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Abstract: In order to explore the changes that autonomous vehicles would bring to the current traffic
system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision
theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles.
Using calculus and difference methods, a speed transformation model is established which could
make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on
multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established
to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain
the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous
vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous
traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic;
the participation of autonomous vehicles won’t bring essential changes to road traffic parameters;
the speed-following transformation model minimizes the safety distance and provides a reference for
the bottom program design of autonomous vehicles. In general, the research could not only optimize
the stability of transportation system operation but also save road resources.

Keywords: autonomous vehicles; arbitrary proportion; speed change; redistribution

1. Introduction

Increasing the proportion of autonomous vehicles will lead to a change of travel mode
from human vehicles to autonomous vehicles, which will bring significant variation to
traditional traffic and have a great influence on traffic flow characteristics, thus affecting the
overall optimization design of the road network. As the technology matures, some cities
are starting to test autonomous vehicles on the road. With autonomous vehicles gradually
being accepted by the public, the precision and communication capabilities between
autonomous vehicles and cloud-computers will allow new traffic behaviors to enhance
the capacity of the road network. Moreover, the emergence of autonomous vehicles could
realize some idealized assumptions of previous traffic models, for example, autonomous
vehicles could keep a constant speed and deal with traffic behavior completely rationally.

The smaller reaction time of autonomous vehicles could reduce the car-following
distance between vehicles and increase road capacity [1]. Compared with human-driven
vehicles, they are less susceptible to adverse road conditions. The research finds that the
participation of autonomous vehicles on human-driven roads could greatly improve travel
efficiency when the road is not congested. However, on shared roads, it is still difficult if
vehicles can not be guided in time to avoid traffic congestion. If the research systems are
all autonomous vehicles, the travel efficiency could be increased to more than twice of all
human-driven vehicles under the same conditions, as shown in as shown in experimental
analysis part. If the running time of the mixed system is long enough, the autonomous
vehicles could adjust to the optimal state without the interference of human-driven vehicles
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and the travel efficiency of the system could still increase as the proportion of autonomous
vehicles increases. This is one of the reasons why it takes a while for autonomous vehicles
to be fully accepted by travelers.

British scholars Lighthill and Whitham [2] proposed the hydrodynamics theory in 1955
which studied the changes of traffic flow under the condition of high traffic density and
proposed the hydrodynamics simulation theory. Subsequently, Richards [3] independently
proposed a similar traffic flow theory. Later scholars called this continuous medium
describing the traffic flow as an LWR theoretical model. After the theory was widely
used, G.C.K. Wong and S.C Wong [4] promoted a model to improve the accuracy of their
description of realistic traffic and established a dynamic model of a variety of vehicle
models. Based on multi-hydrodynamic theory, the paper establishes a mixed traffic flow
model to predict the changes in traffic flow under different proportions of autonomous
vehicles, then obtains the redistribution characteristics of traffic flow.

There are several different types of car-following models [5,6]. For example, some
models can predict how the driver would make changes in acceleration according to the
vehicle in front. Newell [7] simplified the car-following model in earlier years and the sim-
plified model is consistent with the fluid dynamics theory but it does not include reaction
time. According to the anti-collision theory of Kometani and Sasaki [8], a car-following
model with reaction time is established to predict the allowable space at a given speed. The
decisive factor in predicting headway with speed is density. The results have shown that
the model is consistent with the triangle theory of Newell and Yperman et al. [9,10]. Based
on this we used the calculus and difference methods to establish a speed transformation
model which could make autonomous and human-driven vehicles maintain synchronized
speed changes.

Current research on autonomous vehicles mostly focuses on intersections, safety,
comfort experiences [11], car-following behavior between vehicles or shared travel and
autonomous/human-driven vehicles driving in separate lanes or lane-changing under
mixed traffic [12–14]. The role of autonomous vehicles in a smart city, intelligent transporta-
tion and shared travel is also one of the main research directions, at present. Some scholars
have studied the impact of autonomous vehicles on society in the long, short and medium-
term. If the current system is all autonomous vehicles, it can bring huge potential benefits
to society such as reducing air pollution and improving work efficiency. In the short term,
especially with the COVID-19 outbreak in 2019 and 2020, autonomous vehicles could not
only reduce the risk of transmission and avoid unnecessary travel contacts but also could
spontaneously pick the medical staff up. In the medium term, it can affect economic devel-
opment: the use of autonomous vehicles could trigger new investment opportunities and
new markets, and the government could make macro-economic adjustments and change
corresponding with congestion strategies. In the long run, efficient, interconnected and
automated travel by autonomous vehicles could reduce pollution, improve air quality and
mitigate the impact of climate change on the environment. However, previous literature
studies on autonomous vehicles are mostly micro experiments, there are few macroscopic
experiments on the impact of autonomous vehicles gradually driving on the road. Based
on this, the purpose of this paper is to develop a shared road traffic flow model for any
scenario with different proportions of autonomous vehicles. The main contributions are
as follows:
1© Analyzed the possible changes in traffic parameters brought by autonomous vehicles;
2© Using collision avoidance theory, the traffic flow models are analyzed respectively

and makes assumptions based on the triangular diagram proposed by Newell;
3© A car-following model is established in which the autonomous vehicle can stably

follow human-driven vehicles in any scene;
4© Establish a mixed traffic flow analysis model by relaxing the velocity variable;
5© Based on the hydrodynamic theory, a mixed traffic flow model with an arbitrary

proportion of autonomous vehicles is established.
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The rest of the article is organized as follows: the second part explains the research
background of the article. The third part presents the consistency between the multi-
hydrodynamic mechanics and the mixed traffic flow model, then makes assumptions
about the model to be established. The fourth part is the main content of the paper, which
establishes a traffic flow model of any scene with an arbitrary proportion of autonomous
vehicles. The fifth section studies the change of traffic flow when the proportion of au-
tonomous vehicles changes in a road segment and gives the calculation result analysis
of an example. The sixth part summarizes the article, points out the deficiencies of the
research and the prospects for the follow-up work.

2. Research Backgrounds

Based on the general project of NSFC, “Research on the transportation network design
theory based on vehicle automatic driving cloud plan”, we discussed changes in road
traffic flow when autonomous vehicles gradually increase until they occupy a dominant
position in traffic.

Marked by the release of Google’s self-driving car program, research on self-driving
cars has entered a new era. The autonomous vehicle, also known as the driverless vehicle,
is used as an independent vehicle that could sense the surrounding environment and auto-
matically navigate without manual operation to meet the needs of human transportation.
As autonomous vehicles are equipped with forward collision warning systems, automatic
braking technology and other, unmanned driving automation technologies, they have the
ability to reduce the risk of random and subjective behavior during driving. Autonomous
vehicles are capable of reducing traffic accidents, reducing traffic congestion and increasing
road capacity So, autonomous vehicles are the future of transportation development.

In the process of the change from coexistence to the dominance of autonomous vehicles
and human-driven vehicles, the existing traffic theories and traffic assignment methods
may not be able to fully adapt to future traffic practice due to changes in the path selection
behavior of autonomous vehicles. How to make the current transportation system follow
the development of smart cities and smart transportation is an urgent problem to be solved.
This paper conducts a more detailed study of autonomous vehicles on the impact of the
traffic flow at the core of the transportation system. The research could provide the most
necessary basic reference for the distribution of road network traffics and road network
design after autonomous vehicles driving on the road. At the same time, it can provide
the necessary reference and basis for issues such as operation mode selection, overall
inventory and traffic diversion, which is of great significance for autonomous vehicles on
the road [15].

3. Modeling Theoretical Foundation

This section mainly introduces the extension of the hydrodynamic theory from a single
type to a multiclass hydrodynamic theory, which means multiple vehicle types. The model
is constructed according to the principle of calculus and backward Taylor expansion. The
focus is on autonomous vehicles and human-driven vehicles in this paper.

3.1. Multiple Hydrodynamic Theory

Hydrodynamic mechanics is one of the main research methods of traffic flow theory.
It uses the basic principle of hydrodynamic mechanics to establish the continuity equation
of traffic flow by simulating the continuity equation of fluid. The theory abstracts the
traffic flow wave by comparing the change of traffic flow density to the fluctuation of water
waves. When the road traffic conditions and density change, the propagation of traffic
waves are generated in the traffic flow. By analyzing the propagation speed of the traffic
flow, the relationship between the flow, density and speed is found and the congestion-
dissipation process of the traffic flow is described. It is sometimes called hydrodynamics
simulation theory. The multiple hydrodynamic theory in this paper is relative to the single
hydrodynamics that focused on only one type of vehicle. Multiple hydrodynamic theory
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in this paper means there is more than one type of vehicle in the model and mainly refers
to autonomous vehicles and human-driven vehicles.

Suppose set M is the class of vehicles, M ∈ {1, 2, 3, . . . . . . , N}, km(x, t) is the density
of vehicle class m at a space-time point (x, t). Then the total density is:

k (x, t) = ∑
m∈M

km(x, t) (1)

Similarly, the class-specific flow qm at space-time point (x, t) is:

qm = qm(x, t) = u
(

k1

k
, · · · ,

kM
k

)
km(x, t) (2)

The function u
(

k1
k , · · · , kM

k

)
is the possible velocity of a vehicle with proportions of

k1
k , · · · , kM

k .
As with Daganzo [16–18], we show that these transition flows are consistent with

the multiclass hydrodynamic theory. Let km/k be the proportion of density occupied by
specific traffic flow. Suppose that, under the same conditions, vehicles of the same class
travel at the same speed and k > 0 [1].

The speed is limited by free flow velocity, traffic volume and backward wave propagation:

u(k1, · · · , kM) = min

u f ,
qmax

(
k1
k , · · · , kM

k

)
k

, wa

(
k1

k
, · · · ,

kM
k

)( k jam − k
k

) (3)

where u f is the free-flow speed, wa

(
k1
k , · · · , kM

k

)
is the backwards wave speed, qmax

(
k1
k , · · · , kM

k

)
is the traffic flow when the proportions of each class in density are k1

k , · · · , kM
k , and k jam is

the density of jam. According to q = ku, then:

qm(x, t) =
km

k
min

{
u f k, qmax

(
k1

k
, · · · ,

kM
k

)
, wa

(
k1

k
, · · · ,

kM
k

)(
k jam − k

)}
(4)

Total traffic flow:
q(x, t) = ∑

m∈M
qm(x, t) (5)

There are three traffic flow-limiting factors for class m vehicles: 1© the speed of class-
specific vehicles; 2© proportional share of class-specific; 3© proportional share of crowded
flow. In this paper, it is assumed that autonomous vehicles and human-driven vehicles
have the same physical characteristics such as vehicle length l and maximum speed, so
k jam is independent of vehicle class.

In order to maintain the continuity of the research object, the flow conservation
equation is satisfied for any m ∈ M [5]: ∂qm(x, t)/∂x = −∂km(x, t)/∂t.

3.2. Model Assumptions

In conventional hydrodynamic theory, the occupancy rate of a certain vehicle will
change with time and space which may lead to the occurrence of none-first-come-first-
served phenomenon in the system. In order to avoid a certain class amount of traffic at the
end of the road becoming a transitional flow with a higher proportion, the article assumes
that the density is uniformly distributed. As stated by Blumberg and Bar-Gera [19], a
single type of traffic flow may also violate the first-come, first-served rule. Since the total
transition flow of discrete vehicles is continuous it could be regarded as a continuous flow.
Therefore, the article has the following assumptions:

1. Autonomous vehicles and human-driven vehicles have the same physical characteris-
tics, such as vehicle length l and free-flow speed;

2. Vehicles of the same class travel at the same speed;
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3. The model is suitable for multiple types of vehicles. The focus of this article is
autonomous vehicles and human-driven vehicles;

4. Different types of autonomous vehicles have different reaction times, so the vehicles
will respond to different car-following behaviors;

5. The density of specific vehicles in the system is uniformly distributed.

4. Modeling and Analysis

In this section, based on kinematics theory and different vehicle reaction times, a
car-following model that could predict the speed-density relationship is established. The
model does not include other influencing factors, such as road traffic conditions, and
can predict changes in traffic flow that are composed of different classes of vehicles. The
influence of reaction time on capacity could be used to extend the traffic characteristics
of road sections to the actual urban road network model. Although autonomous vehicles
are less affected by changes in road traffic conditions than drivers, it is assumed that they
are affected the same when establishing a shared road model with a different proportion
of autonomous driving. Other factors affecting traffic volume are included in the model
described in Part Three.

4.1. Human Driving Traffic Flow Model

The car-following behavior of human-driven vehicles in the traffic system has three
main characteristics: 1© Restriction: the speed of the rear vehicle should not be greater than
the speed of the preceding vehicle for a long time and there must be sufficient braking
distance between vehicles; 2© Hysteresis: The rear vehicle needs reaction time to adapt to
the speed change of the preceding vehicle; 3© Transitivity: Once the first vehicle changes
its running state, its effect will be transmitted backward, one by one, until the last car in
the fleet.

Since the acceleration of the linear following vehicle is only a function of the relative
speed of the two vehicles, considering the complexity of the vehicle driven by a human,
a nonlinear car-following model with sensitivity coefficient λ is selected. According to
Leutzbach’s research [20]:

..
xn−1(t + ∆t) = λ

[ .
xn(t)−

.
xn−1(t)

]
(6)

∆t is the reaction time, λ is the sensitivity coefficient:

λ = λ0

.
xα

n+1(t + ∆t)

[xn(t)− xn+1(t + ∆t)]β
(7)

where α ≥ 0, β ≥ 0. In a nonlinear (α, β) model, α and β are constants for a certain model.
In the model we use (0, 1.5) then the car-following model could be obtained [21]:

..
xn+1(t + ∆t) = λ0

[ .
xn(t)−

.
xn+1(t)

]
[xn(t)− xn+1(t + ∆t)]1.5 (8)

Equivalent to:
.
un+1(t + ∆t) = λ0

.
sn+1

s1.5
n+1

(9)

where un+1 means the velocity of the (n + 1)th vehicle. sn+1 = xn(t) − xn+1(t) is the
car-following distance between the (n + 1)th vehicle and the nth vehicle, as shown in the
Figure 1 below:
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Figure 1. Schematic diagram of the car-following model.

Leutzbach has proved that the reaction time does not affect the formula when analyz-
ing the macro traffic flow [20]. Therefore, it can be obtained as follows:

.
u = λ0

.
s

s1.5 (10)

Density is the inverse of the distance between vehicles, then we can get:

∫ 0

u

.
u = −

∫ kj

k
λ0k1.5

.
k
k2 (11)

Then:

q = ku f

(
1−

√
k
k j

)
(12)

The basic graph of q-k could be obtained as follows:
It can be seen from the Figure 2 at the beginning, the density is small and there is

almost no mutual influence between vehicles. The flow increases almost linearly with the
increase in density. After reaching the peak value, the flow starts to decrease with the
increase in density. The state of traffic gradually turns into congestion and the mutual
influence between vehicles increases. The peak (kch, qhmax) corresponds to the critical
density and the maximum traffic flow of the road section, the line between any point
on the curve and the origin corresponds to the average speed of vehicles at that point.
The nonlinear car-following (α, β) model could qualitatively describe the traffic change
characteristics of human-driven vehicles. Taking different values for simulation is better
adapted to changes in different traffic environments. According to previous observations,
the value of (kch, qhmax) is relatively stable. When the traffic flow approaches this value,
it will cause the collapse of traffic, to some extent. When the flow reaches or approaches
the critical point, the average of the traffic flow speed drops, traffic density increases
and the density starts to develop in the direction of blocking density. When the flow
reaches the capacity of the road, the traffic flow tends to be unstable and the available
gap between vehicles becomes less. In this case, the disturbance caused by lane change or
merging cannot be effectively weakened or eliminated. Mathematically, it corresponds to
the upstream propagation of density disturbance which will cause traffic congestion or the
occurrence of upstream queuing.
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Figure 2. q-k diagram with p = 0.



Energies 2021, 14, 3425 7 of 21

4.2. Autonomous Vehicle Traffic Flow Model

In a fully automatic driving road system, due to the high intelligence of the au-
tonomous vehicle, it could always drive at the best speed in different situations of the
whole driving process. Even by outside stimulation, it can automatically adjust and unify
velocity in a very short time. Therefore, in a system of fully autonomous vehicles, the
vehicle can always be coordinated to maintain a constant speed.

4.2.1. Analysis of Following Characteristics of Autonomous Vehicle

The model assumes that the vehicles travel at a constant speed without external
stimulation. The length of all autonomous vehicles is l and the reaction time ∆t is the same.
Suppose that vehicle 1 is the front car, vehicle 2 follows vehicle 1 at speed u, vehicle 1 starts
to decelerate with deceleration a at t = 0, and vehicle 2 follows vehicle 1 immediately after
the reaction time. The safe distance L is determined by anti-collision theory. The position
of vehicle 1 is:

s1(t) = ut− 1
2

at2
(

t ≤ u
a

)
(13)

when t ≥ u/a, vehicle 1 stops moving and will remain in the stop position u2/2a. The
following distance L of vehicle 2 is:

s2(t) =


−L + ut (t ≤ ∆t)
−L + ut− 1

2 a(t− ∆t)2 (
∆t < t ≤ u

a + ∆t
)

−L + u2

2a
(
t > u

a + ∆t
) (14)

Then:

s1(t)− s2(t) =


L− 1

2 at2 (t ≤ ∆t)
L + 1

2 a∆t2 − at∆t
(
∆t < t < u

a
)

L + 1
2 a(t− ∆t)2 + u2

2a − ut
( u

a ≤ t < u
a + ∆t

)
L− u∆t

(
t ≥ u

a + ∆t
) (15)

According to anti-collision theory, in a connected automatic driving system with a
relative speed of 0, if there is no reaction time, the vehicles could run synchronously and no
collision will occur no matter how small the distance is. Therefore, the minimum distance
L should meet the following requirements: L− u∆t ≥ l.

Equivalent deformation of the above equation could be obtained as follows:

u ≤ L− l
∆t

(16)

Due to the smart characteristics of the autonomous vehicle, it could be set with
optimized parameters. Therefore, when the road traffic density reaches a certain value and
the vehicles start to influence each other, the following distance is set as: L = u∆t + l.

4.2.2. Autonomous Vehicle Flow-Density Relationship

When the following distance is not less than L = u f ∆t + l, vehicles could keep
free-flow speed. Then:

q = ku = ku f (17)

That is, the traffic flow increases linearly with the increase of density, as shown in the
OC phase in Figure 3. When the density reaches the critical density kcw, then:

k = kcw =
1

u f ∆t + l
(18)
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Figure 3. Flow-density diagram when p = 1.

If the ∆t and speed do not change, the density and flow will not change. This will
become the normal state of smart urban traffic in the future but it is not possible to be
maintained in the actual traffic at present. When the system density is greater than the
critical density, the autonomous vehicle starts to drive at speed u. Then the density is
as follows:

k =
1

u∆t + l
> kcw =

1
u f ∆t + l

(19)

The flow rate changes linearly with the density, which is determined by the triangle
basic diagram theory, namely:

q = min
{

uk,
(

L− l
∆t

)
k
}

(20)

When k ≤ kcw, the vehicle maintains free-flow speed; when the density is greater than
k > kcw, the speed begins to decrease with the increase of density, then:

q =

{
ku f (k ≤ kcw)(

L−l
∆t

)
k (k > kcw)

(21)

It could be concluded that the maximum density of the system with the speed of u is:
1/(u∆t + l). The maximum traffic flow of the system is:

qmax = u f
1

u f ∆t + l
(22)

If there is a backward wave in the autonomous vehicle system, the speed of the
backward wave is wa:

wa = −
u f

u f ∆t+l
1

u f ∆t+t −
1
l
=

l
∆t

(23)

The reaction time could not only affect the flow changes but also determine the
maximum flow capacity of the system, which is an important reference index for the
operating efficiency of the automatic driving system. If there is a backward wave, the
magnitude of the backward wave is only related to the reaction time and the length of
the vehicle.

4.2.3. Flow-Density Relationship with Different Reaction Times

From the above analysis, it could be concluded that the flow-density relationship
with different reaction times is different during the driving process. In this paper, we
assume that the length of the autonomous vehicle is l = 4 m and the free-flow speed is
u f = 60 km/h. Figure 4 shows the q-k with different ∆t while other conditions remain
unchanged when p = 1.
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It could be seen from Figure 4a that, under the same road traffic conditions, the shorter
the reaction time, the greater the critical density and the greater the traffic capacity. The
reaction time and the maximum traffic volume have an opposite trend. When the reaction
time is the same as the reaction time of a human-driven vehicle, the critical density and
maximum traffic volume of the system are the same as human driving. In this paper, we
take the reaction time of automatic driving as when the traffic flow at the critical density is
about 4800 veh/h. From Figure 4b, it can be concluded that the shorter the reaction time,
the longer it takes to reach the critical density, the longer the system could maintain the
free-flow speed, and the higher the road service level; the longer the reaction time, the
sooner the critical density is reached, then vehicles need to slow down to maintain a safe
following distance. When the reaction time of automatic driving is equal to human driving
they reach critical density at the same time.

4.3. Traffic Flow Analysis Model with Different Proportions

In Sections 4.1 and 4.2, flow density models are established respectively. In this section,
the theoretical derivation and analysis of the two models are carried out and the velocity
variables are relaxed to describe the mixed traffic flow under the condition of different
proportions of autonomous vehicles.

Assume that, under steady-state traffic conditions, human-driven vehicles are marked
with “H” and the car-following distance is marked with Sh; autonomous vehicles are
marked with “W”, and car-following distance is represented by Sw. In an operating system
with moderate traffic conditions, the space headway under steady traffic conditions is
shown in Figure 5:
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Let s be the average inter-vehicle distance in the mixed traffic and p ∈ [0, 1] the
proportion of autonomous vehicles in the system. Since there are only autonomous vehicles



Energies 2021, 14, 3425 10 of 21

and human-driven vehicles in the research system, the proportion of human-driven vehicles
is 1-p and the average distance between vehicles in the system can be obtained as:

s = psw + (1− p)sh (24)

From Section 4.2, when the following vehicle is an autonomous vehicle, the minimum
safe distance between vehicles is:

sw = u∆tw + l (25)

When the rear vehicle is a human-driven vehicle, the minimum safe distance between
vehicles is:

sh = u∆th + l (26)

where ∆th is the average reaction time distribution of current human-driven vehicles.
In this article, due to the use of sensors and controllers of autonomous vehicles, as

well as completely rational behavior, it is assumed that ∆tw < ∆th. At a given speed, if the
average length of the two vehicles is equal, then the total density of mixed traffic meets the
following function:

kmix =
1
s
≡ f (p, sw, sh) (27)

In a mixed traffic system, when density is high, the autonomous vehicles could not
run at a free-flow speed. So, in order to maintain the stable operation of the system,
autonomous vehicles begin to match the speed of human-driven vehicles. That is, under
steady traffic conditions, the speed of mixed traffic is determined by slower vehicles. Based
on the above setting, the article adopts the reciprocal of the average inter-vehicle distance
as the density of each type of vehicle. That is kh = 1/sh, ka = 1/sw. It can be seen that the
density of each type of vehicle in mixed traffic is mutually determined.

We set kh and kw as the density of human and self-driving vehicles in mixed traffic
respectively. When the system reaches a steady-state operation, the driving speed of mixed
traffic is determined by the slow vehicles. As the autonomous vehicle is highly intelligent, it
is a completely rational driver compared to a human driver and will not be easily disturbed
by other external factors. An autonomous vehicle could always choose the optimal traffic
speed according to the current road conditions. Due to the limitations of human driving,
there will be some drivers with better driving skills who could maintain the same driving
speed as automatic driving but most vehicle speeds are affected by other factors such
as the reaction speed of human beings and the operation speed of vehicles. Therefore,
in this paper, we limited uh ≤ uw , the average speed of vehicles in mixed traffic under
steady-state traffic is umix = uh.

Then:
k−1

mix = pk−1
w + (1− p)k−1

h (28)

So:
q−1

mix = pq−1
w + (1− p)q−1

h (29)

Under steady-state traffic, the q-k curve of mixed traffic is wrapped by 100% au-
tonomous vehicles q-k curve and 100% human driving vehicles q-k curve. In a low-density
state, autonomous vehicles and human-driven vehicles can maintain their respective
speeds, there are uh ≤ umix ≤ uw , then the relationship could still be maintained as
shown in (29) by relaxing the velocity. No matter which speed is selected as the relaxed
system speed, the relationship is satisfied. That is, the model is suitable for any traffic
condition, but it could only show accurate numerical relationships under steady-state
operating conditions.
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4.4. Traffic Flow Model with Arbitrary Proportion of Autonomous Vehicles

Section 4.3 is the relationship under steady-state traffic conditions. Although the
relationship could still be satisfied after relaxing the vehicle speed conditions. However, it
is not possible to calculate all traffic states relatively accurately. Based on this, combined
with the multi-class hydrodynamics theory in Section 3.1, then according to the flow
conservation conditions, a numerical model that satisfies any proportion of autonomous
vehicles is established.

4.4.1. Car-Following Analysis of Any Proportion of Autonomous Vehicles

There are two types of vehicles in the research system of this paper: autonomous
vehicles and human-driven vehicles, namely: M = {w, h}.

Where w represents an autonomous vehicle and h represents a human-driven vehicle.
There are three main driving states of autonomous vehicles in a hybrid system:

1© Keep driving at free-flow speed;
2© Decelerate to match the driving state of human-driven vehicles;
3© Keep pace with the speed of human-driven vehicles.

The above three states change gradually with the density of the traffic system from low
to high. In different traffic systems, the density or time points of the three states change are
different. Even if the data of countless samples are calibrated, it is impossible to accurately
know what behavior human-driven vehicles will take in the next moment. However, with
the current technology, it is easy to measure the relative position of human-driven vehicles
with their own thorough sensors. Based on the principle of calculus, this paper establishes
a car-following model of autonomous vehicles in a mixed traffic system. The model is
suitable for any speed change of a human-driven vehicle.

The model is aimed at the car-following behavior that an autonomous vehicle could
maintain when the speed of a human-driven vehicle changes at any time, the acceleration
change of a human-driven vehicle could be set as a function fa(t). In order to ensure the
vehicle will not retreat, when the speed is zero the acceleration is zero, and the acceleration
changes for human-driven vehicles are:

ah(t) =

{
fa(t) (uh > 0)
0 (uh = 0)

(30)

Then the velocity under any acceleration state is:

uh(t) = uh0 +
∫

du = uh0 +
∫ t

t0

ah(t)dt (31)

The vehicle displacement is:

sh(t) = sh0 +
∫

ds (32)

Then:

sh(t) =
∫ t

t0

uh(t)dt =
∫ t

t0

∫ t

t0

ah(t)dtdt (33)

According to:
s′′ (t) = a(t)

As the position of the next moment cannot be accurately predicted, only the position
at time t and before time t could be known. Therefore, the known position of the human-
driven vehicle is backward differed by using the backward Taylor expansion.
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The known backward Taylor expansion is:

f ′′ (xi) =
f (xi)− 2 f (xi−1) + f (xi − 2)

(∆x)2 + O(∆x)

Set the displacement at moment ti as s(ti), according to the Taylor expansion, then:

aw(ti) = s′′h (ti) =
sh(ti)− 2sh(ti−1) + sh(ti−2)

(∆t)2 + O(∆t)

When the autonomous vehicle in the system knows the position of the preceding
vehicle at a certain moment, the speed or acceleration of the preceding vehicle could be
calculated. In order to maintain the best following distance, the engineer could set the
calculation program of the autonomous car-following model in the underlying program so
that the autonomous vehicle and the human-driven vehicle can maintain synchronized
speed changes.

Autonomous vehicles can set larger accelerations and decelerations through program
calculations but, in actual travel, passengers’ travel comfort needs to be considered or
it could be completely replaced by full-speed sprints in a fully automatic driving sys-
tem. Therefore, this paper refers to the light rail transit (LRT) and high-speed railway
(HSR) [22,23] and the specified maximum speed change rate (acceleration and deceleration)
of urban and expressway network as the standard for passenger comfort. Table 1 lists the
maximum acceleration and deceleration change in the current study [23].

Table 1. Reference standards for acceleration and deceleration.

Acceleration Deceleration

Light rail transit 1.34 m/s2 −1.34 m/s2

High-speed rail 0.58 m/s2 −0.54 m/s2

Urban Dynamometer Driving Schedule 1.5 m/s2 −1.5 m/s2

Highway Economy Test Driving Schedule 1.4 m/s2 −1.5 m/s2

According to Table 1, set the maximum acceleration and deceleration value of au-
tonomous vehicles in the urban road network as ±1.5 m/s2, The displacement of a human-
driven vehicle from time t0 ∼ t meets:

sh(t) = sh0 +
∫

ds = sh0 +
∫ t

t0

uh(t)dt (34)

Assuming the relative distance between the autonomous vehicle and the human-
driven vehicle is d, when the autonomous vehicle maintains free-flow speed, then the
distance is: {

sw(t) ≤ sh(t) + d
sw(t) = u f t

Suppose that the autonomous vehicle starts to be disturbed by the surrounding
vehicles at tbegin, then slow down to adapt to the driving environment of the human-driven
vehicle. The system starts to run at the same speed as the human-driven vehicle at t. Then,
the position of the autonomous vehicle is as follows:

sw(t) = u f t +
∫ u=t

u=tbegin

uwdt = u f tbegin + u f

(
t− tbegin

)
− 1

2
a
(

t− tbegin

)2
= u f t− 1

2
a
(

t− tbegin

)2

In order to prevent a collision, the vehicle shall meet the following requirements:{
d ≤ sh(t)− sw(t)

uw(t) = uh(t)
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Then get:  u f t− 1
2 a
(

t− tbegin

)2
≤ sh(t) + d

u f − a
(

t− tbegin

)
= uh0 +

∫
du

Constraint condition: 
t ≥ tbegin

0 ≤ a ≤ 1.5
d ≥ sw(t)− sh(t)

Considering the comfort of passengers, unless there are special circumstances, there
should be no particularly sudden emergency change. Refer to Table 1 and select the optimal
solution according to the actual traffic conditions. This model is suitable for any situation
and could use different values in different traffic environments. In actual operation, the
model can make the autonomous vehicle keep the same acceleration and deceleration
behavior as the human-driven vehicle, when the system density reaches a certain value
and the autonomous vehicle cannot change lanes or overtake in time.

4.4.2. Traffic Flow Model with Different Proportion

Let km(x.t) be the density of m-class vehicles at a space-time point (x,t) according to
the principle of hydrodynamics in Section 3, the total density is:

kmix(x, t) = ∑m∈M km(x, t) = kw(x, t) + kh(x, t) (35)

The flow qw of the autonomous vehicle at the time-space point (x,t) is:

qw = qw(x, t) = u
(

kw

k

)
kw(x, t)

The flow qh of human-driven vehicles at the time-space point (x,t) meets:

qh = qh(x, t) = u
(

kh
k

)
kh(x, t)

Functions u
(

kw
k

)
and u

(
kh
k

)
are the possible speeds when the proportions of au-

tonomous vehicles and human-driven vehicles are ka
k and kh

k , respectively.
According to the previous settings:

p =
kw

k
, 1− p =

kh
k

The total traffic flow qmix(x, t) of the system at the time-space point (x,t) is:

qmix(x, t) = ∑
m∈M

qm(x, t) = qw(x, t) + qh(x, t) = uwp(x, t)kwp(x, t) + uhp(x, t)khp(x, t)

Considering the actual traffic conditions, all the variables in this paper are bounded
values not less than zero.

Based on this, an example of a 1 km section is analyzed in the fifth section, to verify
the validity of the model.

5. Experimental Analysis
5.1. Experimental Setting

This article mainly studies the impact of autonomous vehicles on the current traffic
flow, so even if some vehicles change lanes under balanced and steady traffic conditions
it will not affect the overall distribution of traffic flow. For multiple lanes: if the density
distribution between different lanes is not balanced, autonomous vehicles will give priority
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to driving in low-density lanes. If the vehicle could change lanes, the optimal system is that
the autonomous vehicle becomes the leading vehicle through overtaking or lane change
behavior. If the conditions for changing lanes and overtaking are not satisfied, the optimal
system should be that the automatic driving vehicle maintains the same speed change
as the human-driven vehicle through the speed change so as to reduce the car-following
distance between vehicles and increase the capacity of the road, the redundant autonomous
vehicle will spontaneously become a fleet driving, or autonomous vehicles and human-
driven vehicles travel in separate lanes. What kind of behavior can make the system or user
optimal cannot be directly judged. In view of this, the article sets the following scenarios
for the case to analyze the impact of autonomous vehicles on road traffic changes:

I. The probability of the vehicle choosing different lanes to drive in is equal and the
autonomous vehicle is a rational driver, changing lanes or overtaking does not
bring better driving conditions. In this scenario, the law of traffic flow change
between different lanes is the same, so analyzing one of the lanes is able to reflect
the operating regulars;

II. Autonomous vehicles drive as the leader or become the leader in the low-density
state by changing lanes or overtaking a few times;

III. Drive in separate lanes.

Based on this, this paper analyzes a two-lane road in the same direction that does
not include diversion and merging. The length of the road section is 1 km, time T = 50 s,
vehicle length l = 4 m, the average reaction times are taken as ∆th = 1.5 s, ∆tw = 0.51 s.
The free flow speed is 60 km/h. The physical conditions of the lanes are the same and
the probability of vehicles driving into different lanes is the same. For a certain lane,
the blocking density is: kj = 250 veh/km; the critical density of autonomous vehicles is:
kcw = 80 veh/km; the maximum flow of fully autonomous vehicles is: qmax

w = 4800 veh/h;
the critical density of human-driven vehicles is: kch = 110 veh/km; the human driving
maximum flow is: qmax

h = 2222 veh/h.

5.2. Numerical Results Analysis
5.2.1. I Scenario Analysis

For I scenario that may exist in Section 5.1 and the analysis in Section 4.4, the au-
tonomous vehicle is mainly divided into three states. The following, Table 2, shows some
values of p in the analysis of the calculation example.

Table 2. Partial values of the proportion p.

w (%) 0 5 10 15 20 25 . . .
. . . 80 85 90 95 100

h (%) 100 95 90 85 80 75 . . .
. . . 20 15 10 5 0

It is generally regular when the autonomous vehicle initially drives on the road, or
has a small proportion, or is under steady-state conditions where there is no overtaking or
lane-changing behavior, and no dedicated lanes are set.

According to the theory of hydromechanics and the definition of density, no matter
what the value of p is, as long as they maintain the same physical characteristics as human-
driven vehicles, the changes of density in mixed traffic over time remains consistent.

According to the model established in the fourth part, when tbegin takes different
values, t and a are shown in Table 3.
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Table 3. The values of t and a when t begin take different values.

tb (s) 0 1 2 3 3 4 5

t 12.10 10.98 10.03 9.21 9.00 8.51 7.90
a 0.68 0.78 0.93 1.15 1.18 1.52 2.28

Taking into account safety and passenger comfort, referring to Table 1 for the current
acceleration and deceleration standards in the traffic system, the calculation example in
this paper is used tbegin = 3 s, then takes a = 1.18 m/s2 as acceleration to decelerate, until to
the speed is synchronized with the human-driven vehicle at t = 9 s, and then keep the same
speed as the human-driven vehicle for the subsequent time. Figure 6 below shows the
change of speed with density when autonomous vehicle follows human-driven vehicles in
the traffic system set in this article.
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Figure 6. Speed fluctuation graph when p takes different values.

If p = 1, the autonomous vehicle could keep running at free-flow speeds until it reaches
critical density; if p ∈ (0,1), the speed of the autonomous vehicle is mainly divided into
three stages:

• Free flow state;
• Decelerate to the same speed as the human-driven vehicle;
• Keep pace with the human-driven vehicle.

When the density is low, the speed of the autonomous vehicle is hardly disturbed
by the distance between vehicles and the free-flow speed could be maintained. Human-
driven vehicles are more susceptible to the influence of surrounding vehicles and the speed
gradually decreases as the density increases. When the hybrid density reaches the level
where the autonomous vehicle will be disturbed by the distance from the surrounding
vehicles, the autonomous vehicle starts to decelerate with a = 1.18 m/s2 until it is consistent
with the speed of the human-driven vehicle. When kmix > 45 veh/km, the autonomous
vehicle keeps driving at the same speed as humans. Figure 7 shows the speed-density
change graph for p = 1 and p = 0.

It can be seen that, if p = 1, the autonomous vehicle always maintains the free flow
speed before reaching the critical density. When the density is greater than the critical
density, the speed of the autonomous vehicle starts to decrease but it is still higher than the
speed of all human-driven vehicles under the same density. If the system density gradually
increases, traffic will gradually transition to a congested state, the distance between vehicles
will become smaller, then the speed of autonomous vehicles will gradually tend to be the
same as human-driven vehicles. The closer to the congestion density, the smaller the speed
difference. When the system reaches the blocking density, both speeds are zero.



Energies 2021, 14, 3425 16 of 21

Energies 2021, 14, x FOR PEER REVIEW 16 of 22 
 

 

the change of speed with density when autonomous vehicle follows human-driven vehi-

cles in the traffic system set in this article. 

 

Figure 6. Speed fluctuation graph when p takes different values. 

If p = 1, the autonomous vehicle could keep running at free-flow speeds until it 

reaches critical density; if p ∊ (0,1), the speed of the autonomous vehicle is mainly divided 

into three stages: 

• Free flow state; 

• Decelerate to the same speed as the human-driven vehicle; 

• Keep pace with the human-driven vehicle. 

When the density is low, the speed of the autonomous vehicle is hardly disturbed by 

the distance between vehicles and the free-flow speed could be maintained. Human-

driven vehicles are more susceptible to the influence of surrounding vehicles and the 

speed gradually decreases as the density increases. When the hybrid density reaches the 

level where the autonomous vehicle will be disturbed by the distance from the surround-

ing vehicles, the autonomous vehicle starts to decelerate with a = 1.18 m/s2 until it is con-

sistent with the speed of the human-driven vehicle. When kmix > 45veh/km, the autono-

mous vehicle keeps driving at the same speed as humans. Figure 7 shows the speed-den-

sity change graph for p = 1 and p = 0. 

0 50 100 150 200 250

0

10

20

30

40

50

60  p=0

u
h

0 50 100 150 200 250

0

10

20

30

40

50

60

k

k

 p=1

u
w

k
cw

 

Figure 7. Speed-density diagram of p = 1 and p = 0. 
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Figure 7. Speed-density diagram of p = 1 and p = 0.

Figure 8 shows the q-k diagram when p takes the value in Table 2.
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Figure 8. q-k variation with different values of p.

From Figure 8, it could be concluded that when p = 100%, the system has the highest
travel efficiency. No matter what value p takes, the mix q-k curve is in the space between
the autonomous traffic q-k curve and human traffic q-k curve. When kmix ≤ 45 veh/km,
the system flow increases with the increase of p. When kmix > 45 veh/km, the system flow
returns to the state of full human-driven vehicles. It can be known from Figure 8 that if the
autonomous vehicle cannot be the leader of vehicles then, as long as p 6= 1, the maximum
flow of the system cannot exceed the maximum flow of the human-driven vehicle. When
system density is not large, the flow will increase with the increase of p. When the system
starts to be congested until the congestion state, as long as there is a human-driven vehicle
in the system the autonomous vehicle will match the human driving behavior. Therefore,
the system will present a whole human driving state. If there is no better way to avoid
congestion in time, even if the autonomous vehicle has a high proportion, the advantages
of automatic driving cannot be effectively used.

From Figure 9 we could get that, if p = 1, the system operating efficiency could be
increased to about 2.2 times, which can improve the service level of the road. This will be
an important step for smart cities in the future. Under the same traffic conditions, the fully
autonomous vehicles can reach critical density earlier than all human-driven vehicles, that
is to say, it has higher road utilization. The road conditions of the system cannot guarantee
the autonomous vehicles will not be congested. Therefore, if the congestion in the road
network could not be cleared in time, the automatic driving system will also present a state
of blockage density. If the current system is all autonomous vehicles, it can bring huge
potential benefits to society, such as reducing air pollution and improving work efficiency
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as analyzed in the introduction section. Figure 10 shows the change of flow with time
when p takes different values.
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Table 4 shows some data of q when p takes different values in the actual analysis.

Table 4. Partial data of q when p takes different values.

t (s) p = 20 p = 40 p = 50 p = 60 p = 70 p = 80 p = 90 p = 100

2.00 504.00 528.00 540.00 552.00 564.00 576.00 588.00 600.00
3.00 723.64 767.73 789.77 811.82 833.86 855.91 877.95 900.00
4.00 911.48 962.37 987.81 1013.26 1038.70 1064.15 1089.59 1200.00
5.00 1078.05 1130.44 1156.63 1182.82 1209.02 1235.21 1261.41 1500.00

...
...

...
...

...
...

...
...

...
48.00 290.94 290.94 290.94 290.94 290.94 290.94 290.94 282.35
49.00 147.74 147.74 147.74 147.74 147.74 147.74 147.74 141.18
50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

It could be known from Figure 10 that: qmax
h = 2222 veh/h and qmax

w = 4800 veh/h.
When the running time is more than 20 s, regardless of the proportion of autonomous
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vehicles, the flow is above 2000 veh/h. When the running time is greater than 25 s, as
long as p 6= 1, the traffic flow starts to drop below 2200 veh/h. When p = 1, the system
flow can reach the maximum flow of all human driving in a short time, and maintain at
least qmax

h = 2222 veh/h to run for about 37 s, after which the flow begins to decrease until
it is blocked. In the early stage of system operation, at the same time period, the greater
p, the greater q. When the system runs for more than 25 s, the distance between vehicles
begins to decrease, if the vehicle cannot leave the system in time, the system gradually
transitions to a congested state. The larger p, the more traffic the road can carry before the
autonomous vehicle matches the human-driven vehicle speed. The flow increases along
the radius. As can be seen from Figure 11, under the same traffic conditions, the greater p,
the greater disturbance that the autonomous vehicles will experience to match the speed of
human-driven vehicles. In actual operation, taking into account the human-oriented and
fully rational behavior of autonomous driving, the model established in this article can
ensure the autonomous vehicle will not have a sharp change in speed during the process
of matching human-driven vehicles, as shown in the radius direction there is no sharp
fluctuation. It not only ensures travel comfort but also the stable operation of the system.
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Figure 11. Flow fluctuation graph when p takes different values.

As shown in Figure 12: when p takes different values, the flow chart of the autonomous
vehicle matching the speed of the human-driven vehicle. Table 5 shows some flow data of
automatic driving to match human driving with different p in the actual analysis.
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Figure 12. q-k change with different p.
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Table 5. Matching data with different p (partial data).

p = 0 p = 10 p = 30 p = 40 p = 50 p = 60 p = 70 p = 80 p = 90 p = 95

679.55 701.59 745.68 767.73 789.77 811.82 833.86 855.91 877.95 888.98
679.546 701.591 745.682 767.728 789.773 811.818 833.864 855.909 877.955 888.977

...
...

...
...

...
...

...
...

...
...

1658.36 1658.36 1658.36 1658.36 1658.36 1658.36 1658.36 1658.36 1658.36 1658.36

In this section of research, the density is uniformly distributed. If special situations
are not considered, the results of the above research will be presented in the universal state
of the transportation system. Different parameter changes could be adopted in different
traffic operating environments.

5.2.2. II Scenario Analysis

In the same-direction multi-lane, if the density is low or the proportion of autonomous
vehicles is relatively high, the autonomous vehicles could automatically evaluate the
distance of overtaking and changing lanes and become the leading vehicle by overtaking
or changing lanes few times. This scenario is mainly divided into two situations:

A. The autonomous vehicle just happens to lead the fleet after entering the system or
leads the fleet after a few overtaking or lane changings;

B. In a low-density system, it becomes the leader through a few overtaking or lane changes.

For scenario A, Figure 12 shows that the traffic flow changes of the system when p
takes different values:

From Figure 12, we could still get that, if the proportion of autonomous vehicles is
100%, the system has the highest travel efficiency. If p ∈ (0,1), the mixed traffic flow q-k
curve is still in the space between the autonomous traffic q-k curve and human traffic
q-k curve. The peak value of system traffic is positively correlated with the proportion of
autonomous driving. Figure 12 shows that in a system where autonomous vehicles can
lead a group, the maximum traffic flow increases with the increase of p. It also shows that,
under low-density conditions, the system flow and peak value are positively correlated
with the proportion of autonomous vehicles. The addition of autonomous vehicles can
reduce travel time costs, improve system operating efficiency, reduce traffic pollution and
improve the existing traffic environment.

Through the analysis of A and B in this section, it can be seen that if the autonomous
vehicle is the leading vehicle in the system, regardless of the operating scenario, the flow
will increase with the increase of p. If the density changes from low to high, the maximum
flow will be also positively correlated with the value of p. No matter what the state, if
p = 1, the operation efficiency of the system is the highest. It could be seen that, when
autonomous vehicles completely replace human-driven vehicles, the maximum traffic flow
of fully autonomous vehicles is almost twice that of fully human-driven vehicles, which
could greatly improve the urban transportation efficiency.

5.2.3. III Scenario Analysis

When autonomous vehicles occupy half the proportion of the traffic system and
vehicles can drive in separate lanes in road networks, the changes of road section traffic
flow are shown in the following figure.

In the figure: —mix flow means one lane for autonomous vehicles, the other for human
vehicles; —2lane-vh means the flow of human-driven vehicles in both lanes; —2lane-va
means the flow of autonomous vehicles in both lanes. It can be seen from Figure 13a, in
a system with divided lanes, the critical density of autonomous vehicles determines the
critical density of the system, that is, the autonomous vehicles determine the maximum
flow that the system may have. The traffic capacity of the fully automated driving system
could reach 2.2 times that of all human-driven vehicles. If the autonomous vehicles and
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human vehicles drive in separate lanes, the flow can reach 1.56 times that of all human-
driven vehicles. In a lane-separate system, when the proportion of autonomous vehicles is
not less than the human-driven vehicles, the operating efficiency of autonomous vehicles
determines the operating efficiency of the system.
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Figure 13. (a) q-k variation chart in separate lanes, (b) q in different lanes.

From Figure 13b, where human and automatic driving vehicles coexist, driving in
separate lanes is the optimal strategy to improve the system operation efficiency.

Based on the above analysis, it could be concluded that the process of autonomous
driving on the road gradually replacing human driving is also a process of gradually
improving the efficiency of urban traffic.

6. Conclusions

With the background that autonomous vehicles will gradually replace human- driven
vehicles in the next decades, we establish the shared road traffic flow models based on
hydrodynamic theory, using calculus and difference methods. Then the participation of
autonomous vehicles and how they influences the speed, density and flow of mixed traffic
are analyzed. The main conclusions and contributions are as follows:

(1) If p ∈ (0,1), the mixed traffic flow q-k curve is in the region between the q-k curve for
fully human and autonomous traffic;

(2) Under different traffic scenarios, the addition of autonomous vehicles has different
effects on the traffic system;

(3) The speed-following transformation model not only minimizes the safety distance
but also saves road resources while optimizing the stability of transportation systems
and could provide a necessary reference for the underlying programming design of
autonomous vehicles;

(4) Establish a traffic flow model with arbitrary p of autonomous vehicles;
(5) The reaction time of autonomous vehicles has a decisive influence on traffic flow;
(6) When autonomous vehicles occupy more than a half, split lane driving is the optimal

strategy to improve the traffic capacity.

The research in this article could provide basic and necessary references for the
distribution of traffic flow and road network design after autonomous vehicles driving on
the road. At the same time, it could provide information on overall inventory, operating
mode selection and traffic diversion and so on, which are of great significance for promoting
autonomous vehicles driving on the road.
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