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Abstract: In the two-step method for nuclear reactor simulation, lattice physics calculations are
performed to compute homogenized cross-sections for a variety of burnups and lattice configurations.
A nodal code is then used to perform full-core analysis using the pre-calculated homogenized cross-
sections. One source of uncertainty introduced in this method is that the lattice configuration or
depletion conditions typically do not match a pre-calculated one from the lattice physics simulations.
Therefore, some interpolation model must be used to estimate the homogenized cross-sections in the
nodal code. This current study provides a methodology for sensitivity analysis to quantify the impact
of state variables on the homogenized cross-sections. This methodology also allows for analyses of
the historical effect that the state variables have on homogenized cross-sections. An application of this
methodology on a lattice for the Westinghouse AP1000® reactor is presented where coolant density,
fuel temperature, soluble boron concentration, and control rod insertion are the state variables of
interest. The effects of considering the instantaneous values of the state variables, historical values
of the state variables, and burnup-averaged values of the state variables are analyzed. Using these
methods, it was found that a linear model that only considers the instantaneous and burnup-averaged
values of state variables can fail to capture some variations in the homogenized cross-sections.

Keywords: neutronics; MPACT; AP1000®; pressurized water reactor; sensitivity analysis; two-step
method; homogenized cross-sections

1. Introduction

From the millimeter that may separate the fuel pellet from the cladding to the few
meters that may make up the diameter of the core, nuclear reactors contain geometric
features that span large scales. As such, techniques such as cross-section homogenization
must be used to perform full-scale core design calculations. Homogenization is used to
reduce the complexity associated with cross-section dependence on energy and space.
Reactor design calculations rely primarily on the “two-step method” [1–3]. The first
step consists of independent 2D transport simulations of each lattice. Although some
approximations are still made to the lattice geometry/composition at this step (reflective
boundary conditions, steady-state operation, cell-wise depletion), the resulting flux solution
and homogenized constants can be considered sufficiently accurate to approximate the
spatial, and energetic, distribution of the neutron flux in the 3D reactor when combined
with generalized equivalence theory. The lattice calculations are often performed with
computer codes specifically written to approximate solutions to the neutron transport
equation. Often, these codes are coupled with solvers for the Bateman equations [4]
such that the change in fuel composition during irradiation is modeled as well. Some
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examples of these codes are Serpent [5], TRITON/NEWT [6], POLARIS [6], CASMO-5 [7],
MPACT [8], and HELIOS [9], which use a variety of solution methods that may be selected
depending on the application. The solutions to the neutron transport equation at multiple
states throughout the lattice depletion history are used to generate the homogenized cross-
sections (HXS) and diffusion-theory constants (DTC) needed to perform the lower-order
full-core calculations. One study which reviews some of the methods used to generate HXS
is given in [10]. The second step is to use these data to perform full core analysis using
codes such as PARCS [11] or SIMULATE [12].

In the second step of the two-step method, interpolating the HXS/DTC can be non-
trivial due to the complexity of the reactor system during burnup. Ref. [13] presents a
method for few-group HXS interpolation on sparse grids using multivariate hierarchical
interpolation. The method was applied to three different reactor models and a target
interpolation accuracy of 0.2% maximum error and 0.05% mean error was achieved for all
models for some number of interpolation points. It was observed that introducing grid
anisotropy (generating interpolation points along certain dimensions more densely than
others) significantly reduced the number of interpolation points to reach the target accu-
racy. This effect is further explored in [14] where a method for grid-density minimization
using perturbation-based approaches is demonstrated for a pressure water reactor (PWR)
fuel assembly. The conventional methods for HXS/DTC approximation are multilinear
interpolation [15]. Ref. [16] presents a parametric analysis of homogenized cross-sections
across operational ranges of burnup, coolant density, coolant temperature, fuel temper-
ature, and boron concentration for a VVER. In addition, a polynomial approximation
method using stepwise regression for HXS is demonstrated. A general quasi-regression
oriented method for the global approximation of smooth multivariate functions in the
context of HXSs is presented in [17]. This method includes the capability to identify—and
disregard—insignificant parameters from the regressive model.

One additional complication in the HXS/DTC approximation process is the depen-
dence of these data on the irradiation history of the lattice. Due to the dependence of
nuclide composition on neutron spectra during irradiation, two lattices—with the exact
same instantaneous configuration/state—can have significant differences in their HXS
due to differences in their irradiation histories. Ref. [18] presents a review of methods
that can account for these history effects. One approach would be to augment models
to account for the past values of state variables. Ref. [19] presents an approach that in-
cludes a burnup-weighted average coolant density variable in an HXS model for PWRs.
Ref. [20] uses both instantaneous state variables and burnup-weighted average values
for multiple state variables. It is clear that these methods add significant computational
cost to the lattice simulations because it essentially doubles the parameter space of HXS
models. An alternative approach is presented in [18] which uses the “spectral history"
of a lattice, or a burnup-weighted average ratio of fast-to-thermal neutron energy flux,
as a prediction variable in HXS models. Ref. [21] discusses the importance of history
effect modeling, particularly given the desired capacity for the reactor fleet to perform
load-follow operation.

The present study presents a new methodology for sensitivity analysis to quantify
the effect of not only instantaneous state variables, but also the effect of the past values
of these state variables on the HXS. This unique approach provides insight to aid in
the parameterization of more complex methods for HXS generation. Previous studies
such as [19,20] considered burnup-averaged state variables in HXS models. In this study,
a complete state variable history associated with each lattice depletion calculation is
incorporated into the sensitivity analysis. The methodology can help provide information
on exactly how a particular state variable history can be represented. A lattice-physics code
is used to generate HXS for a PWR lattice undergoing a number of random-walks through
depletion. A sensitivity analysis is then performed using a form of time-series regression
to compute burnup-dependent parametric sensitivities for HXS to instantaneous, historical
and burnup-averaged values of the state variables. An application of this methodology on
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a 17 × 17 lattice for the Westinghouse AP1000® reactor is presented where coolant density,
fuel temperature, boron concentration, and control rod insertion are the state variables of
interest. This approach will allow for importance ranking of state variables that can aid
analysts in the formulation of models for HXS generation in core simulation. This analysis
can aid engineers in developing models for HXS approximation from lattice simulations
that may more effectively account for history effects in reactor lattices. With the many
advanced reactor designs competing for near-term deployment that may require different
parameterization of cross-section models, this methodology can help to identify how to
best construct those models. In application to any reactor design, these results can be used
to identify the sources of some errors that may arise when using the burnup-averaging
methods for HXS approximation.

One useful clarification is that the methods presented in this paper are not intended
to act as a sensitivity analysis in the context of uncertainty quantification. Although ranges of
input parameters are specified, these ranges correspond to hypothetical operational ranges
of a nuclear reactor for which some HXS prediction model should be valid over. In studies
focused on uncertainty quantification, ranges of input variables can be specified which
represent the possible values of some input parameter given an estimation of its value. In
uncertainty quantification, sensitivity analysis is typically performed for much narrower
input domains than those used in this study. Currently, there is a multi-institutional effort
to further explore uncertainties introduced in the two-step method due to nuclear data and
operational data uncertainties [22]. This effort, the Benchmark for Uncertainty Analysis
and Design (UAM), involves the use of both sampling and direct-perturbation based
approaches to uncertainty propagation for final result analysis in core simulation codes.
This benchmark is a good source for information for sensitivity analysis in the context
of uncertainty quantification. In the current work, the sensitivity analysis is presented
with respect to some realistic operational ranges of state variables that could be said to be
known, not uncertain, parameters.

2. Methods and Models

This section is divided into three subsections, and the first provides some of the details
and methods used to simulate the depletion of the PWR lattice model. Following this,
a subsection is given on the structure of depletion calculations necessary to perform this
analysis. Finally, a formulation of the sensitivity analysis method is presented.

2.1. Lattice Model

The lattice model used to perform the study is based on a 17 × 17 lattice from the
Westinghouse AP1000® reactor. Referred to in [23] as “Region B”, a pin map of the lattice
with 1/8th symmetry is given in Figure 1. The lattice contains 264 UO2 fuel rods with
a uniform enrichment of 1.58% U-235 and ZIRLO® cladding. This lattice was selected
because it is thought to represent the most simple lattice design that may be used in a PWR.
In more complex lattice designs, there may be higher or lower sensitivities to the various
state variables during burnup. There are 24 guide tubes that are either modeled with B4C
control rod inserts or filled with water depending on the lattice state being modeled. There
is also a single instrumentation tube in the center of the lattice that remains filled with
water in all lattice configurations explored in this study. In terms of geometry, the pin
pitch of the lattice is 1.26 cm. The fuel pellet inner radius is modeled to be 0.418 cm and
in contact with the inner surface of the cladding. The cladding outer radius is 0.475 cm,
and the guide tube and instrumentation tube have inner and outer radii of 0.561 cm and
0.612 cm, respectively.

For HXS generation of the lattice, the neutronics code MPACT [8,24] is used. MPACT
is a neutron transport code based on the method of characteristics that was developed at
the University of Michigan for use in the reactor simulation tool VERA (Virtual Reactor
Environment for Reactor Analysis) [25] and is now jointly developed by the University
of Michigan and Oak Ridge National Laboratory.For this study, burnup calculations are
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performed with 51 energy groups for a PWR lattice. The ENDF/B-VII.1 nuclear data library
was used.

1.58% U-235 

Fuel Pin

Control Rod 

Position

Instrumentation 

Tube

Figure 1. Radial pin layout of AP1000® Region B Lattice.

2.2. Sampling Approach

A random-sampling based approach is used to generate the dataset for the sensitivity
analysis. Four state variables are selected:

• coolant density;
• fuel temperature;
• boron concentration in coolant;
• control rod insertion.

For any coolant density incorporated into a model, a corresponding coolant tempera-
ture will be used according to the isobaric properties of water at a pressure of 15.5 MPa.
These parameters were selected both because they are known to have a large effect on
lattice characteristics, and they are commonly used in other studies [13,26,27]. However,
this methodology is certainly general and scalable enough to include any number of other
lattice parameters providing there is the computational capability to generate a sufficient
number of samples and those lattice parameters have a reasonably linear relationship with
the homogenized cross-sections.

It is well known in the community that the Doppler-coefficient—which describes the
effect on HXS from changes in fuel temperature—varies linearly with the square root of
the fuel temperature [28]. The methodology used in this study relies on linearity in the
relationships between the HXS and state variables for both the values of the state variables
at which the HXS is calculated as well as past values of the state variables leading up to
the state for which the HXS is calculated. It is expected that the relationship between the
historical values of fuel temperature, and HXS is not necessarily more linear with respect
to the square root of the fuel temperature than with respect to fuel temperature alone.
Therefore, it was decided that the fuel temperature, without the square root, will be used
for this analysis. Work was done to ensure that, in the range of fuel temperatures used
for analysis, the linear models based on the fuel temperature performed comparatively to
linear models based on the square root of the fuel temperature.

In this context, the building blocks for the sampling process are single lattice burnup
sequences. For constant burnup spacing in each history, a new set of state variables are
independently selected according to their distributions listed in Table 1. In order to obtain
accurate results for the state variable history considered, substeps may be taken in the
burnup calculation where the lattice does not change state, but the Boltzman and Bateman
equations are still solved. In other studies for HXS construction, there may be branch states
considered from each burnup state, but, in this study, none are considered because a full
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lattice history is sampled. Figure 2 is included to give the reader an understanding of the
structure of the burnup sequence. Figure 2a shows the progression of fuel temperature
and coolant temperature of a single lattice through a potential burnup sequence. Boron
concentration and control rod insertion are not shown. Blue points depict states where
HXS are calculated, and they are intentionally placed after burnup at state x⃗ and before
the transition to the next state. It is expected that, for a short time after a transition,
the lattice may undergo nontrivial changes in its fuel composition as it adjusts to the new
neutron energy spectrum. By calculating HXS at the the end of these periods, instead of
the beginning, it is thought that a more representative HXS for the fuel composition of
that burnup during the segment will be obtained. Solid blue lines show depletion states,
and dashed lines show transitions from the current depletion state to the next sampled
state. Figure 2b shows the structure of the burnup sequences and some mathematical
notation that will be used in Section 2.3. A state vector, denoted by x⃗n, is composed of
values of state parameters at burnup point n. The state vector is fixed during some burnup
period ∆B. BUn will be used to indicate the value of the burnup at the end of increment n.
Following the lattice depletion calculation reaching burnup increments of ∆B, a new x⃗n is
independently sampled according to the distribution of its components. In this application,
the four parameters given in Table 1 are used. In this study, the ranges were chosen to
reflect a wide range of possible operating conditions to explore the extent of the linearity
in the relationship between the state variables and the HXS for an exaggerated range
of operating conditions. One practical consideration is that, in realistic operation, fuel
temperature is closely related to reactor power, which in turn is related to burnup. This
leads to an interaction between Tf and burnup that is not considered in this sampling
approach. In addition, there are no covariances considered in the sampling process so
sampled state values may not reflect realistic operational conditions. However, given the
strong linear relationships observed between these state variables and the HXS, the results
obtained for this wider domain should be applicable to any other domain that one may
find to be realistic given that it falls within the operational ranges specified. In specific
applications, care should be taken to ensure that these ranges are appropriate. In datasets
where some state variables are held constant, they are held at the value in the “Nominal
Value” column of the table.

In these results, a ∆B of 3 GW/MTU is used up to a maximum burnup of 60 GWD/MTU.
For low burnups, 1 GWD/MTU substeps are taken where the reactor state does not un-
dergo any parametric transition, but the code still calculates the change in fuel composition.
Although in practical scenarios it is unlikely that a lattice would frequently undergo such
radical changes in its operational state, this approach allows for a more flexible methodology
that can generate sensitivities for any lattice independent of operational data availability.

Table 1. State variable distributions independently sampled in each burnup step.

State Variable Notation Distribution Distribution Specs. Nominal Value Unit

Coolant Density ρ Uniform [min = 0.652, max = 1.01] 0.712 g/cm3

Fuel Temperature Tf Uniform [min = 293, max = 1793] 900 K
Boron Concentration b Uniform [min = 0, max = 3000] 800 ppm
Control Rod Insertion r Bernoulli [50% in/out] out

In Section 2.3, a method for the sensitivity analysis is described which relies on burnup-
averaged values of the state variables as independent parameters for analysis. This leads to
distributions of burnup-averaged values that have lower variances than the instantaneous
distributions of those parameters. This effect is formally described by the central limit
theorem. In the end, scenarios with some nonlinearities may result in biased estimates
for the global sensitivity. This study sought to maintain the number of burnup levels at a
reasonably low level to minimize this effect.
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(a) (b)

Figure 2. Structure of burnup sequences. (a) depiction of coolant temperature and fuel temperature change over burnup for
a single burnup sequence sample; (b) structure of state vectors and evolution through burnup. Each component of x⃗ is
independently sampled from their respective distributions.

2.3. Sensitivity Analysis

Here, a description of the method for sensitivity quantification for the effect of both
instantaneous and historical values of state variables on HXS. In this context, burnup is
not used as a lattice state variable and is instead treated similarly to the temporal axis in
conventional time-series analysis. Some general HXS, denoted as Σn at burnup set n, is
calculated with a physics-based computer simulation and can be written as some explicit
function of the instantaneous value of the state vector as well as all historical values of
the state vectors during burnup as is shown in Equation (1). In this equation, x⃗ refers
to a vector of state variables, with the subscript referring to which burnup step in the
simulation those state variables correspond to. For example, if the boron concentration in
the coolant and fuel temperature are the two state variables for which sensitivities are to
be computed, x⃗1 = [2000 ppm, 600 K] if the reactor can be approximated to have a boron
concentration of 2000 ppm and a fuel temperature of 600 K at the first portion of the cycle.
Throughout this paper, the instantaneous state vector will refer to the state vector which
describes the reactor state at the time in which the HXS is calculated. For now, notation
indicating reaction type in Σ will be forgone:

Σn = f (x⃗n, x⃗n−1, ..., x⃗1). (1)

It is the aim of the methods described in [13–16,18,21] to best approximate f using
reduced-order methods based on the pre-calculated relationships between Σ and x⃗. This is
not the aim of our current study. Instead, as a sensitivity study, the gradient of Σn is the
quantity of interest, as shown in Equation (2). The exact form of the gradient operator will
be described in more detail later in this section; however, its form is given in Equation (10):

∇Σn = ∇ f (x⃗n, x⃗n−1, ..., x⃗1), (2)

From here, an approximate linear model for Σ can be written according to Equation (3).
Σ̂ denotes an estimated value of Σ. The subscript on Σ̂ functions identically to the subscript
on Σ, and it describes the burnup step. The vector β and scalar α are fitted model parameters
estimated using ordinary least squares (OLS). The subscripts on each β indicate how many
burnup steps back in the history from n a set of fitted coefficients correspond to. α does not
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have any subscript because there will only be one fitted α parameter for any model used to
predict Σ̂n. Full physics-code calculations will be performed to get data to perform this fit.
Proceeding forward, this model will be referred to as the complete history model (CHM).
This name is assigned because the expression for Σ̂n contains all reactor states present in
the history of the reactor. No averaging is performed across multiple states in the history.
The origin of the model is assumed to be that the homogenized cross-section is a linear
function of each state variable at each burnup step across the entire history. The fitting
calculation will be demonstrated later in this section:

Σ̂n = α +
n−1
∑
j=0

βT
j x⃗n−j, (3)

Although the previous formulation can lead to sensitivity estimates for every state
parameter for every burnup step leading to state n, the number of fitted parameters
becomes very large. An alternative model, featuring some model reduction parameter
Q, can be used to include burnup-weighted average state vectors. This model will be
referred to as the reduced history model (RHM). In this model, a fitted vector, γ, is used to
capture the effect from the historical values of the state vector for previous steps greater
than Q without assigning fitted parameters to each of these historic states individually. γ
is assigned to the historic average of these state variables. Q can be selected to balance
the interpretability and precision of the results. Higher Q values will result in sensitivity
measures for the state variable values for more states in a burnup sequence to be reported.
Lower Q values will provide less sensitivity measures by averaging the initial portions of
the burnup sequence. Instead, the averages of these historic states are used. The equation
for the RHM is shown in Equation (4). This equation can be obtained by considering a state
vector that is the element-wise average of all state vectors in the history greater than Q
steps back. This new state vector is also assigned a vector of fitted parameters. For this
equation, there are two limiting cases worth mentioning:

• Q = n − 2: This is the largest allowable value for Q. In this case, the RHM and CHM
become identical in that the fitted γ parameter operates on the single x⃗1, functioning
identically as βn−1 in the CHM.

• Q = 0: This is the smallest possible value for Q. In this case, only the current value of
the state vector x⃗n is assigned an individual fitted vector. The remaining state vectors
are averaged and assigned a single fitted vector:

Σ̂n,Q = α +
Q

∑
j=0

βT
j x⃗n−j +γT 1

n −Q − 1

n−1
∑

j=Q+1
x⃗n−j for 0 ≤ Q < n − 1, (4)

In order to fit the RHM model, OLS is used with a number of sampled burnup
sequences. Each burnup sequence yields N relationships between HXS and historical and
instantaneous values of the state vectors, where N is the total number of burnup steps in
the sequence. A linear system of equations can be formulated according to Equation (5).
This equation is used to estimate the linear model parameters. Here, x⃗(i)n is the state vector
at burnup step n in burnup sequence i and Σ(i)n is the computed homogenized cross-section
at burnup step n for burnup sequence i. The goal of the OLS fit is to find some optimal set
of linear model parameters that best predicts the result vector y⃗n. Therefore, there are no
superscripts on the α and β fitted parameters because they will have the same values across
all sampled burnup sequences. I is the total number of burnup sequences generated by the
lattice physics code. This can be understood as the specific number of realized operational
histories that get randomly sampled. The subscripts on the matrices are used to indicate
the values of n and Q that can be used to form the matrices.

X⃗n,Qλn,Q = y⃗n , (5)
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where

X⃗n,Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x⃗(0)n x⃗(0)n−1 ⋯ x⃗(0)n−Q
1

n−Q−1 ∑
n−1
j=Q+1 x⃗(0)n−j

1 x⃗(1)n x⃗(1)n−1 ⋯ x⃗(1)n−Q
1

n−Q−1 ∑
n−1
j=Q+1 x⃗(1)n−j

...
...

...
...

...
1 x⃗(I)n x⃗(I)n−1 ⋯ x⃗(I)n−Q

1
n−Q−1 ∑

n−1
j=Q+1 x⃗(I)n−j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

λn,Q = [α β0 β1 ⋯ βQ γ ]T
,

y⃗n = [Σ(0)n Σ(1)n ⋯ Σ(I)n ]
T

.

With this formulation, the fitted model parameters can be found using the normal
equations according to Equation (6). The total number of fitted parameters (including
the individual components of β and γ) in λn,Q for these models is 1+ (Q + 2)P; therefore,
for large Q, there is a need for a large number of sampled burnup histories to get an ade-
quate estimate for λn,Q. However, as mentioned previously, an estimate for the sensitivity
is the true desired quantity of interest that may help inform the creation of more accurate
surrogate models for HXS interpolation:

λn,Q = (X⃗T
n,QX⃗n,Q)−1X⃗T

n,Qy⃗n, (6)

Furthermore, this model can only capture linear relationships between the state
variables and the HXS. The validity of this assumption will be explored later in this
study in Section 3. One useful definition for linear model evaluation is the coefficient of
determination, often referred to as R2. This quantity describes the fraction of variance in
the result that can be explained by the model and can be calculated using Equation (7),
where the definition for Σn is simply the HXS averaged across all burnup sequences at
step n. Here, the subscripts of n and Q are maintained to indicate the form of model that
corresponds to some computed R2:

R2
n,Q = 1−

I

∑
i=0

(Σ(i)n − Σ̂(i)n,Q)
2

I

∑
i=0

(Σ(i)n −Σn)
2

, (7)

Moving on, one important technique used in sensitivity analysis is “data standard-
ization”. This is a linear transformation which scales the mean and variance of the input
and output parameter distributions to 0 and 1, respectively. This has the benefit of non-
dimensionalizing the data according to the range of its variation. After fitting the linear
model, the resulting sensitivity measures will account for both the magnitude of impact a
particular state variable has on the HXS as well as the range of variation of that parameter.
Formally, this is often referred to as the standardized regression coefficient method [29]
for sensitivity analysis. Often in statistical analysis, one of the first steps is for the analyst
to standardize the data. However, in this application, the standardization transforma-
tion should only be performed after the formation of the X⃗n,Q matrix where each column
should be standardized. As mentioned previously, by performing burnup-averaging, the
distributions of the parameters in the linear models are changed. By standardizing the
columns of X⃗n,Q, it ensures that the standardization transformation is applied after the
narrowing of the burnup-averaged state variable distributions has occurred. Furthermore,
this transformation loses its usefulness if applied to binary state variables, such as control
rod insertion. Nevertheless, to perform this transformation on y⃗n, Equation (8) can be
used. Here, the mean of the elements in y⃗n (yn) at burnup step n is subtracted and then
this quantity is further divided by the standard deviation (syn) to yield the normalized
vector y⃗′n. An identical operation can be preformed column-wise on X⃗n,Q according to
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Equation (9). Here, X⃗n,Q(r, c) indicates the element in X⃗n,Q that corresponds to row r and
column c, Xc denotes the average of column c of X⃗n,Q, sx,c denotes the standard deviation
of column c of X⃗n,Q, and X⃗′

n,Q refers to the column-standardized form of X⃗n,Q:

y⃗′n =
y⃗n − yn

syn
, (8)

X⃗′
n,Q(r, c) =

X⃗n,Q(r, c)−Xc

sx,c
, (9)

To compute sensitivities for the model form given in Equation (4), an expression for
∇ is needed. This is given in Equation (10), which yields a measure of the sensitivity of
the HXS to the desired parameters. This sensitivity estimate will be global with respect to
the various state parameters but local to the burnup step n; hence, the subscript on each of
the derivatives:

∇n,Q = [ ∂
∂x⃗n

∂
∂x⃗n−1

⋯ ∂
∂x⃗n−Q

∑n
j=Q+1

∂
∂x⃗n−j

]
T

, (10)

If this gradient operator is applied to the linear model given in Equation (4), the result
vector is given in Equation (11). Here, the subscripts on the ∇ can be inferred from the
subscripts on Σ̂n,Q. This form provides a clear mathematical definition for the sensitivity
coefficients used in this study. If the standardization transformation is performed on X⃗ and
y⃗, ∇Σ̂n,Q aligns with the definition for sensitivity measures from the standardized regres-
sion coefficient (SRC) method [29] where instantaneous, historical, and burnup-averaged
state variables are considered parameters of interest. To explain further, without the stan-
dardization transformation, the fitted linear model coefficients can be interpreted as the
change in HXS for some unit change in the state variable. Although this sensitivity measure
may be useful in many analyses, if the goal is to compare the sensitivities of different state
variables, these coefficients are not as useful. At the simplest level, some state variables
will have different units because they represent different quantities, making a comparison
between those values meaningless. However, the more fundamental problem is that these
state variables may have wildly different ranges of variation that will not be accounted for.
For example, in more generalized applications, if two parameters have the same unit and
vary at different orders of magnitude, it is possible that, despite having the same dimen-
sionalized sensitivity coefficient, the outcome of the system is significantly more influenced
by the parameter with the larger range of variation. The standardization transformation
scales the ranges of all parameters to be unity, which allows for the magnitude of influence
as well as the range of variability to be accounted for in a single sensitivity measure:

∇Σ̂n,Q = [ β0 β1 ⋯ βQ γ ]T
, (11)

To summarize the two models used for sensitivity analysis:

• Full History Model (FHM): Uses every reactor state variable in the history leading up
to the burnup at which the HXS is calculated to calculate sensitivities.

• Reduced History Model (RHM): Uses a reduction parameter to use burnup-averaged
state variable values instead of considering the reactor state at every burnup step.

2.4. Workflow Summary

This section will help to summarize the previous content and provide a logical progres-
sion for how a sensitivity analysis following the proposed methodology can be performed.
Mainly, the discussion will be centered around the flow chart provided in Figure 3. To
begin, the ranges and distributions of the state variables used in the analysis should be
carefully considered. These ranges should cover the reasonable ranges for the reactor in
some specific application and no more. Wider operational ranges lead to weaker linearity
between state variables and HXS. Separate analysis can be done for multiple application
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states, but including these operational ranges in an analysis intended for an operating
reactor can skew the reported sensitivities to reflect undesired states. Following this,
burnup sequences should be sampled according to these distributions. This sampling is
represented by the “Burnup Sequence Sampling" box in the flowchart. These processes are
described in more detail in Section 2.2. The result of this sampling procedure is represented
by the “Data” boxes containing x⃗(i)n , x⃗(i)n−1, ..., x⃗(i)1 . Here, the subscripts indicate the burnup
step that the state vector x⃗ corresponds to. The superscript i indicates which of the I total
samples the burnup sequence corresponds to.

Burnup Sequence 

Sampling

Data

State Variable 

Distribution 

Specifications

MPACT

Lattice Model

Model 

Selection

CHM RHM

Standardization

Standardization

Normal Equations

Neutronics 

Code/Model

Computation

/Sampling

Decision

Result

B
U

ρ 
T

Figure 3. Potential workflow to execute the proposed methodology to obtain sensitivity estimates for some HXS at some
burnup step n.
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Moving on with the burnup sequences, an MPACT depletion calculation must be
performed on each sample. Of course, the lattice geometry and materials must also be
provided for this calculation to be performed—as indicated by the box titled “Lattice
Model”. The result of these calculations is a series HXSs at burnup step n for each sample
i, denoted as Σ(i)n . This analysis can be performed with any HXS so the reaction type
is neglected in the notation. The set of HXS can then be compiled into the vector y⃗n as
described by Equation (5).

Separately from the MPACT calculations, the X⃗ matrices can be formed directly from
the sampled burnup sequences as described in Equation (5). Prior to this formation,
however, the analyst must first select whether the CHM or RHM will be used—as indicated
by the “Decision” diamond labeled “Model Selection” in Figure 3. This decision should be
made based on the complexity of the desired result. For a complete understanding of the
sensitivity of an HXS to every historic value of a state variable, the CHM should be used.
For more interpretable results, smaller values of Q can be used for the RHM. The formation
of the X⃗ matrix in the case of the CHM is identical to the RHM case where Q = n − 2.

From here, both X⃗n,Q and y⃗n can be standardized according to Equations (8) and (9).
With the standardized versions of these quantities, the normal equations can be solved to
obtain λn,Q. From Equation (5), it can be seen that λn,Q is composed of the sensitivity mea-
sures that align with the definition from Equation (11) that can be used for further analysis.

3. Model Evaluation

One important step in applying this methodology to any reactor system is assessing
the validity of the CHM and RHM models in their use for computing sensitivities for the
range of parameters used . It can be seen in existing literature that the relationships between
the various state variables and the HXS can be nonlinear [14,16]; this is why many of the
aforementioned studies use more complex models for HXS generation that can account
for these nonlinearities. Although the models used in this study cannot account for these
nonlinearities, the formulation of the model allows for clear estimates of sensitivities
over the concerned range after the gradient operator given in Equation (10) is applied.
The linear nature of the models used in this study allows for the gradient to be constant
across the domain of interest. Therefore, the models presented in this study are not
intended to act directly as models for HXS generation and should instead be used to
estimate sensitivities that can inform the creation of other models that can be used for HXS
generation. Furthermore, given that the sensitivity estimates are global with respect to
the state variables, it would be useful to evaluate the extent that local sensitivity estimates
may significantly deviate from global approximations. Table 2 gives the coefficient of
determination, as described in Equation (7), when fitting the CHM to predict various
HXS in the final burnup considered at 60 GWD/MTU. This burnup was selected because
it may be representative of the performance of this method for higher burnups, which
may be more difficult to predict due to the generation of assorted actinides and fission
products that depend on past states of the lattice. Although not shown here, the R2 values
do not change significantly for lower burnups. Five different datasets are used, each
composed of burnup sequences with sampled state parameters given in Table 1. For each
dataset, there is a different set of state parameters that are perturbed, each according to
the distributions given in Table 1. Three datasets vary for a single parameter: coolant
density, fuel temperature, or boron concentration are each varied for 150 samples. One
dataset varies coolant density, fuel temperature, and boron concentration simultaneously
for 550 samples. The final dataset has all state parameters varied simultaneously for 400
samples. State parameters that are not varied are held at their nominal values. R2 values
suggest that the variability in all four of the HXS shown can be largely explained by
the model for all datasets. The coefficient of determination can increase as more varied
parameters are added (as is the case for Σ f ,2) because the linearity in the relationships of
these additional parameters can overshadow nonlinear relationships with those original
state variables. To explain, consider a slightly nonlinear relationship between some state
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variable and an HXS. If a coefficient of determination were to be computed to describe the
relationship between this state variable and the HXS, it would be low, indicating a weak
linear relationship between the two variables. If a largely influential parameter with a
linear relationship with the HXS is then added, the relationship described by R2 will be
be completely dominated by this new variable with strong linearity. Hence, the linearity
arising from this new parameter will increase R2, overshadowing the nonlinear relationship
with the original variable.

Table 2. Coefficient of determination using the CHM to fit to burnup sequence datasets with different varying state variables
for the final burnup considered at 60 GWD/MTU. Checkmarks indicate varied state variables for each data set. I indicates
the number of samples in the dataset.

I ρ Tf b r Σ f ,1 Σ f ,2 Σrm,1 Σrm,2

150 ✓ 0.989 0.799 1.000 0.956
150 ✓ 0.995 0.997 0.984 0.997
150 ✓ 0.999 0.998 0.999 0.999
550 ✓ ✓ ✓ 0.989 0.970 1.000 0.973
400 ✓ ✓ ✓ ✓ 0.982 0.974 0.999 0.992

As previously mentioned, the CHM contains a large number of parameters where a
sensitivity estimate for each parameter may not be needed. In addition, having sensitivity
estimates for such a large number of parameters can lead to less-interpretable results. As
such, the RHM can be used to characterize the relationship between the state variables and
the HXS and yields a lower number of sensitivity estimates. Figure 4 gives R2 values for
both energy groups of the homogenized fission cross-section for the lattice. The removal
cross-section is not included because all R2 values are above 0.98 with trends that will be
discussed in later sections. A variety of RHMs are used with different Q and n values,
the dataset with all state parameters varied, and 400 samples are being used. In this figure,
BUn is the x-axis which corresponds to the burnup at n. Each line in this figure corresponds
to models with the same Q applied to different values of n. Models are shown with all
possible Q values (up to Q = 18), but, for clarity, only lines up to Q = 4 are labeled. As
n increases with burnup, the Q < n − 1 relationship allows for models to be created with
higher Q values.
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Figure 4. Coefficient of determination for varying Q values when fitting the RHM to the relationship between all state
variables and fission HXS over all burnups.
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From Figure 4, the RHM can fit the trends in the fission HXS for the fast (Σ f ,1) and
thermal (Σ f ,2) groups given a sufficiently high Q parameter. For each of the constant-Q
lines, the burnup at which the line starts corresponds to Q = n − 2. This is where the CHM
and RHM are identical. As n increases, the past state vector behavior for burnups less than
((n −Q − 1)∆B) is averaged, reducing the detail of the model. Hence, the R2 of the model
will decrease. These results demonstrate that some HXS prediction methods that rely strictly
on the instantaneous values of the state variables and burnup-averaged quantities may fail
to account for the effects of state variable changes over burnup. The explanation for this is
the complex relationship between the production of fission products/consumption of fissile
isotopes and neutron flux distribution in space and energy that results from the coupled
Boltzman and Bateman equations. Methods that average burnup-dependent quantities
may fail to account for burnup-dependent relationships between state variables and the
production/consumption of isotopes. Overall, the Q value selected for parameterizing
HXS generation models may be different for assorted lattice designs. Using an analysis like
the one given above can provide an estimate for the importance of states at earlier burnup
steps when predicting HXS at later burnup steps.

4. Sensitivity Results

The following section divided is divided into four subsections. The first of these
subsections uses the RHM to report sensitivities of HXS to current and burnup-averaged
state variables. The next subsection uses the CHM to demonstrate trends in the significance
of the historical states when considering HXS. Next, some analysis is presented that offers
guidance on how complex of a history should be considered by looking into the sensitivity
of HXS to burnup-averaged state variables. Finally, a section is presented that analyzes
how those sensitivities change over burnup. In this section, results for the mean change in
HXSs are presented that use the α parameter shown in Equation (3). Again, the following
results are included to inform parameterization strategies for modeling approaches to
HXS for nodal core simulators. The ranges for which input parameters are sampled from
are representative of the domain of models for HXS estimation, as described by Table 1.
These domains are not representative of some uncertainty range associated with these state
variables as would be the case if this were an uncertainty analysis study.

4.1. Parametric Sensitivity Analysis Using RHM

First, it is useful to understand the sensitivity of HXSs to the various state variables.
As mentioned previously, after the standardization transformation is applied to the state
vectors, the fitted model coefficients correspond to the SRC measure of sensitivity. To make
the results easily interpretable and yield only two sensitivity values for each parameter,
the RHM with Q = 0 will be used. Table 3 shows these sensitivities for the instantaneous
values of the state variables (β0) as well as the burnup-averaged value of the state variable
(γ). To explain, the sensitivity measures indicated by β0 are measures of the sensitivity of
an HXS to the instantaneous value of a particular state variable. Higher values for this
measure suggest a stronger influence of either ρ, Tf or b at the time the HXS is calculated
on the HXS shown. Sensitivity measures indicated by γ are measures of the sensitivities
of an HXS to the historic average value of a particular state variable. Higher values for
this measure suggest a stronger influence of history-averaged ρ, Tf or b values on the
HXS shown. The dataset described in row 4 of Table 2 that varies in the ρ, Tf and b state
variables is used. Burnup values of 9 GWD/MTU (n = 3) and 30 GWD/MTU (n = 10)
for both groups in Σ f and Σrm are selected because they can reflect results from early in
the irradiation of a lattice to midway through the cycle. Being SRC measures, there is no
unit associated with the results. These sensitivity measures can be interpreted as a linear
approximation of the change in an HXS with respect to a particular state variable that has
been normalized to their respective ranges of variability. Higher numbers indicate that a
particular HXS is more strongly influenced by that parameter. The sign of the sensitivity
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measure indicates whether a decrease or increase in an HXS is expected for an increase in
the state variable.

Table 3. SRC measures for the sensitivity of homogenized fission cross-section (Σ f ) and homogenized removal cross-section
(Σrm) to instantaneous (β0) and burnup-averaged (γ) values for the coolant density (ρ), fuel temperature (Tf ), and boron
concentration in coolant (b). Results are calculated using the RHM with Q = 0. Numerical digit subscripts on cross-sections
indicate neutron energy group.

Σ f ,1 Σ f ,2

ρ Tf b ρ Tf b

BUn=3 = 9 GWD/MTU β0 0.769 0.110 0.305 0.796 0.125 −0.391
γ −0.227 0.156 0.457 −0.172 0.147 0.422

BUn=10 = 30 GWD/MTU β0 0.714 0.148 0.152 0.325 0.329 −0.327
γ −0.235 0.186 0.500 -0.241 0.222 0.628

Σrm,1 Σrm,2

BUn=3 = 9 GWD/MTU β0 1.000 0.016 −0.002 0.504 0.032 0.812
γ −0.001 −0.000 −0.001 0.027 0.017 0.072

BUn=10 = 30 GWD/MTU β0 1.001 0.016 −0.001 0.480 0.069 0.833
γ −0.001 0.001 0.002 −0.038 0.034 0.089

Among the instantaneous parameters (β0), Σ f ,1 and Σ f ,2 have the largest sensitivity to
ρ. This should result from spectral shifts and resonance upscattering near low-lying U-238
absorption resonances. In many reactor systems, there is a large amount of uncertainty
in coolant density due to complex flow patterns, heterogeneities in pin power, difficulties
for high-fidelity simulation, and more, causing this to be an important parameter in
reactor analysis. These uncertainties can lead to a larger effect on the particular HXS
than uncertainties in other parameters. These results suggest that, in HXS generation
models for fission cross-sections, coolant density may be the parameter with the largest
influence. Moving on, boron concentration is shown to have an opposite effect on Σ f ,1
than it does on Σ f ,2. The hardening of the neutron energy spectra from the presence of
boron may be an explanation for this behavior. Cross-section homogenization involves a
flux-weighted average cross-section over the concerned area and energy range in the lattice.
By shifting the neutron energies into higher energies, within the range of the respective
group, the smaller macroscopic cross-sections for the higher-energy neutrons will receive
greater weights. For Σrm,1, the instantaneous ρ has the highest sensitivity. A significant
part of Σrm,1 involves the downscattering of neutrons from group 1 to group 2, which is
dominated by neutron interactions with the light hydrogen atoms in the coolant. For Σrm,2,
the instantaneous value of ρ has a much smaller relative effect than Σrm,1. In this case,
Σrm,2 is largely composed of thermal neutron absorption where the fuel characteristics
have influence. Boron is intentionally used as a thermal neutron absorber so it is expected
to have a large effect on Σrm,2. It is also important that, for the thermal fission HXS, the
sensitivities corresponding to the burnup-averaged state variables can be larger than those
corresponding to the instantaneous state variables. This indicates that, in this application
of the methodology, it would be important to include history effects in the modeling of Σ f ,
particularly for the thermal group.

4.2. Parametric Sensitivity Analysis Using CHM

In this section, analysis is presented on the sensitivity of HXS to the historic values
of the state parameters using the CHM. Again, for this analysis, the dataset described in
row 4 of Table 2 is used with the standardization transformation, containing variability
in the ρ, Tf , and b state variables. For the CHM, sensitivity coefficients can be found for
every state parameter at every burnup step during depletion as shown in Figure 5. This
results in an understanding of how past values of state variables can effect the value of an
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HXS later in life. In this figure, the sensitivity of both groups of Σ f and Σrm (as indicated
by the legend) is shown for each state variable for two different burnups as a function
of past burnup value. Following the notation shown in Figure 2, BUn corresponds to the
burnup of the HXS that the sensitivity is being computed for. In these plots, j is introduced
as an integer index to indicate past values of burnup as BUj = j∆B. β refers to a general
component of β, and the n− j subscript on β ensures that the subscript follows the notation
presented in Equation (3). In this figure, high in magnitude β values indicate the amount of
influence that the value of a particular state variable at a particular burnup step has on the
HXS at the burnup step shown. The sign of β indicates whether a higher value of that state
variable, at that particular burnup step, will lead to a higher, or lower, value for the HXS.
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Figure 5. Sensitivity coefficients for previous and current values of state vector x⃗ for a burnups equal to 18 GWD/MTU
and 30 GWD/MTU using the CHM. In the legend, g# indicates the energy group of the HXS for which the sensitivity
measure corresponds.

From these results, it is clear that the sensitivities corresponding to the HXS behave
differently depending on which reaction is considered. For Σ f , there is a much stronger
dependence on the past values of the state variables. This is indicated by higher β values
at lower values of BUj for the subplots corresponding to the Σ f cross-section. This seems
intuitive because this cross-section is more dependent on the isotopic composition of the
fuel which is certainly dependent on the past lattice configuration. From the results for
group 2 in Σ f at BUn=6 = 18 GWD/MTU, ρ and b have the largest effect. Interestingly,
the sign of the sensitivity coefficient for these state variables changes when moving from
the past values of the state variable (j < n) to the value of the state variable for which
the HXS is calculated (j = n). In the case for boron, an explanation for this is that, in
conditions with high boron concentration, the neutron spectrum is hardened. With this
hardened spectrum, more heavy actinides are generated from U-238 since higher-energy
neutrons increase the breeding ratio such that more fissile material is generated. This
extra fissile material also decreases U-235 consumption per-unit-burnup (fission of heavy
actinides contributes to energy output of lattice), leaving more U-235 to contribute to the
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fission cross-section. This is why relatively higher past values of boron concentration
increase Σ f . This fuel composition is carried through irradiation despite the fact that higher
boron concentration will reduce the total fission cross-section for group 2. Values of boron
concentration that correspond to the step that the HXS is calculated to suppress the group
2 fission cross-section due to its high thermal absorption cross-section. Similar logic can
be applied to the trends seen for the sensitivities corresponding to the coolant density
parameter. Lower coolant densities harden the neutron spectrum, causing more U-235
to remain per-unit-burnup. However, lower coolant densities in the lattice at the time in
which the cross-section is calculated lowers the fission cross-section. Again, as observed in
Table 3, there seems to be a smaller dependence of Σrm on past state variable values. This
is indicated by lower β values at lower values of BUj for the subplots corresponding to
the Σrm cross-section. There is less dependence of the removal cross-section on the fuel
composition which explains why the configuration of the lattice in its irradiation history
would matter less.

4.3. Burnup-Averaged State Variable Importance

Another useful result that can be obtained with the RHM is quantifying the sensitivity
of the HXS to burnup-averaged values of state variables. This allows for a determination
of the importance of the historical values of a state variable in creating models to predict
HXS. Figure 6 shows the γ parameter from the RHM as a function of the burnup-averaging
threshold for Σ f . The BUQ axis can be interpreted as the last value of the state variable that
is averaged in the history before assigning each state variable its own β fitted parameter,
or, in terms of the variables given in Equation (4), BUQ = Q∆B, where Q is the reduction
parameter used to create the model. Each point in Figure 6 corresponds to a separate
model fit by OLS. Only Σ f is shown because of its increased sensitivity to the historical
configuration of the lattice. The y-axis, labeled γ, on these plots can be interpreted as the
importance of the burnup-averaged values of the state variables as more state variables
are included in the averaging. As more lattice states are included, naturally, the influence
of the average of these lattice states on the HXS at some later burnup grows. These plots
can be used to inform a parameterization approach to HXS generation because they can
be used to identify how much is being lost for a particular selected Q value, based on the
magnitude of γ at some BUQ. The analysis done in this section uses the same dataset as
the one used in Section 4.2.

As expected, the sensitivity of Σ f to the burnup-averaged values of the state variables
increases as more burnup steps are averaged. This is indicated by increasing γ values as
BUQ increases. Across all state variables and burnups shown, this trend does not seem
to be linear for the latter portions of the plots. Instead, as burnup steps are included in
the averaged quantity, there is a non-constant increase in the sensitivity. This trend can be
explained by the nonuniformity in the sensitivity of HXS to each past value of the state
variable as shown in Figure 5. For burnup steps sufficiently close to the burnup at which
the HXS is calculated, the values of state variables closer to the burnup for which the
HXS is calculated are more important than the historical values of those state variables.
This is shown by the increasing values of β for larger values of BUj in this figure. The
results from Figure 5 do seem to suggest that there is some threshold where the state
variables go from having equal importance to having increasing importance, and this
observation is confirmed separately with more burnup steps than those shown in the
figure. This threshold may provide some reasonable criteria for an analyst to select some Q.
Algebraically, assigning a single fitted parameter to a burnup-averaged quantity is identical
to assigning the same fitted parameter to multiple states of a burnup-dependent quantity.
Therefore, selecting Q such that all of the burnup-averaged state variables have roughly
equal sensitivity will result in a relatively small loss of model accuracy. This conclusion
can be used in more complex model creation to asses how historical values of the state
variables are treated.
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Figure 6. Sensitivities of Σ f to burnup-averaged values of state variables. Subfigure headers correspond to the bur-
nup at which the HXS is calculated. In the legend, g# indicates the energy group of the HXS for which the sensitivity
measure corresponds.

In addition, when considering both Figures 5 and 6, there is little difference in the
trend of sensitivities associated with group 1 and group 2 cross-sections for historical
values of state variables. An explanation for this is that the historical effects exist solely
due to differences in the isotopic composition of the fuel. These differences in fuel isotopic
composition should affect both groups of the HXS similarly. To explain, if we consider
the simplest form of an HXS, that being one associated with a homogeneous medium of
a single isotope, we know that the macroscopic cross-section is a product of the energy-
dependent microscopic cross-section associated with the isotope and the number density
of that isotope. Regardless of the energy dependence of the microscopic cross-section,
the macroscopic cross-section will be linearly dependent on the number density of the
isotope. In considering the more complicated lattice system, historical values of the state
variables will essentially act as perturbations to the number densities associated with
the isotopes in the lattice fuel. These perturbations will manifest themselves as linear
increases/decreases in the HXS that will be proportional to the microscopic cross-section
corresponding to that isotope at a given neutron energy.

4.4. Stationarity Analysis

As a lattice produces energy, the isotopic composition of the fuel changes as a function
of amount of energy produced. Clearly, this means that the HXSs change during burnup,
resulting in a nonstationary process. Simple analysis methods may select some nominal
depletion conditions and perform a lattice burnup calculation and track the change in
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HXS as a function of burnup. However, this method fails to account for the range of
possible operating conditions a reactor can undergo and the selected nominal states may
not necessarily be representative of the mean behavior of the HXS during depletion. Using
the models presented in the current study, one can capture the mean behavior of the HXS
during burnup using the scaling parameter, α, shown in Equation (4). In order to perform
this analysis properly, the state vectors should undergo a standardization transformation,
but the code-calculated HXS should not so the α term represents the HXS when all state
variables sit at their mean values (0 after the standardization transformation). Figure 7
shows the result of using such an analysis on the same dataset as Section 4.2. In this figure,
α indicates the mean behavior of a cross-section for some burnup BUn across the state
variable ranges considered for the standardized set of variables. For specific applications,
the standardization transformation can not be applied to the HXS in question to obtain
dimensionalized values for this sort of analysis. In general, the trends shown are well
understood in the reactor-physics community. For example, an increasing removal cross-
sections arises because of the increasing number of fission products accumulating in the
lattice and the decreasing fission cross-sections come about because of the consumption of
fissile material in the lattice. From a sensitivity approach, the results shown can be used to
determine the sensitivity of an HXS to burnup levels by looking at the slope of the line at a
particular burnup.
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Figure 7. Mean behavior of HXS during burnup using α parameter from Equation (4). α demonstrates
an estimation for the behavior of the HXS if all state variables were set to their mean value over the
entire history.

Furthermore, it can be useful to analyze the change of sensitivities during burnup.
This can be used to evaluate the degree to which a model created to predict HXSs for some
reactor configurations at some burnup may be valid for predicting HXSs at other burnups.
For some reactor designs, it may be possible that these sensitivities do not change over
burnup, which may greatly reduce the need to characterize the effect of perturbations to of
deep-burnup reactor states when creating models for HXS prediction. However, as shown
in Figure 8, this is not the case for the current application. In this figure, estimates for
the sensitivity of both energy groups of Σ f to the various state variables is shown as a
function of burnup. Sensitivities to both burnup-averaged and instantaneous values of the
state variables are calculated using the RHM with Q = 0. In this figure, the label “SRC” is
used to refer to the more general standardized regression coefficient of which β0 and γ
are specific instances. The sensitivities of Σ f to the instantaneous state variables remains
more constant than those to the burnup-averaged state variables, particularly for group
1. Regardless, there is variation in these sensitivities. This suggests that conventional
branching calculations, where the effect of perturbations to state variables at multiple
points during a burnup in a nominal configuration, are certainly warranted to capture
the changing sensitivity over burnup. However, this branching method from a nominal



Energies 2021, 14, 3378 19 of 21

depletion state may not capture the history effects appropriately unless other depletion
states are considered (which they often are [28]). Moving on, these results suggest that
perturbations to burnup-averaged state variables have a larger effect on Σ f as burnup
increases. This can be justified by the fact that—on average—the reactor would be spending
a longer time in the perturbed state which would magnify the effect of the perturbation
on the isotopic composition of the fuel. This larger deviation in fuel composition from
the composition at a nominal state should exaggerate the system’s sensitivity to those
burnup-averaged quantities.
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Figure 8. Sensitivity measures for both groups of Σ f from the SRC method for both burnup-averaged
state variables (γ) and state variables at the burnup where the HXS is calculated (β0) as a function of
burnup. Sensitivity measures calculated at each burnup step using the RHM where Q = 0. In the
legend, g# indicates the energy group of the HXS for which the sensitivity measure corresponds.

5. Conclusions

This paper presents a methodology that may inform parameterization of the homoge-
nized cross-section estimation process for application in the two-step method for reactor
simulation. This methodology presents sensitivities of HXS to both state variables for the
configuration at which the HXS is calculated and sensitivities to state variables of past
reactor configurations. These sensitivities are largely derived from the SRC method [29]
where instantaneous, historical, and burnup-averaged state variables are the parameters of
interest. Two models for sensitivity estimation are presented:
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• Full History Model (FHM): Uses every reactor state variable in the history leading up
to the burnup at which the HXS is calculated to calculate sensitivities.

• Reduced History Model (RHM): Uses a reduction parameter to use burnup-averaged
state variable values instead of considering the reactor state at every burnup step.

Both models present a sensitivity estimate that is local in burnup, in that the response
of HXS to perturbations is estimated for every burnup step, and global with respect
to the state variables. Thus, responses of HXS to perturbations are uniform for every
reactor configuration within a burnup step. These models also rely on the linearity of the
relationship between the HXS and the state variables, which can be evaluated within this
methodology using the techniques shown in Section 3.

An application of this methodology on a 17 × 17 lattice for the Westinghouse AP1000®

reactor is presented where coolant density, fuel temperature, boron concentration in coolant,
and control rod insertion are the state variables of interest. It was found that the linearity
assumption was accurate over the domain of state variables chosen. Furthermore, it
was found that fitting an RHM that only considers the burnup-averaged values of the
state variables and value of the state variable at the time that the HXS is calculated can
lead to notable losses in model accuracy as shown in Figure 4. The HXSs used in this
application are the 2-group fission cross-section and the 2-group removal cross-section,
but the methodology is certainly applicable to any other energy structure or reaction type.
It was found that the historical values of state variables had a much larger effect on the
fission cross-sections than the removal cross-sections. In addition, across all cross-sections
considered, the fuel temperature seemed to have the least influence. A demonstration of
the dependence of these sensitivities on burnup was also given, with the result that the
instantaneous values of the state variables have a more constant sensitivity over burnup
as compared to burnup-averaged quantities. Future work will include an application
of this methodology to a broader set of LWR lattice designs and potentially advanced
reactor designs. It is thought that the presence of burnable absorbers may significantly
change these sensitivities due to the complex lattice behavior they introduce. Therefore,
performing this sort of analysis on a broader set of LWR lattice designs may offer insight
on the differences between lattices with—and without—burnable absorbers.
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