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Abstract: Support vector data description (SVDD) has been widely applied to batch process fault
detection. However, it often performs poorly, especially when incipient faults occur, because it
only considers the shallow data feature and omits the probabilistic information of features. In
order to provide better monitoring performance on incipient faults in batch processes, an improved
SVDD method, called deep probabilistic SVDD (DPSVDD), is proposed in this work by integrating
the convolutional autoencoder and the probability-related monitoring indices. For mining the
hidden data features effectively, a deep convolutional features extraction network is designed by a
convolutional autoencoder, where the encoder outputs and the reconstruction errors are used as the
monitor features. Furthermore, the probability distribution changes of these features are evaluated by
the Kullback-Leibler (KL) divergence so that the probability-related monitoring indices are developed
for indicating the process status. The applications to the benchmark penicillin fermentation process
demonstrate that the proposed method has a better monitoring performance on the incipient faults
in comparison to the traditional SVDD methods.

Keywords: batch process; incipient fault; support vector data description; deep learning

1. Introduction

Due to the huge market demand for small-batch and high-added-value products, the
batch process has been important means of production in modern industrial systems. Typi-
cal batch processes can be seen in the pharmaceutical industry, fine chemical engineering,
food production, and semiconductors, etc. Compared with the traditional continuous
process, the batch process is more complicated due to the significant process nonlinearity
and its non-stationary property. In order to ensure good production quality and maximize
the factory profits, real-time fault detection and process monitoring technology has been
extensively studied in recent years [1,2].

The present fault detection methods can be categorized into model-based and data-
based. Because there exists great difficulty in building mechanism models, model-based
methods are rarely applied in batch process monitoring. On the contrary, as the advanced
computer control systems bring a large amount of process data, data-driven fault detec-
tion methods have become a topic of major interest [3,4]. These data-driven methods
apply machine learning and multivariate statistical analysis tools to extract data features,
and they then build the statistical monitoring models to describe the process behaviors.
Some classical data-driven methods include principal component analysis (PCA), slow
feature analysis (SFA), canonical variate analysis (CVA) and support vector data description
(SVDD), etc. [5–7]. As the process data of multiple batches constitute a multiway matrix
involving the batch, variable and time, these methods used in batch process monitoring are
often called multiway methods, e.g., multiway PCA (MPCA), multiway SFA (MSFA), mul-
tiway CVA (MCVA) and multiway SVDD (MSVDD). For convenience, the word multiway
is omitted in this paper since all the discussed methods are multiway-related.
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PCA extracts the data features by seeking for the maximal data variations, and it has
been a popular method in the data-driven process monitoring field due to its simplicity
and effectiveness. Aiming at the future value estimation problem in one batch, Ge and
Song [8] studied the adaptive substatistical PCA method and tested its performance on the
semiconductor batch process. To alleviate the influence of the growing variable number
in the batch process, Pimentel et al. [9] designed a PVS-PCA method by applying Pareto
variable selection (PVS) to select the important variables. PCA is a linear transformation
in nature, while the real industries are often nonlinear. Therefore, some nonlinear PCA
versions, such as kernel PCA and autoencoder, have been put forward. Kernel PCA is the
combination of PCA and kernel trick, which avoids the explicit nonlinear transformation by
kernel function mapping. By introducing the concept of additive kernel, Yao and Wang [10]
discussed an online monitoring method based on generalized additive kernel PCA. An
autoencoder builds the neural networks to extract the nonlinear principal components.
Considering the local data structure, Gao et al. [11] discussed the Laplacian autoencoder
method for batch process monitoring by integrating the Laplacian regularization into
the autoencoder loss function. SFA is an emerging dynamic data analytical method for
extracting the slowly varying features. Zhang and Zhao [12] applied SFA to monitor the
dynamics and steady states of batch processes, while Zhang et al. [13] developed a global
preserving kernel SFA for batch process fault detection. CVA identifies the subspace models
by maximizing the covariance between the historical and future observations. Cao et al. [14]
built a multiway muti-subspace CVA method to distinguish if the process faults influence
the quality variables.

Different to the above-mentioned methods with the strict Gaussian distribution as-
sumption, SVDD can deal with non-Gaussian and nonlinear data simultaneously. As a
one-class classification method, SVDD recognizes the anomaly points by establishing the
spherical boundary of the normal batch data. Ge et al. [15] firstly introduced SVDD to
batch process monitoring and demonstrated its monitoring superiority. By treating the
variable’s trajectory as a function, the functional data analysis is combined by Yao et al. [16]
with SVDD-based batch process monitoring. For identifying the variation behaviors of the
batch process, Lv and Yan [17] proposed a hierarchical SVDD for batch process monitoring
by integrating univariate monitoring, subspace monitoring and whole-space monitoring.
Wang et al. [18] firstly applied the unsupervised multiscale sequential partitioning method
to divide the operation phases and then used the SVDD to build multiple local SVDD mod-
els. In order to monitor the time-varying batch process effectively, Lv et al. [19] presented a
just-in-time learning SVDD method. Aiming at the unreasonable detection threshold of the
traditional boundary SVDD, Zhang et al. [20] proposed a multi-boundary SVDD model for
batch process monitoring, which sets the second control limit to describe the normal batch
data variations. Considering the process’ local and dynamic property, Wang et al. [21]
designed an improved SVDD method by combining local data segmentation and slow
feature analysis.

Although SVDD has achieved many successful applications in the batch process
monitoring field, its performance is often unsatisfactory when an incipient fault occurs. An
incipient fault is a fault with a small fault amplitude and inapparent influences. For many
serious faults, their early stages can be considered incipient faults. If these serious faults
can be considered incipient, it is possible to take measures to avoid their destructive effects.
In order to prompt the incipient fault detection capability of SVDD, PCA-SVDD has been
put forward by Li et al. [22], where PCA is used to perform the data subspace decomposition
and SVDD is applied to build the monitoring statistics. Its application to a centrifugal chiller
system demonstrate that PCA-SVDD is more effective in incipient fault detection than the
basic SVDD method. Similarly, Zhang and Li [23] built a TS-SVDD method by combining
TS-PCA for process dynamic feature extraction, and Wang et al. [24] constructed a MIC-
PCA-SVDD method and validated it on the polyethylene industrial process. These studies
demonstrate that PCA-SVDD can achieve better detection of incipient faults. However,
PCA-SVDD still belongs to the group of shallow learning methods, which cannot mine
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the intrinsic data features sufficiently. In recent years, deep learning methods have shown
great success in many big data processing fields, including image recognition, natural
language processing and genetic data analysis [25–27]. Deep learning neural networks
utilize the mutiple stacked hidden layers to mine the intrinsic data features, which is
helpful to improve the pattern recognition performance.

Motivated by the above analysis, the aim of this paper is to design a deep SVDD model
for better incipient fault monitoring. In order to achieve this goal, a deep convolutional
feature-based probabilistic SVDD method is proposed for monitoring incipient faults in
batch processes. Different to the traditional shallow feature extraction, this method applies
a convolutional autoencoder network to extract the deep data features. The extracted
features include two parts: the encoder output and the reconstruction error. In order to
make use of the probability information of these features, the Kullback-Leibler divergence
is applied to measure their probability distribution changes so that the original deep
features are transformed into probability-related features. Further, SVDD modeling is
performed on these probability-related features to build the monitoring indices for sensitive
incipient fault detection. Finally, we use a penicillin fermentation process to validate the
proposed method.

2. Preliminaries
2.1. Batch Process Data Preprocessing

Batch processes produce the same products by the batch-by-batch mode. As one batch
operation brings a two-dimensional matrix involving the variable and sample dimension,
the training data from multiple batches constitute a three-dimensional matrix X(I × J × K),
where I, J, K represent the number of batches, variables and samples. This kind of multiway
dataset is not directly analyzed because most of the present statistical modeling methods
can only deal with a two-dimensional data matrix. Therefore, we need to unfold the
three-dimensional data into a two-dimensional matrix and perform the corresponding
normalization in the preprocessing stage.

The typical preprocessing method is batch-variable unfolding [13]. Its details are
demonstrated in Figure 1. Firstly, the original three-dimensional data matrix X(I × J × K)
is unfolded along the batch direction into X(I×KJ). After the batch unfolding, the data are
scaled to zero-mean and unit-variance in this direction. Secondly, data are rearranged along
the variable direction into X(IK× J) to highlight the variation of the variables. After these
two steps, a two-dimensional matrix is available for the following statistical modeling.

Figure 1. Batch-variable unfolding procedure.

2.2. Overview of SVDD Principle

SVDD is a well-known one-class classification algorithm and has been widely applied
to different kinds of anomaly detection tasks [7,28]. Its main idea is to find a minimal
hypersphere to enclose as many training samples as possible.
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Given the training dataset {xi, i = 1, 2, · · · , n}, the SVDD optimization objective can
be described as [28]

min
R,c,εi

R2 + γ
n

∑
i=1

εi (1)

s.t. ||xi − c|| ≤ R2 + εi, εi > 0, i = 1, 2, · · · , n (2)

where c is the center of the hypersphere, R is the radius of the hypersphere, εi is the slack
variable, and γ is the trade-off parameter.

The above optimization is under the linear assumption. However, the real process
data often have nonlinear relationships. Therefore, a nonlinear mapping function Φ(.) is in-
troduced to transform the original data space into a high-dimensional feature space, where
the data are linearly related. In this case, the SVDD optimization constraint Equation (2)
should be rewritten as

s.t. ||Φ(xi)− c|| ≤ R2 + εi, εi > 0, i = 1, 2, · · · , n (3)

By introducing the Lagrange multiplier, the dual optimization problem is given by [28]

min
αi ,αj

n

∑
i=1

αiΦ(xi)
TΦ(xi)−

n

∑
i=1

n

∑
j=1

αiαjΦ(xi)
TΦ(xj) (4)

s.t. 0 ≤ αi ≤ γ,
n

∑
i=1

αi = 1. (5)

where αi, αj are the Lagrange multipliers. As the real nonlinear mapping is often unknown,
the kernel trick is utilized to deal with the inner production of two nonlinear vectors.
This means that

Φ(x)T
i Φ(xj) = K(xi, xj) (6)

where K(.) represents the kernel function operation. In this paper, the common Gaussian
kernel function is applied.

To solve the quadratic programming problem in Equations (4) and (5), the hypersphere
center is

c =
n

∑
i=1

αiΦ(xi) (7)

and the hypersphere radius is

R = ||Φ(x∗i )− c|| = ||Φ(x∗i )−
n

∑
i=1

αiΦ(xi)|| (8)

where x∗i is any sample corresponding to the 0 < αi < C, which is the so-called support vector.
Given the new testing vector xt, its squared distance to the hyphersphere center is

used to construct the monitoring index D as [21]

D = ||Φ(xt)− c||2 = K(xt, xt)− 2
n

∑
i=1

αiK(xt, xi) +
n

∑
i=1

n

∑
j=1

αiαjK(xi, xj) (9)

In the anomaly detection scenario, the monitoring index of normal samples should
be smaller than R2. The samples with D > R2 are usually thought to be anomaly points.
However, the hypersphere radius R lacks clear statistical significance. By referring to
the common practice in data-driven fault diagnosis fields, this paper applies the ker-
nel density estimation technique to determine the 99% confidence limit as the detection
threshold Dlim [21]. This means that the normal samples have the D < Dlim with a 99%
confidence level.
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2.3. PCA-SVDD Method

Considering that the original process data are correlated and the intrinsic fault features
may be covered by noise, PCA is often used to capture the uncorrelated data features [7].
Given the training data matrix X = [x1 x2 · · · xn]T ∈ Rn×m, it can be decomposed into
two parts, namely the principal component matrix T and the residual matrix E. The PCA
decomposition procedure is formulated as

X = TPT + E (10)

where P ∈ Rm×k is the loading matrix, describing the project directions of the first k
principal components.

PCA is integrated with SVDD for the enhanced SVDD model, called PCA-SVDD.
In this model, PCA is firstly used to analyze the original training data and then SVDD
modeling is carried out on the matrices T and E, respectively. For the testing vector xt,
its principal component vector and residual vector are denoted by tt and et, respectively,
which are computed by

tt = xtP (11)

et = xt − xtPPT (12)

The corresponding two SVDD monitoring indices D(t) and D(e) are built as [22]

D(t) = ||Φ(tt)− c(t)||2 (13)

D(e) = ||Φ(et)− c(e)||2 (14)

Different to the basic SVDD method with only one monitoring index on the original
data, PCA-SVDD has two monitoring indices for the principal components and residual
components, respectively. Their detection thresholds D(t)

lim and D(e)
lim are determined by

the kernel density estimation technique. As two uncorrelated subspaces are monitored,
PCA-SVDD can investigate the process changes more elaborately.

3. The Proposed DPSVDD Method
3.1. Method Framework

When the traditional SVDD and PCA-SVDD methods are applied to monitor compli-
cated industrial processes, they often neglect the early detection of incipient faults because
these methods are only able to extract the shallow features. In order to deal with this issue,
this paper proposes one deep probabilistic SVDD (DPSVDD) method by combining the
deep learning technology. On the one hand, a typical deep neural network, the convo-
lutional autoencoder, is introduced to mine the deep data features in order to reflect the
incipient faulty information more sensitively. On the other, considering that the incipient
faults do not lead to a significant fault amplitude but may lead to local probability changes
in the data features, this paper applies the Kullback-Leibler (KL) divergence to transform
the deep features into probability-related features.

The improved SVDD method has the following framework, shown in Figure 2. Ac-
cording to this figure, the DPSVDD method involves four steps: data preprocessing,
deep features extraction, probability analysis and SVDD modeling. After preprocessing,
the batch process training data are input into the convolutional autoencoder for the mining
of deep features, including the encoder output and reconstruction error. Then, the Kullback-
Leibler divergence is applied to extract probability features. Lastly, the SVDD modeling is
performed to build the monitoring index.
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Figure 2. The proposed method framework.

3.2. Deep Convolutional Feature Extraction

This paper applies the convolutional autoencoder to extract the hidden data represen-
tations. The autoencoder is firstly introduced. An autoencoder is a specific unsupervised
neural network where the expected outputs are set to be the same as the inputs [29,30].
As shown in Figure 3, usually, one autoencoder network includes five kinds of layers:
input layer, encoder layer, bottleneck layer, decoder layer and output layer. The first three
parts construct the encoder, which compresses the input data to obtain the main data
variations. In some sense, the encoder can be viewed as one nonlinear PCA. The last
three parts constitute the decoder, which tries to recover the original input from the ex-
tracted features at the bottleneck layer. The optimization objective of the autoencoder
is to minimize the reconstruction error between the inputs and the outputs [30]. In the
training process, the network parameters are adjusted based on the back propagation of
the reconstruction errors.

Output

layer

Input

layer

Encoder

layer

Decoder

layer
Bottleneck

layer

Figure 3. The autoencoder structure.

A convolutional autoencoder inherits the feature extraction idea of the basic autoen-
coder, but it uses the convolutional operation to replace the fully connected operation
in the encoder and decoder layers [31]. Due to the use of multiple convolutional layers,
the network node number is enlarged. Therefore, the pooling layers are often designed
after the convolutional layers. Similarly, the upsampling layers are inserted after the decon-
volutional layers. The common convolutional autoencoders include the 1D type and 2D
type [31,32]. The 2D convolutional autoencoder preserves the temporal and spatial locality
effectively. A typical 2D convolutional autoencoder is shown in Figure 4.
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Figure 4. The convolutional autoencoder structure.

Two main operations in a convolutional autoencoder are convolution and pooling.
The convolutional operation applies the convolutional kernel to extract the local features,
which can be expressed by

T(l) = f (l)(∑ X
⊗

W (l) + b(l)) (15)

where X, T(l) stand for the input matrix and the convoluted output matrix, respectively,
⊗

denotes the convolution operation, W (l) stands for the lth convolution kernel, b(l) is the
bias corresponding to the W (l). f (l)(.) is the activation function at the l-th layer. In this
paper, the commonly used the Rectified Linear Unit (RELU) function is used.

The pooling operation compresses the data dimension for efficient computation.
The pooling layer, also called the subsampling layer, is usually used after the convolutional
layer. There are two common types of pooling: max pooling and average pooling. In this
paper, average pooling is applied.

Based on a series of convolution and pooling operations, the encoder output, i.e., the
bottleneck layer, can be obtained

T = encoder(X, W (1), · · · , W (LE), b(1), · · · , b(LE)) (16)

where LE is the number of convolutional operations in the encoder.
Similarly, the output of the decoder is obtained based on the deconvolutions and

up-samplings by

X̂ = decoder(T , W̃ (1), · · · , W̃ (LD), b̃(1), · · · , b̃(LD)) (17)

where X̂ is the reconstructed input, and LD is the number of the deconvolutional operations
in the decoder.

The mean square error between the original input data and the reconstructed data can
be used as the cost function

min L =
1
n

n

∑
k=1
||X(k)− X̂(k)||2F (18)

where X(k), X̂(k) represent the k-th input image and the corresponding reconstruction im-
age. During the training, the reconstruction error is minimized through optimizing the net-
work weights so that the final weights are optimal as W∗(1), · · · , W∗(LE), b∗(1), · · · , b∗(LE) ,
W̃∗(1), · · · , W̃∗(LD), b̃∗(1), · · · , b̃∗(LD).

Based on the CAE, two kinds of features can be obtained for process monitoring.
One is the bottleneck layer, also the encoder output, which represents the compressed
data variations, while another is the reconstruction error, which represents the remaining
residual information.

For the test image data Xt, the encoder output vector is denoted as tt, and the recon-
struction error vector is expressed by et. They are expressed by

tt = encoder(Xt, W∗(1), · · · , W∗(LE), b∗(1), · · · , b∗(LE)) (19)
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et =
1
d

d

∑
i=1

Xt(i, :)− X̂t(i, :) (20)

where d is the width size of testing image data, and X̂t is the reconstructed input data as

X̂t = decoder(tt, W̃∗(1), · · · , W̃∗(LD), b̃∗(1), · · · , b̃∗(LD)) (21)

By applying SVDD modeling, we can obtain the corresponding CAE-SVDD monitor-
ing indices D(t) and D(e). Their detection thresholds are also determined by the kernel
density estimation on the training data.

3.3. Probabilistic Monitoring Index Construction

As a deep learning technique, CAE provides more effective features for SVDD model-
ing. This factually prompts the traditional shallow SVDD model to the deep SVDD model.
However, the deep SVDD model based on CAE feature extraction still omits the probability
information of the monitored features, which may be helpful in the incipient fault detection.
In some incipient fault cases, the probability distribution of features is affected although
the amplitude is not significantly changed.

To evaluate the changes in the probability distribution of features, Kullback-Leibler
divergence (KLD) is often used. KLD, also called relative entropy, measures the difference in
two given probability distributions. For a random variable x, its two continuous probability
distribution functions are denoted as P(x) and Q(x). The KLD of P(x) over Q(x) is
expressed by

KLD(P||Q) =
∫ ∞

−∞
P(x)ln

P(x)
Q(x)

dx (22)

It should be noted that KLD is not a symmetric metric. In other words, the KLD
from P(x) to Q(x) is not the same as the KLD from Q(x) to P(x). In practice, a modified
symmetric KLD version is defined as

KLD(P, Q) =
∫ ∞

−∞
P(x)ln

P(x)
Q(x)

dx +
∫ ∞

−∞
Q(x)ln

Q(x)
P(x)

dx (23)

Under the assumption of Gaussian distribution, the expressions of P(x) and Q(x) can
be given as

P(x) =
1√
2πσ

exp(− (x− µ)2

2σ2 ) (24)

Q(x) =
1√
2πσ̃

exp(− (x− µ̃)2

2σ̃2 ) (25)

where µj, σj are the mean and the standard variance of P(x), and µ̃j, σ̃j are the mean and
the standard variance of Q(x).

Furthermore, the KLD can be computed as

KLD(P(x), Q(x)) =
1
2
[σj

σ̃j
+

σ̃j

σj
+ (µj − µ̃j)

2(
1
σ̃j

+
1
σj
)− 2

]
(26)

In the fault detection scenario, we can utilize Q(x) as the reference probability distribu-
tion, while applying the P(x) as the tested probability distribution. If these two probability
distributions are the same, i.e., P(x) = Q(x), there exists KLD(P||Q) = 0. Otherwise,
KLD(P||Q) > 0. Therefore, KLD can be used to investigate the deviations of monitored
variables. In this paper, we apply the KLD to measure the probability changes of the
deep features tt = [tt,1, tt,2, · · · , ] and et = [et,1, et,2, · · · ], so that the probability-related
features are expressed by

tKLD
i = KLD(P(tt,i), Q(tt,i)) (27)

eKLD
i = KLD(P(et,i), Q(et,i)) (28)
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where tKLD
i , eKLD

i are the probability-related features corresponding to the encoder output
ti and the reconstruction error ei. Further, building the SVDD models based on these
probability-related features will yield deep probabilistic SVDD models.

4. Batch Process Monitoring Procedure

The monitoring procedure based on DPSVDD includes two phases: offline modeling
and online monitoring. In the first phase, process training data of multiple batches are
collected to build the DPSVDD model, while the online new data are projected onto the
developed model in the second phase. The monitoring indices are compared with their
threshold to indicate whether a fault occurs. The whole procedure is detailed below.

Offline modeling phase:

1. Collect the offline training data from the batch process and perform the preprocessing
using the batch-variable mode.

2. Apply the deep convolutional autoecoder to extract the encoder output and the
reconstruction errors as the process deep features.

3. Compute the probability-related features by the KL divergence corresponding to the
training data.

4. Build SVDD models based on the probability-related features of training data.
5. Compute the detection threshold of monitoring indices.

Online detection phase:

1. Collect the online new data vector and preprocess it based on the training data.
2. Project the preprocessed data onto CAE and obtain the corresponding features.
3. Compute the probability-related features by the KL divergence for the new data.
4. Calculate the monitoring indices of the new data vector.
5. Compare the monitoring indices with the corresponding detection threshold and

judge the process status.

It should be noted that the above procedure does not consider the model updating.
In real applications, when the engineers judge that the current model cannot reflect the nor-
mal operations, so that high rates of missing detection or false alarms occur, the monitoring
model should be updated.

5. Case Study

A case study on the penicillin fermentation process is given in this section. The peni-
cillin fermentation process is a complex biochemical reaction system with batch operations
and has been widely used as the benchmark objective for testing different batch process
monitoring methods [11,33,34]. A diagram of a penicillin fermentation reactor is shown
in Figure 5. This process consists of two main operating stages: the pre-culture stage and
batch feeding stage. During the initial pre-culture phase, a large number of the nutrients
necessary for cells are produced and penicillin cells appear during the period of exponen-
tial growth. In order to maintain a high yield of penicillin in the batch feeding stage, a
continuous supply of glucose to the fermentation process is needed to keep the biomass
growth rate constant. In order to provide the best conditions for the production of penicillin,
the temperature and pH of the fermenter are controlled in two closed control loops.
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Figure 5. The penicillin fermentation reactor diagram.

The process simulation is performed based on the software Pensim V2.0 [35]. In the
simulation procedure, we collect 17 measurements as monitoring variables. Gaussian
noises are added in the variable collection procedure. Thirty batches of normal operation
data are collected to form the modeling data set, where each batch consists of 400 h with
a sampling time of 0.5 h. This means that each dataset has 800 samples. In this paper,
the simulated normal operation data belong to the same operation mode. It is assumed that
all the used 30 batches are enough to describe the normal data changes sufficiently. Besides
the normal operation case, we also simulate six batches of faulty operations. The detailed
fault cases are listed in Table 1, which includes the step change and slope change in the
aeration rate, agitator power and substrate feeding rate.

Table 1. Six fault patterns in the penicillin fermentation process.

No. Fault Variable Fault Type Fault
Amplitude Lasting Time (h)

F1 Aeration rate Step 5% 101–400
F2 Aeration rate Ramp 0.5 101–400
F3 Agitator rate Step 1% 101–400
F4 Agitator rate Ramp 0.45 101–400

F5 Substrate
feed rate Step 6% 101–400

F6 Substrate
feed rate Ramp 0.003 101–400

The proposed method is compared with the other four methods: SVDD, PCA-SVDD,
AE-SVDD, CAE-SVDD. Among these methods, SVDD is the basic method. In the other
methods of PCA-SVDD, AE-SVDD, CAE-SVDD, different feature extraction layers are
designed. The proposed method not only considers the deep feature extraction, but also
utilizes the probability information to enhance the incipient fault detection. For the SVDD
method, the Gaussian kernel width is used and the trade-off parameter γ is set to 0.05.
When PCA is applied, the retained principal component number is determined by the
rule of 85% cumulative percentage of variance. In the AE-SVDD, the node number of the
bottleneck layer is set to 5. The CAE-SVDD is slightly complicated. As 2D-CAE is used,
the moving window 17× 17 is used to construct the 2D data image. The detailed CAE
network structure parameters are listed in Table 2.
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Table 2. Network structure parameters in CAE-SVDD.

No. Parameters Value

1 input patch size 17×17
2 filter number and size in 1st convolution Layer 8, 3× 1
3 size in 1st average pooling layer 2× 1
4 filter number and size in 2nd convolution Layer 4, 3× 1
5 size in 2nd average pooling layer 2× 1
6 filter number and size in 3rd convolution Layer 1, 1× 3
7 size in 3rd average pooling layer 1× 2
8 filter number and size in 1st deconvolution Layer 4, 1× 3
9 size in 1st upsampling layer 1× 2

10 filter number and size in 2nd deconvolution Layer 2, 1× 3
11 size in 2nd upsampling layer 2× 1
12 filter number and size in 3rd deconvolution Layer 8, 1× 3
13 size in 3rd upsampling layer 2× 1
14 filter number and size in 4th deconvolution Layer 16, 3× 1
15 filter number and size in 5th deconvolution Layer 1, 2× 2

The fault F2 is firstly illustrated, which is the ramp change in the aeration rate with
the slope of +(0.5 L/h)/100 h. The monitoring results of different methods are listed in
Figures 6–10. When SVDD is applied to monitor this fault, its monitoring chart is shown
in Figure 6, where the monitoring index D alarms until the 400-th sample with the fault
detection rate of 61%. Due to the strong noise and the slow speed of the incipient fault,
SVDD cannot detect this fault sensitively. By applying PCA for feature extraction, the
PCA-SVDD monitoring chart in Figure 7 gives a fault detection rate of 62% and 12% for
the monitoring indices D(t) and D(e), respectively. This result is slightly superior to the
SVDD’s. Further, using the autoencoder for nonlinear principal component extraction,
AE-SVDD achieves fault detection rates of 58.5% and 61.67% for the two monitoring indices,
respectively. Compared to PCA-SVDD, AE-SVDD improves the monitoring results of D(e)

significantly. Although these three methods have a slight performance difference, none of
them can detect this fault effectively. With the strong aid of the convolutional autoencoder
in mining deep features, CAE shows a clear improvement, as shown in Figure 9. In
particular, the index D(e) of CAE-SVDD detects the fault at the 270-th sample. Its fault
detection rate reaches 87.17%. However, its D(t) index gives a poor fault detection rate of
48.5%, which is even lower than the basic SVDD’s. By further considering the probability
information of deep features, as shown in Figure 10, the D(t) index of DPSVDD enhances
the detection performance to 71.83%, while the D(e) retains a high fault detection rate of
89.17%. The testing results on the fault F2 demonstrate that the CAE-SVDD can improve
the monitoring performance of incipient faults effectively, and the proposed DPSVDD can
lead to a further enhancement.
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Figure 6. SVDD monitoring charts for fault F2.
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Figure 7. PCA-SVDD monitoring charts for fault F2.
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Figure 8. AE-SVDD monitoring charts for fault F2.
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Figure 9. CAE-SVDD monitoring charts for fault F2.
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Figure 10. DPSVDD monitoring charts for fault F2.

Another illustrated case is fault F5, which involves a 6% step change in the substrate
feed rate. When this fault occurs, the SVDD D index in Figure 11 fluctuates around the
detection threshold and cannot indicate the fault clearly. Its fault detection rate is only
37.5%. When using PCA-SVDD in Figure 12, the detection results are still unsatisfactory
because its fault detection rates are 37% and 3.67%, respectively. Therefore, the linear
features cannot reflect this incipient fault effectively. By utilizing the autoencoder for the
capture of nonlinear features, the AE-SVDD monitoring charts in Figure 13 obtain a slight
performance improvement, with fault detection rates of 40.5% and 28.33% for D(t) and D(e),
respectively. With further mining of the deep convolutional features, CAE-SVDD can detect
this fault clearly, as shown in Figure 14, where the D(t)’s detection rate is 79.5%, while the
D(e)’s detection rate is 88.5%. The CAE-SVDD gives around a 40% and 60% increment
in terms of the fault detection rate, which shows the advantage of convolutional features.
When DPSVDD is applied in Figure 15, its D(e) index displays a similar performance to that
of CAE-SVDD. However, the D(t) index of DPSVDD achieves an 88% detection rate, which
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is 8.5% higher than the CAE-SVDD D(t)’s. In general, the proposed DPSVDD method has
the best monitoring performance in terms of the monitoring of fault F5.
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Figure 11. SVDD monitoring charts for fault F5.
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Figure 12. PCA-SVDD monitoring charts for fault F5.
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Figure 13. AE-SVDD monitoring charts for fault F5.
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Figure 14. CAE-SVDD monitoring charts for fault F5.
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Figure 15. DPSVDD monitoring charts for fault F5.
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All the fault monitoring results on the six faults are summarized in Tables 3 and 4.
In Table 3, it can be observed that the mean fault detection rates of SVDD D and PCA-
SVDD D(t) are both around 40%. However, the PCA-SVDD D(e) index can provide a
good supplement for incipient monitoring, although its monitoring performance is not
satisfactory, with a low mean fault detection rate of 9.19%. As AE-SVDD is used, the D(e)

index is strengthened so that the mean fault detection rate reaches 38.28%. For CAE-SVDD,
its mean fault detection rates of the two monitoring indices are 63.17% and 87.08%, respec-
tively, which are obviously higher than those of other methods. With the consideration
of probability information, the DPSVDD further improves the mean detection rate of D(t)

so that both indices provide higher mean fault detection rates of over than 80%. As for
each testing dataset, the first 200 samples represent the normal operation status. In the
ideal case, there should be no alarms when monitoring the normal samples. To evaluate
the false alarm rates of the different methods, the results are listed in Table 4. From this
table, we can see that all the FARs are around 1%. This is consistent with the use of the
99% confidence limit. However, it should be noted that the false alarm rate of DPSVDD
D(e) is slightly higher than the other methods. Further, considering that no significant
improvement can be found in terms of the fault detection rate, in practice, we can only
perform the probability analysis on the D(t) index.

Table 3. Fault detection rates (FDRs)(%) of the six tested faults by the five compared methods.

Method SVDD PCA-SVDD AE-SVDD CAE-SVDD DPSVDD

Index D D(t) D(e) D(t) D(e) D(t) D(e) D(t) D(e)

F1 27.50 30.33 3.50 22.33 26.50 17.17 98.83 91.33 96.83
F2 61.00 62.00 12.00 58.50 61.67 48.50 87.17 71.83 89.17
F3 8.83 8.17 4.17 8.00 7.83 85.17 92.83 96.17 93.50
F4 57.17 55.17 24.50 56.17 55.33 81.83 82.83 89.50 82.67
F5 37.50 37.00 3.67 40.50 28.33 79.50 88.50 88.00 87.83
F6 53.50 54.17 7.33 55.50 50.00 66.83 72.33 76.67 72.33

Mean 40.92 41.14 9.19 40.17 38.28 63.17 87.08 85.58 87.06

Table 4. False alarm rates (FARs)(%) of the six tested faults by the five compared methods.

Method SVDD PCA-SVDD AE-SVDD CAE-SVDD DPSVDD

Index D D(t) D(e) D(t) D(e) D(t) D(e) D(t) D(e)

FAR 1.25 1.17 1.08 1.25 1.00 1.33 0.42 0.92 3.0

In the above discussion, the proposed method is only applied to detect whether a
fault occurs. However, it cannot identify the type of fault that occurs. In fact, a complete
fault diagnosis system contains two features, namely fault detection and fault pattern
recognition. This paper only focuses on the former. The latter is also a valuable task that
deserves future study because it is important in carrying out fault recovery actions.

6. Conclusions

Timely fault detection is important to the safe running of batch processes. In order to
detect incipient faults sensitively, this paper developed an improved SVDD monitoring
method by integrating deep convolutional feature extraction and probability analysis.
The contributions include two aspects. On the one hand, a deep SVDD model is built based
on the convolutional autoencoder for mining the temporal-spatial data features sufficiently.
On the other hand, based on the extracted deep features, probability distribution differences
between the real-time data and the modeling data are measured by KL divergence so that
the probability-related deep features are obtained for the following SVDD monitoring
indices’ construction. The validation on the penicillin fermentation process shows that the
proposed method can provide more sensitive detection of incipient faults.
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Although a significant performance improvement is achieved by the proposed method,
it still encounters some challenges. The first is the issue of how to deal with the multimode
and multistage properties of batch processes. In this paper, a single global SVDD model is
built, which may be not sufficient for some complicated batch processes. In the future, it is
necessary to study the sub-model techniques for effectively handling the mutlimode and
multistage characteristics. Another problem is the deep network parameter optimization.
In this paper, the deep network structure and parameters are determined by user experience.
The question of how to optimize them is deserving of further discussion.
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