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Abstract: Full electrification of the transport sector is a necessity to combat climate change and a
pressing societal issue: climate agreements require a fuel shift of all the modes of transport, but while
uptake of passenger electric vehicles is increasing, long haul trucks rely almost completely on fossil
fuels. Providing highways with proper charging infrastructure for future electric mobility demand is
a problem that is not fully investigated in literature: in fact, previous work has not addressed grid
planning and infrastructure design for both passenger vehicles and trucks on highways. In this work,
the authors develop a methodology to design the electrical infrastructure that supplies static and
dynamic charging for both modes of transport. An algorithm is developed that selects substations
for the partial electrification of a highway and, finally, the design of the electrical infrastructure to be
implemented is produced and described, assessing conductors and substations sizing, in order to
respect voltage regulations. The system topology of a real highway (E18 in Norway) and its traffic
demand is analyzed, together with medium-voltage substations present in the area.

Keywords: electric vehicles; electric trucks; heavy duty vehicles; catenary charging; fast charging
stations; inductive charging; grid planning; highway electrification

1. Introduction

Electrification of the transport sector is central to meeting the Paris Climate agreements.
In the Declaration on Electro-Mobility, parties recognized the need to electrify at least 20%
of all the road transport vehicles by 2030 [1]. Currently, Heavy Duty Vehicles (HDVs)
account for less than 5% of road vehicles in the EU, but are responsible for about a quarter
of the total CO2 emissions from road transport [2], and one-third in Germany [3]. The
electrification of HDVs present challenges different from passenger vehicles such as high
power demand, longer distance traveled compared to EVs. Truck fuel efficiency has
stagnated in the last 20 years [4] and emissions have increased by 15% between 1990 and
2014, with Nordic countries increasing their fleet sizes faster than average. Future demand
of long-haul transport is also expected to grow further: in Norway, the freight sector is
expected to grow by 35–40% by 2040 [5]. For these reasons, the European Parliament is
setting short-term targets on new HDV fleets (including specifically large lorries and heavy
trucks) in order to lower their emission performance standards by 15% in 2025 and 30% by
2030 compared to 2019 [2].

Currently, the standards for high-power chargers have been developed up to 600 kW
with a growing interest in mega-chargers up to 1 MW [6]. With battery sizes that range
from 300 kWh up to 1 MWh [6], charging time is a major problem for the electrification
of HDVs. The introduction of a large battery can reduce maximum payload, −20% for a
825 kWh battery, also negatively affecting the available space for goods [7]. On the one
hand, the market of electric batteries is experiencing a process of constant innovation,
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especially in terms of energy density; on the other hand, given the climate goals to be
reached globally, it is highly recommended that the use of batteries be minimized, freeing
up storage capacity for the overall electrification of the energy system and potentially
decreasing its societal costs [8]. For electrification to be realized for both LDVs and HDVs
through plug-in charging, mega-chargers have to be built along main corridors for HDVs
in addition to normal FCSs for LDVs. An alternative solution for the electrification of
HDVs, especially on long-routes transport networks, is represented by dynamic charging:
conductive, based on catenary charging, or inductive. This possibility shows the need to
investigate how the electrical infrastructure can be designed, through these technologies,
to electrify both passenger vehicles, indicated from now on as Light Duty Vehicles (LDVs),
and HDVs on highways.

The authors of [9] assessed the demand and costs for Great Britain electrification
due to dynamic inductive charging for both LDVs and HDV, analyzing different kinds of
transport networks, including rural areas and motorways. In [10], the authors assessed the
cost-effectiveness of the implementation of plug-in and dynamic technologies (catenary
and inductive) depending on the traffic flow. In [11], the authors compared the energy
and the power demand of plug-in, dynamic, hydrogen, and power-to-fuel electrification
strategies for a real case study (the E39 highway in Western Norway).

To the best of the authors’ knowledge, the present article represents the first work
that details a comprehensive methodology to support power system planners in design-
ing charging infrastructure on highways, taking into account both static, inductive, and
catenary charging technologies together with real data. The developed design procedure
focuses on grid planning, implementing a geospatial analysis which makes use of Open
Street Maps (OSM) for the localization of substations and the analysis of the transport
network. Differently from [11], the methodology described in this article simulates realistic
plug-in charging of electric vehicles and provides a data-driven approach to locate and size
the electric infrastructure for different charging technologies. In fact, a limitation of [11]
is that static charging is used only by LDVs and vehicles are charging only the energy
consumed while driving, with no estimation of initial and final State of Charge (SoC),
which greatly affects the energy demand on the plug-in charging infrastructure. Three
different electrification scenarios are considered:

• Static: LDVs and HDVs charge at static charging stations located along the highway.
• Inductive: LDVs and HDVs are supplied by dynamic inductive charging infrastructure

along the route.
• Hybrid: LDVs charge at static charging stations, and HDVs are supplied by the

dynamic catenary charging infrastructure.

These three scenarios are considered for a highway route (E18 in Norway) that passes
through both rural and urban areas.

The presented paper has the following structure: Section 2 introduces charging tech-
nologies, with particular focus on dynamic technologies; Section 3 reports, in detail, the
methodology developed to design the charging infrastructure from a grid planning per-
spective; Section 4 shows the results of the implementation of the Methodology on a real
case study: outcomes are described and visualized both spatially and analytically; Section 5
describes the overall conclusions and contributions of the paper.

2. Charging Technologies

Charging technologies for Electric Vehicles (EVs) can be classified according in the
following three main categories:

Plug-in chargers Most of the chargers are slow private chargers connected to the low-
voltage network. A large part of the publicly accessible fast chargers presents power
characteristics suitable for passenger vehicle charging, but chargers for HDVs are
increasing sensibly in the last years, with power that ranges from 150 up to 400 kW. It
follows that Direct Current Fast Charging (DCFC) stations with rated power designed
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for high-power electric trucks on highways can be directly connected to the medium-
voltage grid [12].

Inductive charging In an inductive charging system, energy is transferred wirelessly
through the magnetic field: the scheme resembles the magnetic pairing of a trans-
former, where a transmitter coil beneath the asphalt of the road represents the primary
side, and a receiver coil located beneath the vessel of the car represents the secondary
side. Coils and switches below the surface of the road energize small road segments
(1–50 m) when a vehicle is positioned above them. The scheme resembles the mag-
netic pairing of a transformer, where a transmitter coil beneath the asphalt of the
road represents the primary side, and a receiver coil located beneath the vessel of
the car represents the secondary side. Alternating Current (AC) electricity is usually
supplied through power inverters at 400V AC. Inductive technology is assessed
to be characterized by higher costs than other alternatives, but allows both LDVs
and HDVs to charge without the installation of a pick-up element. AC electricity is
supplied through inverters usually at 400V AC.

Catenary charging The catenary charging scheme resembles the one of a DC railway
power supply, although sizing the catenary system can result in being more complex
than for trains: factors such as time schedule and distances between HDVs cannot be
regulated as easily as for trains/metros. The complexity of the load demand from the
aggregation of several trucks, with different conditions of slope, distance between
each other, etc., will not be analyzed in depth since it is not in the scope of the article.
Traction substations typically include transformers and uncontrolled 6 or 12 pulse
diode-based rectifiers, or in some cases, an AC–DC bi-directional converter. Despite
the fact that they do not generate imbalances, they can generate high harmonic
pollution. Bi-directional converters can be installed as substitutes for or in parallel to
rectifiers to take advantage of the energy regenerated during breaking or downhill
segments and to inject electricity back into the grid [13].

Static plug-in charging is the dominant technology to charge EVs: in 2019, charging
stations surpassed 7 million units [12]. Dynamic technologies, on the other hand, are
less widespread: inductive charging technology is still characterized by a low TRL (3–4),
and conductive charging based on catenary has achieved TRL 7 in 2018, and it is expected
to reach TRL 8–9 in 2020, since there are no major technical constraints to hinder its
development [14]. Several pilot projects are in place in small fragments of highways in
Sweden (2 km), California (1.6 km), three field trials in Germany with the most advanced
pilot ELISA (5 km) and, finally, a catenary infrastructure to be constructed in Northern
Italy (6 km in the short term and up to 62 km) with the integration of PV panels along the
highway [15]. Siemens and involved partners (Scania, road operators etc.) implemented
those electrification projects with hybrid trucks equipped with small batteries (around
20 kWh). With an average consumption of 2.24 kWh/km, the trucks would not be able to
reach 10 km of full electric autonomy [11]. Taking into account this limiting factor, pilots
were designed with a concept of full, 100% electrification of a particular stretch selected for
tests. At the same time, the market of long-haul full electric trucks is experiencing a rapid
change: the market expects products such as Tesla Semi (Long range up to 965 km) or BYD
T9 (already available with more than 200 km of full electric capacity) [6] and are opening up
to new possibilities in terms of electrification concepts and designs. Independently of the
chosen technology, whether inductive or conductive, the layout of the system from the High
Voltage (HV) grid to the side of the road is the same: a series of distribution substations
transforms the electricity to the Medium Voltage (MV) level (typically 20–30 kV) and
transfers it along the road through a feeder. Finally, transformers called traction substations
convert it to the low-voltage side that supplies the elements on the road. The level at
which both systems are run presents the drawback of requiring high currents in the lines,
increasing voltage drops and forcing planners to install low-voltage elements relatively
near to each other. For example, Siemens implemented pilot schemes in which catenary
traction substations are placed at 2 km one from each other, although having declared that
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the maximum distance can be increased up to 10 km [14]. Few papers have investigated
the impact of the implementation of catenary technology on the energy system and its
impact on the sustainability of the transport sector. The authors of [16] make use of a
market diffusion model to forecast electric truck penetration and an energy system model
to quantify the added demand and cost-optimal investment in power system from the
long-term implementation of catenary charging across Europe. The peak load would
increase by 2%, while electricity demand would grow by 3% by 2040. The authors conclude
that even with no added renewable sources in the power system, the increased efficiency
of electric engine would still drive down transport emissions, and by up to 10% by 2040 in
Nordic countries considering optimistic scenarios. Similarly, the authors of [17] quantify,
through a detailed life-cycle analysis (LCA), that as long as electricity production is not
coal-based, life-cycle emissions, inclusive of the infrastructure, are lower for electric trucks
using catenary charging. The greenhouse gas (GHG) payback time is mainly dependent on
the traffic: the more HDVs that are passing an electrified road, the lower the payback time.
This result is also confirmed in [18], which quantified reductions in CO2 emissions of up to
55% by electrifying 40% of national and European main highways in Sweden.

3. Methodology
3.1. Preliminary Design Considerations

The design scheme of the charging infrastructure depends on several factors, such
as the regulatory frameworks of the country or the region where the infrastructure is
built, the actors involved in the infrastructure development and operations, and finally the
distance of the highway from the electrical network.

A first fundamental design choice must be made as to whether a new dedicated
distribution grid is put in place or the charging infrastructure is fed through an extension of
the existing grid. In the first case, planners should evaluate the distance from the existing
transmission grid (420–300–220 kV) or regional grid (145–132–66 kV) to the highway to
locate points of the supply connections and decrease the length of the supply cables as well
as the costs of the infrastructure. In the case that the design choice is implementing an
extension of the grid, the MV substations in the proximity of the road are listed and
characterized in terms of their distance from the highway through a proximity analysis.
Moreover, the load profile of these substations should be assessed by adding the mobility
electrical demand on top of the existing base load (for residential or industrial uses) in order
to verify that the load increase does not lead to an overload of the transformer. These
parameters, distance and load profile, can serve as a basis for the selection of the optimal
substations for the electrification.

At the same time, it is relevant to highlight that the load assessment can be difficult to
realize: in fact, transformer data must be anonymized due to privacy and security concerns.
For the purpose of this paper, the methodology used implements an extension of the grid.

A second design choice takes into account whether to electrify the whole highway
stretch or to implement a partial electrification strategy. In [19], the authors suggest that an
ideal scheme should present electrified stretches between 24 and 64 km depending on the
traffic flow, with an overall Electrification Ratio (ER) of 50%, which is the optimal ER in
order to minimize the total cost of batteries and infrastructure.

3.2. Vehicle Energy Consumption Models

In order to assess the demand of the electric mobility, two energy models were
implemented: a static model that estimates the energy supplied by the Charging Stations
(CSs) and a dynamic model for both the catenary and inductive charging technologies.

3.2.1. Static Energy Model

The energy that is supplied through plug-in charging is calculated by running a
simulation in which each vehicle entering in the highway is characterized in terms of the
following parameters:
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• Length of travel lt [20].
• Driving direction d.
• Initial state of charge entering the highway SoCi [20].
• Battery capacity Ebat [20]
• Fuel economy fe [18] [km/kWh]

All parameters are randomly selected from specific ranges, shown in Table 1. Thus,
the EVs entering the highway do not follow a stochastic process, as proposed in [21]. As it
is possible to note, the initial state of charge is characterized by a time-dependency in order
to better reflect the mobility patterns of drivers for each vehicle. In fact, it is assumed
that drivers that start their journey during the night-time until midday have made use of
slow home-charging, thus entering the highway with a considerably high state of charge.
However, drivers who are starting their journey during the rest of the day are characterized
by lower values of state of charge, since it is assumed their travel is starting from the
workplace or other locations that do not usually offer charging stations.

Table 1. Characterization of mobility parameters.

Range

Time (h) LDV HDV

lt (km) 25/125 120/400

d −1/+1 0.63

SoCi
0–12
12–24

0.6/0.8
0.3/0.5

0.6/0.8
0.3/0.5

Ebat (kWh) 15/25 54/180

fe 5 0.45

The charging pattern implemented in the static model follows a few basic assumptions:

• A vehicle needs to be recharged if its SoC goes below a minimum level of 20%: below
this value, the driver will experience charging anxiety and will charge at the nearest
charging station in its driving direction.

• Once the EV has reached its energy demand at the static charging station, a new
energy demand will be selected from a random range. The minimum of this interval
corresponds to the amount of energy necessary to complete the specific journey of the
car. The maximum value is the energy necessary to reach 80% of the battery capacity,
where the charging current decreases due to the chemical characteristics of common
vehicle batteries [22].

• Plug-in charging stations are assumed to be characterized by a maximum capacity of
50 kW for LDVs and 400 kW for HDVs.

Further information on the share of electric vehicles and the static charging station
infrastructure is given in Section 3.3.1.

3.2.2. Dynamic Energy Model

The energy model implemented for the calculations of the dynamic energy demand is
analogous to the one used in [11]: the power to the wheels is calculated based on factors
shown in Table 2. Moreover, the regenerative breaking potential should be evaluated in
order to assess the demand along the route (especially for HDVs due to their high inertia).
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Table 2. Dynamic Energy model: parameters characterization.

LDV HDV

Mass (kg) 1500 40,000

Air resistance coefficient 0.3 0.63

Front area of the vehicle (m2) 2.1 3

Average speed (km/h) 80 80

Acceleration values (m/s2) 1.5 1

Rolling resistance coefficient 0.012 0.007

3.3. Charging Infrastructure Scenarios

Three main charging scenarios are discussed, and a corresponding design methodol-
ogy is proposed.

The static scenario, as the name may suggest, makes use of the Static Energy Model
for both LDVs and HDVs. The inductive scenario solely uses the Dynamic Energy Model
for both LDVs and HDVs as a basis for the Substation Selection Algorithm. Finally, in the
Hybrid Scenario, both energy models are used: firstly, the dynamic energy demand of
HDVs is calculated and used as an input for the substation selection algorithm. Successively,
static energy demand of LDVs is calculated and distributed along the substations selected.

3.3.1. Static Scenario

In the static scenario, the energy model described in Section 3.2.1 is implemented for
both LDVs and HDVs, and a visual overview of the Static Methodology is provided in
Figure 1.

1 
 

 
 
 
Figure1 
  

Figure 1. Methodology for the static scenario.
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• As a first step, it is necessary to assume a share of electric vehicles to be electrified:
based on current policies, it is expected that in 2030, up to 25% of all road transport
vehicles will be electric. In order to meet global climate goals, this percentage should
increase up to 45% [12].

• The locations of the charging stations are defined based on heuristics: charging stations
were located every 50 km in line with the recommendation of the European Joint
Research Center. It is stated that for every highway direction, a maximum distance of
60 km would provide adequate infrastructure [23]. The first charging station is located
on the stretch in order that its distance from the entry point of the road is below 50 km,
and the following stations are located along the highway applying a space interval of
50 km.

• A first load assessment is carried out to detect if the traffic demand is split between the
stations in an even way. If the simulation output shows one or multiple stations that
are loaded substantially more than the average station along the highway, because of
the traffic conditions, then another charging station is added in order to flatten and
distribute the demand.

3.3.2. Inductive Scenario

The main contribution of the proposed methodology is represented by the Substation
Selection Algorithm (SSA) (in Figure 2), which is characterized by the following steps.
The inductive infrastructure is visualized in Figure 3.

Figure 2. Methodology for the inductive scenario.
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Figure3 
 
 
  

Figure 3. Illustration of the Inductive Infrastructure.

• The Dynamic Energy Model produces an energy demand output along the highway,
which depends mainly on the varying traffic flow.

• Medium-Voltage Substations in the near proximity of the highway are selected.
The minimum requirements in order execute this step are the geospatial coordinates
of the substations, and the voltage level of the transformer.

• The euclidean distance of a particular substation from the highway is defined as dh. As
a first step, dh is calculated for all the substations. Secondly, two cables are stretched
from each of them, as illustrated in Figure 3. Depending on the position at which
the substations are located, and the traffic load present on the highway stretches,
the length of the cables that are electrifying the highway will change due to voltage
drop limits. The distance between the first traction substation supplied by the MV line
and the last one is defined as de. It is important to highlight that given a substation at
distance dh from the highway and keeping all other factors constant (voltage level,
type of cable, load on the cable etc.), we can say that de and dh are in a relationship for
which their sum remains constant. Thus, if dh is increased, de decreases. This factor is
central in the catenary design due to regulatory and economic disadvantages such
as voltage drop, losses, and cabling costs. In [24], the authors state that taking into
account a MV grid in the range of 11–22 kV that supplies only a catenary system,
the maximum distance allowed for voltage regulations should be in the 10–20 km
range. At the same time, increasing the line voltage (e.g., up to 30 kV) allows the
length of the electrification stretch to be increased.

• Each substation is characterized by the energy it should hypothetically provide if it
was part of the dynamic infrastructure. Substations are then sorted: the order reflects
a trade-off between proximity to the highway and traffic level.

• One by one, the algorithm connects the substations to the highway, starting from the
one which is characterized by the highest load. A condition in the algorithm ensures
that cables do not overlap each other.

• The algorithm ends when a chosen share of the highway has been electrified, which is
named the Rate of Electrification (RE).

In Figure 4, it is illustrated how the selection algorithm operates: substations are
selected from the OSM dataset within a range of 15 km from the highway. In the inductive
scenario, both light and heavy duty vehicles are charged while driving, therefore:

• The Dynamic Energy Model is used to calculate their energy demand
• The SSA described in this chapter is applied
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Figure 4. On the left, substations in proximity to the highway. On the right, the result of the SSA.

In Table 3, the efficiencies and distances [24] of traction substation (or charging stations
for plug-in scenario) are presented.

Table 3. Characterization of the charging infrastructure.

Efficiency Distance (m)

Inductive 0.77 2000

Catenary 0.77 2000

Plug-in 0.73 50,000
Efficiency refers to distribution, charging and electrical engine efficiency combined, as in [11].

3.3.3. Hybrid Scenario

• The algorithm implemented for the selection of the substation for the hybrid scenario
is the same as in the inductive scenario, with a small difference: only HDV traffic is
taken into account for calculations, as shown in Figure 5.

• Finally, the selected substations receive on the spot the energy demand from LDVs
charging at plug-in stations.

Figure 5. Methodology for the hybrid scenario.

For power flow calculations, it is assumed that the charging station is located at the
nearest point from the distribution substation on the highway, supplied by one of the cables
stretching from it, as is shown in Figure 6.
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Figure6 
 
 

Figure 6. Illustration of the hybrid infrastructure.

4. Case Study: Electrification of E18

The methodology described in this paper is applied to a stretch of the E18 highway
in the south of Norway, stretching for 278 km from Kristiansand to Oslo, and is heav-
ily used for freight transport. The highway is already hosting a Fast Charging Station
(FCS) in Langrønningen [25], and more chargers are going to be installed on the stretch
(Tesla superchargers in Grenstøl [26]), which highlights the electrification potential of
the highway.

4.1. Design

The inductive and hybrid scenarios are designed for the worst-case scenario: voltage
drop is calculated in Pandapower in the worst hour for the most loaded substation. The
recommendation for planning of Norwegian MV grids is to set the limit on maximum
voltage drops at 5%.

4.2. Input Data

For this study, there are three main categories of data that were used to apply the
methodology presented:

• Traffic. Inspired by [27], data of the hourly passing vehicles was downloaded from [28]
for the year of 2019, for both HDVs (over 7.6 m of length) and LDVs (below 5.2 m),
for a total of 35 measuring stations across the highway. In Figure 7, the spatial and
temporal dependencies of the data input are presented.

• Electric Infrastructure. The geolocations of the substations connecting the high-voltage
to the medium-voltage grid were downloaded from the Open Street Maps dataset [29].
Then, a proximity analysis was implemented in order to filter only substations that
were at a maximum distance of 15 km from the highway.

• Road Infrastructure. A graph of the highway is downloaded from Open Street Maps
to follow distances and design the charging infrastructure with accuracy. The altitude
profile of the road has been evaluated through Google Maps—from the analysis of the
altimetrical profile, it is concluded that the contribution of regenerative breaking can
be neglected. In fact, less than 1% of the road share is characterized by slopes over 2%.

Figure 7. Traffic data.
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Data Processing

The hourly traffic data measure the passing vehicles in the location where the measur-
ing stations are located. This information can be used directly as input data for the Dynamic
Energy Model, since it is not necessary to follow single vehicles in order to determine
their charging needs: the energy demand is directly proportional to the amount of vehicles
that are passing by. Instead, in order to develop the energy model for the static charging
scenario, it was necessary to calculate the number of vehicles entering and exiting from
road junctions, starting from the available data of passing vehicles. In order to do this, it
was necessary to estimate the amount of vehicles going in and out, on average, for every
point of access to the highway.

4.3. Results
4.3.1. Static

When locating charging stations, it was assumed that the same point of connection
serves both driving directions: in reality, two separate charging stations are installed on the
two sides of the road. For simplicity, we assume that they are located near to each other
and the same feeder and distribution substation is supplying them. No queuing model
is applied: all the vehicles that arrive to the stations are immediately charged. Because of
this, the quality of the service offered is not evaluated. Nevertheless, if the cars have
to be charged as they arrive to the station, an excessive amount of chargers should be
installed. This inherently means that drivers must undergo queues, at least during the
hours with most traffic. It is notable to mention that the average charging time calculated
for HDVs results in being over 1.5 h, which can result in a decreased efficiency in the
logistics of the transport sector. Finally, no power flow is included for the static scenario,
since it is assumed that the feeder can sustain the voltage drop needed to supply the static
energy demand.

Following the procedure elaborated in the static scenario methodology, it is decided
that another charging station be added halfway between station 4 and 5 (see Figure 8).
Figure 9 shows how the average load on charging station 5 reaches values up to 6 MW in
one hour. Also, in the same Figure it is possible to recognize the impact of this adjustment
on the loading of the charging station, which shows a reduction in the average values of
the static charging demand to below 5 MW, which is finally considered acceptable.

Figure 8. Static scenario.
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Figure 9. Static scenario charging power.

4.3.2. Inductive

The rate of electrification was chosen as 50% for both dynamic scenarios: the number
of distribution substations assessed through the substation selection algorithm is 8, and
the maximum energy demanded for the inductive scenario is almost 3 times the one for
the static scenario (see Figure 10), Charging while driving substantially increases the total
amount of energy demanded: this result is calculated based on the assumption that all
electric cars driving on the highway will charge while driving.

Figure 10. Inductive scenario charging power.

A power flow analysis was developed in order to assess whether the voltage drop
along the MV line and the substations fall below the planning limit that is usually imple-
mented by Norwegian grid companies (5%). For this scenario, it was assessed that the
cable characterized by the FeAl nr. 50 (detailed characteristics of the cable can be accessed
from [30]) effectively sustains the voltage drop.

4.3.3. Hybrid

In this case, the cable used is FeAl nr. 25 for the cable supplying only catenary traction
substations and FeAl nr 50 [30] for the cable supplying both the CS and the catenary
charging infrastructure. The hybrid scenario is the one that shows the smallest maximum
load on distribution substations: the demand from LDVs is distributed along more charging
stations than in the static scenario, decreasing the maximum power required. Moreover,
the dynamic demand of the HDVs represents a small share of the total dynamic load, which
can be assessed when comparing it to the inductive scenario (see Figure 11).
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Figure 11. Hybrid scenario charging power.

4.4. Discussion

The results show that the static scenario gives the lowest average power load on the
substations. On the other side, even if vehicles are assumed to charge as they arrive to
the stations (since no queuing model is applied), the average charging time, especially for
HDVs, is considerably longer compared to standard refueling time. This can hinder the
implementation and investments in the uptake of electric trucks. The inductive scenario
presents the highest average and maximum load. This, together with the fact that inductive
charging is the least mature and the most costly [31] technology analyzed, makes this
alternative the least suitable for the case study analyzed. A solution to decreased charging
times would be to equip trucks with larger batteries (over 180 kWh) which is, on the other
side, translated into higher total cost of the vehicles. Instead, the hybrid combination of
the catenary charging infrastructure together with static CSs sensibly reduces the power
requirements on the grid. From the final user perspective, the implementation of the hybrid
scenario eliminates long charging times for HDVs (charged on the move), even if it requires
the installation of pickup elements on trucks.

5. Conclusions

In this paper, a methodology to design the electric infrastructure to supply both heavy
and light duty electric vehicles on a highway is described. For the scope of this paper, two
types of energy models were used to estimate the electric charging potential, and three
different charging technologies were implemented to supply the estimated load. The
presented methodology suggests an approach to plan highway electrification through grid
planning and expansion. The final output is the design of the charging infrastructure for
three different scenarios: static, inductive, and hybrid, in which the latter makes use of both
static and catenary dynamic charging. Medium-voltage substations are chosen through
an algorithm in order to minimize the length of the cable used for each infrastructure
scenario. The methodology is finally applied to a real case study, the E18 highway in
Southern Norway, in which electric infrastructure geospatial information together with
traffic and road infrastructure data is used to produce the electric supply design. Power
flow calculations are performed in order to estimate the voltage drop and assess the suitable
type of cable for the charging infrastructure. From the results, it is concluded that the
hybrid scenario presents lower charging times compared to the static scenario. The hybrid
scenario also substantially decreases the maximum load on the substations, which affects
the sizing of cables and substations.

Further work should focus on the load assessment of substations: in fact, only geospa-
tial position and mobility load were taken as decision variables. Grid expansion costs
could therefore be evaluated more comprehensively, and a detailed cost-assessment can be
the basis for a techno-economical comparison between scenarios. A queuing model or an
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admission mechanism (which redirect vehicles to nearby stations) should be applied in
order to assess a realistic design of the static scenario. In fact, the assumption that vehicles
charge as they arrive can substantially increase the maximum load on charging stations.
Moreover, it could be relevant to add a user perspective and the EV users’ possible impact
on the overall waiting times. Finally, there is a need to further investigate the proposed
architecture with different traffic conditions: even if the main contribution of the study
relies on the formulated methodology, a sensitivity analysis of the traffic volume could be
evaluated for a future scientific study.
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