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Abstract: This paper introduces a Model Predictive Control (MPC) strategy for the optimal energy
management of a district whose buildings are equipped with vertically placed Building Integrated
Photovoltaic (BIPV) systems and Battery Energy Storage Systems (BESS). The vertically placed BIPV
systems are able to cover larger areas of buildings’ surfaces, as compared with conventional rooftop
PV systems, and reach their peak of production during winter and spring, which renders them
suitable for energy harvesting especially in urban areas. Driven by both these relative advantages,
the proposed strategy aims to maximize the district’s autonomy from the external grid, which is
achieved through the cooperation of interactive buildings. Therefore, the major contribution of
this study is the management and optimal cooperation of a group of buildings, each of which is
equipped with its own system of vertical BIPV panels and BESS, carried out by an MPC strategy.
The proposed control scheme consists of three main components, i.e., the forecaster, the optimizer
and the district, which interact periodically with each other. In order to quantitatively evaluate
the benefits of the proposed MPC strategy and the implementation of vertical BIPV and BESS, a
hypothetical five-node distribution network located in Greece for four representative days of the year
was examined, followed by a sensitivity analysis to examine the effect of the system configuration on
its performance.

Keywords: model predictive control; battery energy storage systems; energy management; district
level; vertical photovoltaics; optimization; energy community

1. Introduction

Human-induced climate change is a significant problem that has economic, policy
and social dimensions. One of the most important reasons for this phenomenon is the
increased fossil fuel consumption over the past half century [1]. Buildings have attracted
much attention in the context of decarbonizing the energy system due to the fact that
they consume approximately 30% of global electricity and represent approximately 28% of
total global energy-related CO2 emissions [2]. To this end, the combination of Renewable
Energy Systems (RES) with Battery Energy Storage Systems (BESS) is considered to be an
effective solution that not only reduces the energy consumption and carbon footprint of
the buildings, but also provides potential for high controllability, dealing with demand
diversity and peak shaving issues [3–5].

The majority of RES applications in buildings are considered to be photovoltaic (PV)
systems [6], due to their high production potential and ease of implementation [7]. The
implementation methods of PV panels in a building can be distinguished into two main
categories: Building integrated PV (BIPV) and the building attached PV (BAPV) [8]. The
method of BIPV involves the replacement of roof shingles or wall claddings with PV panels.
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This category also includes building integrated PV thermal (BIPVT) systems and building
integrated semi-transparent PV thermal (BISPVT) systems, which also generate useful
thermal energy [9,10]. On the other hand, BAPV systems refer to the implementation of
panels that are attached to the building and do not replace any existing material or serve
as construction components [9]. These technologies present challenges regarding the area
of installation in urban areas, because the buildings are partially or totally shaded for
various periods of time, thus, reducing the system’s useful output [11]. PV panels are
mostly implemented on rooftops, while a possible alternative is the placement of the panels
vertically, on the buildings’ façades [12,13]. Despite the fact that the vertical position is
not optimal in regards to the tilt angle of the PV panels, their applicability compared with
other renewable sources, and the larger area they can cover compared with rooftop PVs,
have a significant impact on the solar energy production potential of buildings in an urban
area [14]. For this reason, this paper studies the implementation of BIPV on vertical façades.

The combined application of PV and BESS constitutes a cutting-edge technology be-
cause it enables the increased self-consumption of PV panels by effectively utilizing excess
energy. Energy Management Systems (EMS) that are required and are indispensable for
the proper coordination of such systems can be divided into two main categories based on:
(i) Heuristics, and (ii) the optimization of an objective [15]. Generally, heuristic methods
use rule-based algorithms that manage the energy in the grid. They are characterized by
simplicity and reliability, thus, becoming popular in small-grid applications [16] and indus-
trial plants [17]. However, the results they provide are not optimal and the management of
multiple BESS is proven to be complicated [15]. These drawbacks provide the incentive
to develop advanced methods that are able to solve optimization problems. There are
plenty of optimization-based methods, including metaheuristics, Dynamic Programming
(DP), reinforcement learning [18–20] and Model Predictive Control (MPC) [15]. MPC
is considered to be the most advanced of these methods, since it can compute optimal
control actions in order to fulfill the system’s objective [21], while handling constraints
and complex dynamics and incorporating any optimization procedure [22–24]. One of
its main advantages is that it utilizes a feedback mechanism, as well as a forecaster for
stochastic parameters, which is crucial for systems that rely on RES production, as they
enable the system to face uncertainty and disturbances [24]. To this end, it should be noted
that most of the advanced optimization-based methods include a forecaster that processes
signals from the application field and predicts uncertain parameters, in order to provide
the controller with their possible future values [24,25]. In general, a forecaster may be
based on statistical or artificial intelligence (AI) techniques [26]. The statistical techniques
are simple, extensively used and time-tested, while the main advantages of AI techniques
are their high performance and ability to adapt to extreme changes.

There have been numerous studies on utilizing EMS algorithms for the proper coordi-
nation of BESS and PV systems. Many of them are focused on the smart grid of a single
building, as reviewed in [27]. For example, in [28] an optimization method is proposed for
the BESS utilization of a single building that includes RES production from PV panels and a
wind turbine, aiming to minimize the building’s operating cost. Also, in [29] a power man-
agement optimization method for a single building is presented. In this case, the building
is equipped with one BESS and PV panels, but it also uses a pumped-hydro-storage system.
Furthermore, the authors of [30] present a decision support tool which can be applied on a
commercial building. The purpose of this tool is the optimization of capacity and operation
regarding the PV panels and the BESS of the commercial building. The authors of [31,32]
present MPC strategies for the EMS of a single building. In these studies, the solar power is
not only part of the electrical system of the building but also of its heating system and the
control takes into consideration both electrical and heating needs of the building. However,
in the cases mentioned above, the analysis focuses on a single building equipped with
a single BESS and one or multiple RES. In the cases with additional RES, the renewable
energy production is higher, but the proposed technologies are not easily applied in urban
areas. In the cases with only one RES, this is of conventional rooftop PV type, and not
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of vertical PV type. Furthermore, the interest of this work is focused on the publications
that are related to a district-level investigation. In this context, similar publications are
provided below. The authors of [33] present a novel MPC-based strategy for a BESS station,
aiming to improve its economic performance in a power grid with high PV penetration.
The presented control strategy is designed from the point of view of the power grid op-
erator and the goal is to decrease the equivalent cost. The forecaster uses the Weighted
Mean Average (WMA), which is a simple, yet effective statistic method. The simulation
results verify that the presented control strategy achieves great economic performance,
effective mitigation of the rapid PV power variation and extension of the system’s lifetime,
since BESS can maintain a reasonable operating condition. In [34] the optimization model
concerns a Peer-to-Peer (P2P) trading environment, including rooftop PV systems and
BESS. The objective of the optimization is the minimization of the net energy cost of all
households within the planning horizon. The results highlight the economic benefits of
distributed household renewable generation in a P2P energy trading market. However, the
model presented does not include either a MPC-based strategy or a forecaster or vertical
PVs and the objective function is related to cost minimization and not system autonomy.
The authors of [35] have developed a decentralized power management scheme based
on MPC for the case of microgrids (MG), including PV and BESS. The purpose of the
study is to maintain the power balance within the MG and to share load demand among
distributed generation (DG) systems, which differentiates it from the objective of system
autonomy. Furthermore, there is no special consideration of vertical PVs. The simulation
results of the study indicate that the proposed control strategy maintains the voltage and
state of charge balance among the BESS. In [36] a power management strategy based on
MPC for direct current (DC) MG is introduced. The proposed controller achieves power
management by regulating the DC bus voltage to a nominal value and controls the power
sources to operate at the maximum power point. A study model including two PV systems,
a wind generator (WG) system, one BESS and a DC load are used to demonstrate the
effectiveness of the proposed controller. It is noted that the forecast is formulated with
the use of Autoregressive Integrated Moving Average (ARIMA) in order to effectively
predict the system disturbances. Again, the scope of this work is different to the system
autonomy. Furthermore, the integration of wind turbines in the overall concept makes
this work not highly representative for the case of urban areas, where the wind turbines
cannot be easily installed. Furthermore, the type of PV panels used in this work does not
include the vertically placed ones. The authors of [37] have developed an uncertainty-
resistant stochastic MPC-based model for a MG, which consists of electrical and thermal
units, including PV panels and one BESS. The key target of the controller is to minimize
the MG operation cost. The uncertainty variables are represented by typical scenarios.
The simulation results demonstrate the proposed strategy’s robustness derived from its
uncertainty-resistant approach. However, the system does not consider vertical PV panels,
introduces the use of only one BESS and incorporates a cost minimization objective func-
tion. The authors of [38] present a heuristic method for the energy management of a small
grid-connected system that includes vertically placed BIPV panels, wind turbines, electric
vehicles (EV), two BESS and buildings. The developed heuristic battery-protective control
is compared with a traditional hierarchical control strategy to present its reliability and
robustness in terms of multi-criteria performance improvements, including equivalent CO2
emissions, import cost, energy flexibility and battery capacity. However, the integration
of wind turbines surely increases the supply of renewable energy, but it is a scenario that
cannot be easily applied in densely populated territories, thus, making the investigation
concept not representative for the case of urban areas. In [39] MPC is applied on multiple
residential MGs, including PV and storage systems, taking into consideration the thermal
and electrical needs of each MG. The purpose of the controller is the cost minimization
without considering the autonomy of the MGs from the main grid. Although the controller
can achieve its purpose, the implemented strategy does not include the development of a
forecaster and limits its innovation to the development of the optimizer. Finally, the PV sys-
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tems are not vertically placed, which significantly affects the production curve throughout
the year, the installed capacity and the applicability of the proposed system in urban areas.
Similarly, the authors of [40] propose MPC for the energy management of a distribution
network that includes MG subsystems, equipped with PV panels, storage systems and
wind generators. The controller aims to minimize the overall grid’s cost. Again, the investi-
gation does not focus on the autonomy of the district from the grid and the integration of
wind turbines surely increases the supply of renewable energy, thus, examining a scenario
that cannot be easily applied in densely populated territories (urban areas). Furthermore,
in this case, no forecaster has been developed and no vertically placed panels have been
considered, too. In [41] an isolated MG consisting of diesel generators, PV systems, storage
systems and other distributed resources is proposed to be controlled by a MPC strategy.
The objective of the optimizer is the cost minimization and the strategy only includes the
development of the optimizer, without developing the respective forecaster. Therefore, the
differences of this work with [41] are the same with the ones mentioned for publication [40].
On the contrary, in [42] an MPC strategy, including both an optimizer and a forecaster is
presented. In fact, the developed forecaster utilizes an adaptive autoregression algorithm
in order to predict the demand of a grid-connected MG, while the optimizer minimizes the
cost, thus, not examining the autonomy of the system from the grid. The MG, where the
MPC is applied on, contains PV systems, wind generators and one BESS. The proposed
strategy has also been experimentally tested. However, the installation/utilization of wind
generators, as already thoroughly described, cannot be performed in urban areas where
the concept of energy communities is more feasible to be realized, as the current work
considers. The authors of [43] have approached the concept of MPC on MG architectures
considering the resilience of the MG as objective of the optimizer. The MG, where the
MPC is applied, includes PV systems, one BESS and a variety of distributed resources. The
developed forecaster predicts the voltages and currents of the MG, in order to enhance the
system’s resilience. Nevertheless, the existence of multiple distributed sources increases
the provision of renewable energy from technological systems that cannot be easily used
in densely populated areas. Furthermore, there is no examination of vertical PVs and the
objective function is related to the system stability and not the system autonomy from the
grid, which better resembles the concept of energy community. In [44] an existing local
distribution system in Osimo, Italy is presented. The district includes PV panels, as well as
other distributed resources and considers the possibility of utilizing the BESS of EV, not
only as loads, but also as sources in order to maximize the district’s autonomy and reduce
the fuel based energy consumption. Even though the results are encouraging, the proposed
methodology is not based on an optimization algorithm, but the case study is modeled by
using a deterministic hour-based simulation model. However, the concept of considering
the EV as possible energy sources and not solely as consumers consists in a subject that,
in the future, can also be included in the scenario presented in this work as an additional
scenario. The maximization of autonomy has also been studied by [45]. In fact, a district of
buildings equipped with PV panels on their rooftops and one BESS each is simulated. The
purpose of the study is to examine the district from the aspect of autonomy and emissions.
Nevertheless, the methodology is not based on a MPC strategy, optimizes the BESS control
without taking the possible future parameters into consideration and assumes only rooftop
PV panels.

In order to examine the prospects of the BIPV implementation in urban areas, this
paper proposes an MPC-based method that is applied on buildings of the same district,
each equipped with vertically placed BIPV and a BESS, focusing on the cooperation of
these buildings in order to gain as much autonomy from the external grid as possible.
Therefore, the major contribution of this study is the management and optimal cooperation
of a group of buildings, each of which is equipped with its own system of vertical BIPV
panels and BESS, carried out by an MPC strategy. For this purpose, both an optimizer and
a forecaster have been developed. The optimizer of the applied controller aims to minimize
the energy exchange between the external grid and the interactive buildings with respect to
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the system’s constraints. For the purpose of forecasting the unknown parameters, i.e., the
PV energy production and the load of each building, a forecaster has been developed. The
forecaster is based on a variation of the WMA method, using Trigg’s tracking signal [46].
The selection of the WMA, as a basis of the forecaster, is justified by its extensive use,
simplicity and accuracy [47]. Finally, the selection of vertically placed BIPV systems give
the opportunity for higher installed capacity and greater feasibility and constructability
as regards urban areas. The proposed MPC-based method is applied in a hypothetical
distribution network in Greece, consisting of five, (5) interactive buildings including four
(4) residences, and (1) one school building, as presented in Figure 1. Four (4) representative
days of the year are examined in order to evaluate the cost and energy savings throughout
the year and demonstrate the effectiveness of the proposed approach. Finally, two types of
sensitivity analysis have been carried out, using different number of PV panels and total
number of available BESS, to demonstrate the effect of selected critical design parameters
on the system behavior.

Figure 1. Schematic representation of the overall architecture.

The main aspects of this paper are the following:

• A new MPC-based method is introduced, aiming to control a district whose buildings
are interconnected in a local grid and equipped with vertically placed BIPV and BESS,
thus forming a small-scale energy community.

• The vertical placement of BIPV systems gives the opportunity to: (a) Consider higher
installed capacity due to the provided area as compared with the case of rooftop PV
installation, (b) consider a production profile with high peak and total production
during the colder months of the year (instead of summer, which is the respective
period for rooftop PV systems) due to the angle of the installed panels, and (c) study a
system configuration that is more feasible to be implemented in urban areas compared
to other renewable sources.

• The developed optimizer of the proposed MPC-based method aims to achieve the
maximum possible autonomy of the district, resulted by the maximum possible
cooperation among the parties.

• The optimizer of the controller ensures the parity of the district’s five BESS.
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• The developed statistical forecaster utilizes tracking signals for the detection of anoma-
lies of the unknown parameters and adjusts the forecasted values according to the
smoothed error.

• The controller is tested under a range of different weather conditions. The results of
two types of sensitivity analysis are presented to highlight the system’s response to
parameter changes.

2. Methodology of the Proposed Controller

The proposed MPC-based method consists of three main parts, i.e., (a) the forecaster,
(b) the optimizer, and (c) the district. A schematic representation of the controller, which
is developed in Python, is presented in Figure 2. The three main components interact
periodically with each other, considering that the planning horizon is the time interval
from the current time step, t, until the end of the day. The loop described in Figure 2 is
repeated for 24 times in total, once per hour. The specific tasks of each component of the
control system are briefly described below:

• Forecaster

Figure 2. Schematic representation of the controller.
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The forecaster’s purpose is to provide the optimizer with forecasts of the PV produc-
tion as well as forecasts of the load of each building. At the beginning of the day, the daily
forecasted values are produced based on recent historical data, using the four previous
days. At each hour of the day, the actual consumption and production values of the district
are measured and imported to the forecaster. If the real values tend to deviate from the
forecasted ones, then the forecast of the planning horizon needs to be adjusted accordingly.
The measured values and the forecasts are then imported to the optimizer in order to
optimize the objective of the model for the planning horizon.

• Optimizer

The optimizer consists of an objective function followed by constraints. In this case,
the objective function has been chosen to minimize the daily energy exchange between the
external grid and the interactive buildings. By achieving this goal, the maximum feasible
autonomy of the interactive buildings is accomplished. The constraints simulate limitations
of the power system such as the capacities of the BESS, their technical characteristics, etc.
The optimizer calculates the optimal charge/discharge of each BESS, in order to achieve
the maximum autonomy of the district for the planning horizon.

• District

The district consists of five buildings, which are connected to the external grid. The
set points of the five BESS for each hour of the day are controlled by the optimizer.

2.1. Formulation of the Optimizer

The basis of the proposed solution constitutes a Mixed-Integer Linear Programming
(MILP) problem, since the model is formulated via continuous and binary variables. In
this implementation, the objective is to promote the cooperation of the buildings that are
equipped with production (PV) and storage (BESS) units. It is assumed that the buildings
are located close to each other so that their cooperation is feasible and valuable. The goal
of the cooperation is to gain as much autonomy from the external grid as possible. At
each time step, t, the optimization problem is solved, considering the planning horizon.
By solving the optimization problem, the optimal charge/discharge schedule of the BESS
is calculated. For each time step, t, the first control step of the schedule is executed. This
means that each BESS gets charged/discharged with the power that the optimizer defines as
optimal for that time, t, taking into consideration the forecast of the planning horizon. The
BESS and PV system of each building are modelled separately, as presented in Constraints
(2)–(12) and are utilized in order to optimally cover the district’s demand. It is noted that
all values of the formulas of the proposed methodology are calculated per unit, where the
base power is equal to 1 kW. The objective function and the constraints of the optimization
problem are presented below:

The objective Function (1) minimizes the total interaction between the district and the
external grid for the planning horizon. It includes the power imported from the external
grid at time t, Ft, as well as the power exported to the external grid at time t, Tt. The
interaction with the external grid is described through these two non-negative variables so
that the optimizer aims at total interaction as close to zero as possible:

minF =
Nt

∑
t=1

(Ft +Tt ) (1)

Constraint (2) represents the power balance in the district at time t. Ppv
m,t is the power

produced by the PV of building m, at time t, and may be utilized in order to cover the
demand or charge the BESS (of building m or more of the district’s buildings), or even be
injected to the external grid. Dm,t is the power discharged from the BESS of building m,
at time t, and may be utilized in order to cover the demand (of building m or more of the
district’s buildings). Cm,t is the power charged to the BESS of building m, at time t, and
may originate from the district’s PV panels (i.e., panels of building m or even panels of
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the other buildings). Finally, Lm,t is the load of building m, at time t. Overall, Constraint
(2) indicates that the total demand of the district may be covered by the external grid, the
district’s PV panels and the district’s BESS. It takes into consideration the power charged
to/discharged from the BESS, as well as possible flow towards the external grid (which is
possible but against the objective of the optimizer). Since the proposed strategy aims at the
optimal synergy, Constraint (2) states that the PV and BESS of each one of the buildings
may be utilized for the benefit of the district:

(Ft−Tt) +
Nm=5

∑
m=1

Ppv
m,t +

Nm=5

∑
m=1

(
Dm,t−Cm,t

)
=

Nm=5

∑
m=1

Lm,t, ∀t (2)

Constraint (3) represents the energy balance of the BESS of building m, at time t, where
Bm,t is the battery energy of the BESS of building m, at time t and hm is its round-trip
efficiency. It is assumed that the charge and discharge efficiency are equal to each other
and their product is equal to the round-trip efficiency, hm. Overall, Constraint (3) models
the energy stored in the BESS of building m, at time t, considering the energy stored in this
BESS in the previous time step as well as the power charged to/discharged from it:

Bm,t= Bm,t−1+Cm,t−1

√
hm −

Dm,t−1√
hm

, ∀m, t (3)

The battery energy of the BESS of building m, at time t, Bm,t, is limited by the technical
limits of Constraint (4), where Bmin

m is the minimum battery energy for the BESS of building
m, while Bmax

m is its maximum. This Constraint models the limitations of battery energy of
each BESS, in order not to exceed the upper and lower limits:

Bmin
m ≤ Bm,t ≤ Bmax

m , ∀m, t (4)

Constraint (5) initializes the state of charge of the BESS of building m, Binitial
m ,

Bm,t=1= Binitial
m , ∀m (5)

where t is the current time step and Binitial
m is equal to the battery energy of BESS m in the

beginning of the current planning horizon.
Constraint (6) denotes that the BESS of building m cannot be charged and discharged

at the same time. The binary variables uch
m,t and udch

m,t are set to 1 if the BESS of building m is
being charged/discharged at time t respectively. This Constraint models the direction of
the power flow of each BESS at each time step:

uch
m,t+udch

m,t= 1 , ∀m, t (6)

Constraint (7) represents the battery energy of the BESS of building m after the end of
the last hour t, fm, and Constraint (8) ensures that its value is between the technical limits
of the BESS:

fm= Bm,t=Nt+Cm,t=Nt

√
hm −

Dm,t=Nt√
hm

, ∀m (7)

Bmin
m ≤ fm ≤ Bmax

m , ∀m (8)

Constraints (9) and (10) limit the power discharged from/charged to the BESS of
building m, at time t according to its rating, Brate

m . These Constraints are essential in
order to model each BESS because if the rate of charge/discharge (provided by the BESS
manufacturer) is not respected, then the BESS wear out faster:

Dm,t ≤ Brate
m udch

m,t , ∀m, t (9)

Cm,t ≤ Brate
m uch

m,t , ∀m, t (10)
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Constraints (11) and (12) ensure the parity of the district’s BESS. This means that the
charge/discharge of each BESS is according to its capacity. For example, if all BESS have
the same capacities, they should be charged/discharged equally at each time step. This
ensures that all BESS wear out equally:

Dm,t= (B max
m −Bmin

m )
Nm

∑
m′=1

(D m′ ,t)/
Nm

∑
m′=1

(B max
m′ −Bmin

m′ ) , ∀m, t (11)

Cm,t= (B max
m −Bmin

m )
Nm

∑
m′=1

(C m′ ,t)/
Nm

∑
m′=1

(
Bmax

m′ −Bmin
m′

)
, ∀m, t (12)

It is noted that the PV production aims to cover as much of the energy demand
as possible. When the production exceeds the demand, the exceeding energy charges
the BESS. It should be mentioned that if the exceeding production was high enough to
violate the technical limits of the BESS, the remaining production would flow towards the
external grid.

The optimizer reaches the optimal decisions through the Basic Open-source Nonlinear
Mixed INteger (BONMIN) solver.

In relation to the modelling of the PV panels, it is noted that the total radiation
reaching the vertical surfaces is calculated with the use of the Perez model [48], taking
into consideration their azimuth and angle. Afterwards, the calculated radiation, the
ambient temperature and the technical specifications of the panels are used, in order to
calculate the PV production of each building m, at time t, which is the input of the optimizer.
The procedure described above is carried out through AixLib [49], which provides tools
that calculate PV production out of meteorological data. Overall, Aixlib calculates the
production of vertical BIPV systems, providing the controller with the necessary data,
i.e., the PV production of each building throughout the day, in order to calculate the
optimal actions.

Finally, the limitations of the proposed strategy are, (a) the fact that the objective
function aims explicitly at the autonomy of the district, not taking into consideration factors
such as stability, power quality, etc., which are mostly related to lower (hierarchically)
control levels, (b) the time step, which is selected to be equal to 1 h, and (c) the distance
between the buildings, which need to be located close to each other so that the losses can
be omitted.

2.2. Formulation of the Forecaster

When it comes to optimization problems some of the parameters may be unknown.
In this case, the unknown parameters are the PV energy production and the load of each
building, assuming a time interval of one (1) hour. These parameters are usually forecasted.
But no matter how accurate a forecasting method may be, it is possible that the forecasted
parameters have significant deviation from the real values. In order to address this issue,
the error needs to be detected as soon as it happens so that the forecasted values for the
rest of the planning horizon can be adjusted to reality as closely as possible.

The proposed forecaster is based on WMA, utilizing Trigg’s tracking signal and
adjustment formulas of the forecasted values. The developed method includes sensitivity
parameters and thresholds that allow the selection of a stricter or looser approach of the
time series that need to be forecasted. The flowchart of the method is presented in Figure 3.
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Figure 3. Flowchart of forecasting method.

The forecasted values in the beginning of the day are calculated using WMA on recent
time series, giving more weight on the more recent than the older ones. The mathematical
formulas of WMA forecasting method are presented in Equations (13)–(15). Equation (13)
is the forecast of random parameter y. For this forecast the recent data xi are taken into
account multiplied by their weights, wi, where i is the index of the days included in the
history, ranging from i = 1 (the oldest day) to Ni (the most recent day). It is essential that the
summation of weights is equal to 1, as shown in Equation (14). Parameter xi is considered
to be less recent than parameter xi+1, so its value is less important for the prediction of y
than the value of xi+1. This means that xi should have less weight in the prediction of y
than xi+1, as expressed in Equation (15):

y =
Ni

∑
i=1

xiwi (13)

Ni

∑
i=1

wi= 1 (14)

wi< wi+1, ∀ i < Ni (15)

In this case, the history that is taken into account consists of the past four days. This
means that Ni = 4 and the selected weights are the following: w1= 0.1, w2= 0.2, w3= 0.3
and w4= 0.4 [50,51]. For the detection of significant deviations from the initial forecast, at
each hour, t, the real values of the load and PV production are measured at the district and
then imported to the forecaster. These values are compared to the forecasted ones using
Trigg’s tracking signal. This index, Triggt, detects significant deviations between forecasted
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and real-time series using the formula shown in Equation (16), where ej is the error of the
forecasted value at time step j, j is the index of time steps since the previous adjustment of
the forecaster and e0 is the initial error of Trigg’s index. For the selection of the parameters,
i.e., a and b, the limitations of (17), (18) and (19) should be taken into account [52]:

Triggt =

∣∣∣∣∣∣
∑

Nj
j=1(a (1− a)Nj−jej

)
(1− b)Nj e0 + ∑

Nj
j=1(b (1− b)Nj−j∣∣ej

∣∣)
∣∣∣∣∣∣, 1 ≤ t ≤ 24 (16)

0.05 ≤ a ≤ 1 (17)

0.05 ≤ b ≤ 0.5 (18)

b ≤ a (19)

In this case the selected parameters are the following: a = 0.2 and b = 0.2 [52]. If
Trigg’s index is greater than a certain threshold, which in this case is set equal to 0.3
(according to tests), it means that the forecast does not match the real time series. In order
to resolve this issue, the forecasted values for the rest of the planning horizon need to
be adjusted. The adjustment should take into consideration the random nature of the
parameters that need to be forecasted. It should be noted that the production of PV is more
predictable than the load of a building, especially when it comes to residential loads. This
means that the adjustment formula of a building’s PV production should be different than
the adjustment formula of its load. In fact, since the PV production is not as random as
that of the load, the adjustment of the PV forecast should be greater than the adjustment
of the load forecast. The formulas of adjustment are presented in Equations (20) and (21),
as follows:

Fnew
m,t+1= min(F old

m,t+1(1 + c
Nj

∑
j=1

((1− a)Nj−jej)), PVmax
m ), ∀m, t < 24 (20)

Fnew
m,t+1= max(F old

m,t+1+c
Nj

∑
j=1

((1− a)Nj−jej) , 0), ∀m, t < 24 (21)

Equation (20) represents the adjustment formula regarding the forecast of the PV
production, whereas Equation (21) represents the adjustment formula regarding the forecast
of the load, where Fold

m,t+1 is the old forecast and Fnew
m,t+1 is the new forecast. In the case of

the PV production, the top limit is taken equal to the PV rated power, PVmax
m , omitting for

simplicity reasons the losses in the PV installation. In the case of the load, the bottom limit
is set equal to zero. It is noted that the adjustment takes into consideration the weighted
error of the forecasts made by the previous adjustment. Parameter c indicates the sensitivity
of the adjustment. In this case it is set to 20%.

It is noted that every time that the forecasted series are adjusted, Trigg’s index is reset
in order to evaluate the performance of the adjusted forecasting formula. This means that
Nj and j are reset equal to 1, as they were in the beginning of the day, and e0 is reset equal
to the absolute average value of the past three forecasts.

3. Case Studies

The days that have been selected for the simulation of the implementation of the
MPC-based control on a hypothetical district located in Greece are the 10th of March, the
26th of July, the 7th of October and the 16th of December, assuming more or less a day in
each season of the year. The selection of the simulated day of each month is based on the
profile of radiation. More specifically (considering vertical placement, facing the South)
the measured radiation is close to the daily average values of radiation on vertical façade
facing the South for the period 2005–2016, calculated by [53], presented in Figure 4. It is
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noted that the vertical position of the BIPV panels causes higher absorption of radiation
during winter than during summer.

Figure 4. Radiation profile.

The Typical Meteorological Year (TMY) weather data can be found in [54] and the load
data can be found in [55]. The performance specifications of each implemented PV panel
are presented in Table 1 [56]. The four residential buildings are considered to be equipped
with 12 panels each, whereas the school is considered to be equipped with 14 panels.
The selected number of PV panels is based on the average wall surface of newly built
residences, according to [57], considered as representative of the EU. Also, each building is
considered to be equipped with a BESS, whose performance specifications are presented
in Table 2 [58]. It is noted that, in the beginning of each simulation, the state of charge of
each BESS is considered to be equal to the minimum, which is 0.5 kWh, and represents
the worst-case scenario for the building’s autonomy. The district is part of the CIGRE
benchmark system [59] and is simulated with the use of Modelica™ [60].

Table 1. Performance specifications of one PV panel.

Parameter Value

Rated power (MPP) 360 W
Efficiency 19.9%

Length 1621.0 mm
Width 1116.0 mm
Depth 40.0 mm

Table 2. Performance specifications of each BESS.

Parameter Value

Rated Energy 14 kWh
Usable Energy 13.5 kWh

Rate of charge/discharge per hour 5 kW
Round trip efficiency 90%

The results of the simulations regarding the distribution of the PV production (i.e., the
part of total PV production directly feeding the load of the district and the part of total PV
production charging the five BESS of the district) of each simulated day are presented in
Figure 5 and the values of the total PV production are presented in Table 3. The results
regarding the energy mix that covers the total load of the district, including all buildings,
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are presented in Figure 6 and the total values are included in Table 4. The energy mix
may include energy imported from the external grid, PV production feeding directly the
district’s load and energy discharged from the five BESS of the district.

Figure 5. Distribution of PV production of each simulated day.

Figure 6. Energy mix of each simulated day.
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Table 3. PV production boundaries.

Parameter 10 March 26 July 7 October 16 December

Total PV production (kWh) 82.18 64.85 77.93 75.45
Maximum PV production (kW) 13.11 9.39 14.54 13.24

Duration of PV production (hours) 11 (7:00–17:00) 15 (6:00–20:00) 11 (8:00–18:00) 9 (8:00–16:00)

Table 4. Energy mix total values.

Parameter 10 March 26 July 7 October 16 December

Total load (kWh) 96.46 67.12 66.59 94.97
Total energy from external grid (kWh) 18.02 12.49 14.41 22.83

Total PV production (kWh) 82.18 64.85 77.93 75.45
Total energy from PV to load (kWh) 44.75 38.57 33.78 42.32
Total energy from PV to BESS (kWh) 37.43 26.28 44.15 33.12

Total energy from BESS (kWh) to load 33.69 16.07 18.39 29.81
Total usable energy stored for the next day (kWh) 0 7.58 21.34 0

It is noted that the lowest production occurs in the representative day of July, i.e.,
64.85 kWh. This observation has also been discussed by the authors of [61], and can be
attributed to the vertical position of the PV panels and the reliance of their production
mostly on diffuse radiation.

From the energy mix diagrams of Figure 6, it is observed that, in general, the grid
contributes to the district during the first hours of each day. This is the period when
the PV panels do not produce energy (because there is no daylight) and the five BESS
of the district cannot cover the load, as they are assumed to be in the minimum state of
charge. It is also noted that during the middle of the day, which is the time when the PV
panels reach their peak production, the load of the five buildings is covered mostly with
energy from the PV production. After the PV production is reduced to zero, the demand is
initially almost exclusively covered with energy provided by the BESS, which have been
charged from the exceeding PV production (during noon), as presented in Figure 5, to be
followed by the grid when the BESS reach their minimum limit. Overall, the energy mixes
presented in Figure 6 show how the mismatch between the overall PV production profile
and the district’s load profile is corrected through the utilization of the district’s five BESS,
controlled by the proposed MPC strategy. In this way, when the overall PV production is
higher than the district’s demand, the surplus energy optimally charges the five BESS and
when the demand exceeds the PV production, the five BESS are optimally discharged, as
long as they have sufficient stored energy to provide.

The maximum total PV production occurs in the simulated day of March, i.e., 82.18 kWh,
and covers directly higher demand than the rest of the simulated days, i.e., 44.75 kWh, due
to the fact that the curve of the PV production matches the load peak in the morning-noon
hours of March. Also, in the simulated day of March, the highest amount of energy provided
by the BESS occurs, i.e., 33.69 kWh, followed by the respective value for the simulated day
of December, i.e., 29.81 kWh. This is attributed to the high demand observed in the evening
hours for the simulated days of March and December, as presented in Figure 6, after the PV
production has ceased. In general, the load of the simulated days of March, i.e., 96.46 kWh,
and December, i.e., 94.97 kWh, appears to be higher than the load of the rest of the simulated
days, mainly because of the thermal needs that are covered through electrical means, such
as heaters, heat pumps etc. In fact, the load of these days is high enough to also require the
contribution of the grid in the evening hours, as presented in Figure 6, calculated as equal to
1.89 kWh for the simulated day of March and 5.51 kWh for the simulated day of December.

For the simulated day of October, it is noted that in spite of the high PV production,
i.e., 77.93 kWh, only a small portion of energy feeds the load directly, i.e., 33.78 kWh, while
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the remaining energy, i.e., 44.15 kWh, is used to charge the BESS. From all simulated days,
this is the highest amount of energy headed towards the BESS and the lowest amount of
energy feeding directly the load. Both are attributed to the mismatch between the profile of
PV production and the load profile, which is shown in the diagrams for the simulated day
of October in Figures 5 and 6. This mismatch is covered by importing more energy from
the external grid during the morning hours, which decreases the daily energy savings and
increases the usable energy stored in the BESS at the end of the day, i.e., 21.34 kWh.

The daily savings are presented in Table 5, utilizing Equations (22)–(24). Equation (22)
denotes the total energy savings, Etot, i.e., the total energy directly utilized from PV panels,
EPV , and BESS, EBESS, respectively, in order to cover the total load. Equation (23) denotes
the percentage of the energy savings, which is calculated as the total energy savings, Etot,
divided by the total consumption, Ltot. Equation (24) denotes the daily cost saved, CS, due
to the implementation of the BIPV and the BESS. It should be noted that the percentage
of cost savings is the same as the percentage of energy savings, calculated by (23). The
price of the energy, p, is derived from the electricity prices (including taxes) for household
consumers in Greece and is set constant throughout the day and equal to 0.1551 €/kWh,
according to [62]. It is estimated (taking into account the average daily load of the simulated
days, equal to 81.29 kWh) that before the installation of the adaptable/dynamic building
envelopes, the average daily energy cost of the entire district is equal to 12.61 €.

Etot= EPV+EBESS (22)

Epercentage= (E PV+EBESS)/Ltot (23)

CS =(EPV+EBESS)∗p (24)

Table 5. Daily savings.

Parameter 10 March 26 July 7 October 16 December

Total energy savings (kWh) 78.44 54.64 52.17 72.14
Percentage of energy savings 81% 81% 78% 76%

Cost savings (€) 12.17 8.47 8.09 11.19

The highest percentage of daily energy savings, i.e., 81%, is observed in the simulated
days of March and July. In the case of March, which also has the highest total energy
savings, i.e., 78.44 kWh, this is attributed to the high PV production and the fact that the
demand profile matches the PV production profile. In the case of July, this is attributed to
the low total demand, i.e., 67.12 kWh. On the other side, the lowest percentage of daily
energy savings, i.e., 76%, is observed in the simulated day of December, due to the high
load. In addition, the lowest daily energy savings are presented in the day of October, i.e.,
52.17 kWh, due to the mismatch between the profiles of PV production and load, which
causes the grid to cover the demand. As regards the economic aspects, the average daily
cost savings of the district, based on the four simulated days, are calculated as equal to
9.98 €. This means that the average percentage of cost savings of the district is equal to 79%.

4. Sensitivity Analysis

The sensitivity analysis consists of two scenarios. The first scenario, scenario A,
assumes that the residential consumers are equipped with 8 PV panels (instead of 12) and
the school is equipped with 12 PV panels (instead of 14). The second scenario, scenario
B, assumes that the first residential consumer is not equipped with a BESS, which means
that there are only 4 BESS instead of 5 in the district. The comparison of the results of
the sensitivity analysis with the reference case is included in parentheses in the following
respective Tables.

The results of the simulation regarding the distribution of PV production (i.e., the
part of total PV production directly feeding the load of the district and the part of total PV
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production charging the five BESS of the district) of scenario A for each simulated day are
presented in Figure 7. The results regarding the energy mix that covers the total load of the
district, including all buildings, in the case of scenario A, are presented in Figure 8 and the
total values are included and compared to the reference case in Table 6. The energy mix of
scenario A may include energy imported from the external grid, PV production feeding
directly the load and energy supplied by the five BESS of the district. The daily savings of
scenario A are presented in Table 7, utilizing Equations (22)–(24) and compared with the
respective reference case values.

Figure 7. Distribution of PV production of each simulated day for scenario A.

Figure 8. Energy mix of each simulated day for scenario A.
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Table 6. Energy mix total values for scenario A.

Parameter 10 March 26 July 7 October 16 December

Total load (kWh) 96.46 67.12 66.59 94.97
Total energy from external grid (kWh) 39.60 (+120%) 22.26 (+78%) 16.52 (+14%) 42.70 (+87%)

Total PV production (kWh) 58.38 (−29%) 45.88 (−29%) 55.39 (−29%) 53.63 (−29%)
Total energy from PV to load (kWh) 43.25 (−3%) 35.73 (−7%) 30.54 (−10%) 39.97 (−6%)
Total energy from PV to BESS (kWh) 15.13 (−60%) 10.15 (−61%) 24.85 (−44%) 13.67 (−59%)

Total energy from BESS (kWh) 13.61 (−60%) 9.14 (−43%) 19.52 (+6%) 12.30 (−59%)
Total usable energy stored for the next day (kWh) 0 (0%) 0 (−100%) 2.84 (−87%) 0 (0%)

Table 7. Daily savings for scenario A.

Parameter 10 March 26 July 7 October 16 December

Total energy savings (kWh) 56.86 (−28%) 44.87 (−18%) 50.06 (−4%) 52.27 (−28%)
Percentage of energy savings 59% 67% 75% 55%

Cost savings (€) 8.82 (−28%) 6.96 (−18%) 7.76 (−4%) 8.11 (−28%)

Overall the profile of the energy mix of each simulated day of scenario A, presented
in Figure 8, follows the trend of the respective energy mix of the reference case (presented
in Figure 6). This means that in both cases, the main power supply during the early hours
of the simulated days is the external grid, due to the lack of PV production and adequate
battery energy. Furthermore, in both cases the demand in noon is mostly covered by PV
production. Finally, as in the reference case, scenario A, the five BESS (which are charged
when the PV production exceeds the demand, as presented in Figure 7) are optimally
discharged in the evening, when the PV production is insufficient, as presented in Figure 8.

As presented in Figure 7 and Table 6, the total and the maximum PV production
generated by the district’s buildings in the case of scenario A is lower than in the reference
case for all simulated days, i.e., 29%, due to the fact that there are fewer PV panels.
Consequently, the BESS are charged with up to 61% less energy than in the reference
case, depending on the simulated day (maximum percentage reduction observed for the
simulated day of July), and the PV production is mostly used in order to cover the demand
directly, as shown in Figure 7.

In all cases, except for the simulated day of October, the total discharge of the five BESS
is lower than in the reference case, ranging from 43% to 60%, as the BESS have received less
energy from the PV panels. However, for October, the total discharge of the BESS towards
the load, i.e., 19.52 kWh, is slightly higher than in the reference case, i.e., 18.39 kWh. This
happens because the PV production in both cases charges the BESS with enough power to
cover the load for the rest of the day, but in scenario A, the PV production is lower than in
the reference. This causes the BESS to cover the difference, thus, increasing the total energy
provided by them.

As presented in Figure 8, only in the case of October, the BESS energy is enough to
cover the load for the rest of the day, after the PV energy production is reduced down
to zero. In all simulated cases, due to lower PV production, more energy needs to be
imported from the grid, i.e., 14% to 120% increase, in order to cover the demand, especially
in the cases of March, i.e., 120%, and December, i.e., 87%, due to the high total load. The
higher contribution of the grid can be observed in the diagrams of Figure 8, especially after
the PV panels stop producing power, when the energy provided by the BESS is in most
cases insufficient.

Also, in the case of October, it should be highlighted that the energy stored in the BESS
for the next day is significantly lower than in the reference case, 87%, due to the reduction
of PV production and the higher cover of load from BESS. For the rest of the simulated
days, i.e., the simulated days of March, July and December, the BESS have no energy stored
for the next day.
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As expected, the savings of scenario A are lower than in the reference case because of
the lower production of the PV. The energy savings of the simulated day of March remain
the highest, i.e., 56.86 kWh, due to the size of the PV production, i.e., 58.38 kWh. However,
the highest percentage of energy savings, i.e., 75%, is observed for the simulated day of
October. This is attributed to the high contribution of the BESS, i.e., 19.52 kWh, and to the
fact that the load is lower than the rest of the simulated days, i.e., 66.59 kWh. For scenario
A, the average daily cost savings are calculated as equal to 7.91€. This means that the
average percentage of cost savings of the district is equal to 63%.

When it comes to scenario B, the results of the simulation regarding the PV production
are identical to the reference case ones due to the fact that the number of panels remains
the same. However, the energy mix that covers the total load is different because there are
four BESS instead of five. The results regarding the energy mix, which covers the total load
of the district in the case of scenario B, are presented in Figure 9. The values of total energy
provided to the district by each BESS are concluded in Table 8.

Figure 9. Energy mix of each simulated day for scenario B.

Table 8. Total energy provided by one BESS for scenario B.

Parameter 10 March 26 July 7 October 16 December

Total energy provided by one BESS for scenario B (kWh) 8.42 (+25%) 4.02 (+25%) 4.60 (+25%) 7.45 (+25%)

As expected, scenario B presents the greatest amount of energy provided by each BESS
compared to the reference case, as the PV production and the load remain the same and
the number of BESS decreases from five to four. This causes the four BESS to manage more
energy. Out of all simulated days, the highest amount of energy provided by each BESS
occurs in the simulated day of March and is calculated as equal to 8.42 kWh. It is noted that
the parity of the BESS, ensured by Constraints (11) and (12), results in the equal increase of
the discharge of each remaing BESS by 25%. It should be mentioned that significant usage
of BESS wears them down sooner and decreases their lifetime.

The total contribution of the grid remains the same as in the reference scenario for
each simulated day, because the PV production remains the same, the same amount of PV
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production is provided to the four BESS and the same total amount of energy is provided
by the four BESS to the district, without challenging their technical limits. It is noted
that since the PV production, the total energy provided by BESS and the total energy
imported from the grid remain the same, the savings remain the same as in the reference
case. Nevertheless, if the BESS were even fewer or if the demand was higher, it is possible
that the technical limits of the BESS would be challenged, resulting in lower daily savings.

5. Conclusions

This paper presents a control methodology for the energy management of a district
that consists of buildings that are equipped with vertical BIPV and BESS. The proposed
MPC-based method aims to achieve the maximum possible autonomy of the district
through the cooperation of the interactive buildings. At each time-step, the method seeks
the operation schedule that fulfills the objective of the controller, which is the minimum
possible energy exchange between the district and the external grid, taking into consid-
eration the limitations of the model and the forecast of the uncertain parameters for the
planning horizon, i.e., the PV production and the load of each building. The operation
schedule is applied to the district, which consists of a five-node distribution network,
based on the CIGRE distribution benchmark and is renewed at each time-step, according
to the controller. The derived results for four representative days of the year show that the
cooperation between the buildings has quite satisfying impact, in terms of autonomy from
the external grid, with daily energy savings ranging from 76% up to 81%, which verifies
the effectiveness of the proposed technology and method. Additionally, two scenarios of
sensitivity analysis have been conducted, the first one regarding the number of PV panels
and the second one regarding the number of BESS. The results of the sensitivity analysis
indicate the effect of changes of the selected parameters on the system behavior during the
controller’s implementation where the calculated daily energy savings range from 55% up
to 81%.
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