.

Method FC (CNY) EC (CNY) TEC (CNY) Final SOC Time (s)

MPC 32.43 25.62 57.47 0.538 0.007
ECMS-MPC (5 s) 17.46 28.34 45.54 0.574 0.135
ECMS-MPC (3 s) 13.12 28.96 42.13 0.579 0.119

DP 9.28 29.34 38.72 0.596 28.36
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Figure 9. (a–c) The applied UDDS driving cycle and simulation in ECMS-MPC (5 s) and DP. (d–f) Comparison of the battery
SOC and current when using different energy management strategies in the UDDS driving cycle.

In Tables 3 and 4, fuel cost (FC), electricity cost (EC), and total energy cost (TEC) are
also compared for these methods. The fuel consumption of the ECMS-MPC algorithm is
lower than that of the traditional MPC optimization algorithm. Under two driving cycles
with different prediction time domains, the fuel consumption decreases by between 2.1%
and 3.2%. The fuel consumption of the ECMS-MPC algorithm is slightly higher than that
of DP optimization algorithm because DP is a global optimization method, and can achieve
the best fuel economy. However, the DP strategy requires the entire driving cycle to be
known in advance. Therefore, although the fuel economy of ECMS-MPC is slightly worse,
it does not need to know the operating conditions in advance, which is conducive to real-
time optimization. For most of the predicted conditions, the fuel economy of ECMS-MPC
is close to that of DP, and can maintain the balance of SOC for different predicted time
domain conditions. In the UDDS driving cycle, compared with DP, ECMS-MPC could
achieve a higher calculation efficiency, and the SOC has only a small deviation from the
reference value, so the performance of ECMS-MPC is acceptable.

Based on the above contents, it can be concluded that the proposed ECMS-MPC energy
management strategy can achieve a good performance in the test of different driving cycles.
Additionally, its fuel consumption is close to that of the DP algorithm (which had the
best fuel economy), confirming the performance of the control strategy in terms of torque
distribution and simultaneously ensuring the balance of battery SOC.
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5. Conclusions

In this paper, an ECMS-MPC based energy management strategy for a parallel HEV is
designed to address high fuel consumption and unbalanced battery SOC in the current
energy management strategies, and an equivalent fuel consumption minimization algo-
rithm is applied to the MPC framework. In order to improve the adaptability of the control
strategy, the generated speed sequence based on car-following is established to obtain
the vehicle speed information in the time domain. Then, combined with the predicted
speed information, the optimal torque distribution control is realized using the ECMS
energy management strategy. In order to verify the optimal performance of this control
strategy, the effectiveness of this control strategy is verified by simulation and comparison
with two other control strategies (i.e., DP and MPC) under different driving cycle sets,
namely, NYCC and UDDS. In the simulation, our proposed method could reduce the fuel
consumption by between 2.1% and 3.2%, approaching the results of the DP method, which
utilizes offline global optimization.
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ACC Adaptive cruise control
SOC State of charge
NYCC New York City Cycle
UDDS Urban Dynamometer Driving Schedule
EV Electric vehicle
PID Proportional integral derivative
SMC Sliding mode control
MPC Model predictive control
DP Dynamic programming
PMP Pontryagin’s minimum principle
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SQP Sequential quadratic programming
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