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Abstract: This paper presents an energy-saving approach for electric pumps widely used in agricul-
ture. A capacitor-run single-phase induction motor is used with a centrifugal pump. An appropriate
energy-saving frequency and voltage calculation algorithm is proposed in this paper. The fuzzy
controller is used to control the water flow rate of the electric pump. Moreover, the adaptive Tabu
search algorithm is used to identify induction motor parameters. The experimental results from
the energy-saving approach are compared with the valve control and V/f control in terms of input
power and power factor. From the experimental results, the electric pump using the proposed
energy-saving approach consumes minimum input power compared with other approaches. In
addition, the energy-saving approach can provide a good power factor at any flow rate.

Keywords: energy saving; single-phase induction motor; fuzzy control; adaptive Tabu search

1. Introduction

It is well known that the SPIM is widely used in industry because it is inexpensive,
durable, and easily maintained. This motor is also widely used in agriculture to drive
centrifugal pumps supplying water to plants, and each type of plant requires different
quantities of water [1,2]. Therefore, the adjustment of the water flow rate is important, and
this rate depends on the motor speed driving the centrifugal pump. However, the flow
rate of the water can only be controlled by using the valve adjustment technique and this
technique is not suitable for wide areas. The valve control is a simple method to adjust
the water flow rate, but this method cannot reduce the input power for energy-saving.
Motor speed control is the only option for adjusting the water flow rate. Moreover, motor
speed adjustment with voltage control [3,4] or V/f control [5–9] are widely used in many
applications. In this paper, the consumed energy of the motor using four techniques to
adjust the water flow rate is compared. The system of the SPIM drive, including the
centrifugal pump, is shown in Figure 1. A 48-V battery is the energy source of the system.
For remote agricultural plots, solar cells may be used as an electric source for electric
water pumps. Therefore, the 48-V battery in Figure 1 can be replaced by solar cells. The
soft-switching DC-to-DC converter is used to increase the voltage from the energy source
for driving the SPIM [10–12]. This part consists of a high-frequency inverter circuit, step-up
transformer, and rectifier circuit. The input voltage from the DC source is converted to
high-frequency AC voltage using the inverter circuit, and this voltage is converted to
DC voltage (Va) using the rectifier circuit. In addition, the buck converter and inverter
in Figure 1 are used to adjust the appropriate voltage and frequency feeding the SPIM,
respectively. The Va is equal to 300 V, and the variable voltage for the source of the inverter
varies between 0 and 300 V. The fuzzy controller is used to control the speed of the SPIM to
control the water flow rate with the appropriate frequency.
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Figure 1. The SPIM drive system for the centrifugal pump.

From the literature survey, there are many techniques to drive the SPIM that save
energy [13]. In 2001 [14], K. Sundareswaran proposed a method to adjust the voltage of the
main coil and directly connect the auxiliary coil to the supply to save energy. Moreover, the
voltage control of the auxiliary coil to reduce the motor-starting torque was presented by
S.-K. Park et al. [15]. In 2012, V. Thanyaphirak proposed the current ratio control between
the main and auxiliary coils using voltage adjustment depending on load quantity [16]. In
2017, R.L. Gorbunov presented an AC buck voltage converter for energy-saving compared
with the conventional SCR based on the voltage converter [17]. For the previous works, the
voltage adjustment method is applied for energy-saving in the SPIM, while the frequency
is fixed to the rated value. However, the frequency adjustment for energy-saving is often
applied for the three-phase induction motor [18–23]. In circuit theory, it is well known that
the impedance of the SPIM depends on the frequency, and the power loss in the SPIM can
be reduced by frequency adjustment to the appropriate value. Therefore, the appropriate
energy-saving frequency calculation of the SPIM at any speed and load torque is proposed
in this paper. Moreover, the SPIM drive using an energy-saving algorithm proposed in
this paper has not been reported in previous works. The inverter in Figure 1 is used to
adjust the energy-saving frequency of the voltage feeding the SPIM, and the buck converter
is used to adjust the voltage with the fuzzy controller to control the water flow rate in
terms of SPIM speed. Moreover, it is well known that the fuzzy controller does not need a
mathematical model of the system for controller design. Thus, SPIM speed control using
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the fuzzy controller is proposed in this paper. For the proposed algorithm, the accurate
motor parameters are necessary for the frequency calculation to minimize power loss in
the SPIM. Therefore, in this paper, the ATS approach is applied for the identification of
motor parameters. In addition, the ATS was proven for the convergent property [24–26].

This paper is structured as follows. The motor parameter identification using the ATS
is presented in Section II. The energy-saving algorithm for the SPIM drive based on the
appropriate frequency calculation is explained in Section III. Moreover, Section IV proposes
the water flow rate control using the fuzzy controller. In Section V, the experimental results
in terms of energy consumed for centrifugal pump driving by the SPIM are presented.
Finally, Section VI concludes the paper.

2. SPIM Parameters Identification

The accurate parameters of the motor are necessary for an energy-saving approach to
calculate the power losses. In this work, the parameters of the motor can be classified into
two groups. In the first group, the parameter is easy to establish by measuring or finding
on the data sheet. However, in the second group, it is difficult to know such parameters for
the rotor part, mutual inductance, and the moment of inertia. Therefore, the parameters in
the second group can be identified using the ATS. In the ATS, back-tracking and adaptive
radius mechanisms are applied to escape local deadlock values [24]. Moreover, as proven
by mathematical analysis, the ATS ensures that search results can be converged to achieve
the best global solution [24,25]. Thus, this paper will present the identification of the six
parameters (L1,R2,L2,Lm,La and J) of the SPIM using the ATS. The searching interval of the
ATS is set to ±10% from the value at rated power by using theoretical equations [27–29].
The accurate parameters of the SPIM from the ATS are shown in Table 1. In addition, five
parameters in the first group can be measured using laboratory instruments and are found
on the data sheet, shown as follows: R1 = 12.5Ω, Ra = 15.3Ω, C = 15µF, P = 2, and
a = 1.1056.

Table 1. Parameters of the single-phase induction motor.

Parameters Searching Interval Identified Value Using ATS

L1 [0.01744 0.02131] 19.30 × 10−3

R2 [0.01161 0.01419] 13.26
L2 [0.01744 0.02131] 19.50 × 10−3

Lm [0.35 0.43] 0.40
La [0.02131 0.02604] 24.20 × 10−3

J [0.0001 0.005] 0.0016

The parameter identification process using the ATS can be summarized in Figure 2.
The objective function in this work is the errorav between the experiment and simulation as
calculated in (1).

errorav =

√√√√√ NT
∑

i=1

[
speedexperiment(i)− speedsimulation(i)

]2
NT

(1)

In Figure 2, the ATS is applied to search the motor parameters using a SimPowerSystem®

toolbox in MATLAB under the ATS concept [30,31] for minimizing the errorav value.
The SimPowerSystem® toolbox in MATLAB is used to calculate speedsimulation. This
value is used to calculate the errorav, as shown in (1). The searching parameters in
SimPowerSystem® are adjusted by the ATS mechanism to minimize the errorav value.
There are five important values for the ATS: initial solution = 40, neighbor solution = 60,
radius of searching space = 80, decreasing factor of radius = 1.1, and the amount of
iteration = 300. These values can be found through testing by simulation to achieve the
best solution. The results of the ATS are shown in Table 1. In addition, the convergence
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of the ATS is illustrated in Figure 3. It can be seen that the errorav value can converge
rapidly to the minimum errorav value (0.0276). Moreover, the motor parameters from the
ATS are validated with the speed response. The speed response from the simulation using
these parameters is compared with the speed response from the experiment, as shown in
Figure 4. The response from the simulation is nearly the same as that of the experiment.
Therefore, the accurate motor parameters identified by the ATS are used in this work to
calculate the power loss of the motor.
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3. The Energy-Saving Algorithm

The appropriate frequency calculation algorithm for the SPIM is the energy-saving
approach proposed in this paper. Details of this algorithm are described in this section. The
appropriated frequency can provide the decreasing input power of the motor. Therefore,
the power loss of the motor is reduced. The appropriate frequency at any speed and load
torque condition can be calculated from the power losses equation of the capacitor-run
SPIM. This equation can be proven from the equivalent circuit, as shown in Figure 5.
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Figure 5 shows the equivalent circuit of the SPIM, which consists of the main and
auxiliary windings [32]. For the energy-saving concept, the Pscl , Prcl , and Pcore are the
considered losses to minimize in the paper. The Plosses of the SPIM can be calculated by
Equation (2).

Plosses = I2
1 R1 + I2

2 Ra︸ ︷︷ ︸
Pscl

+ I2
r11

0.5R2

s
+ I2

r12
0.5R2

(2− s)
+ I2

r21
0.5a2R2

s
+ I2

r22
0.5a2R2

(2− s)︸ ︷︷ ︸
Prcl

+ kcV2
1︸ ︷︷ ︸

Pcore

(2)

where
Ir11 = I1

jXm
R2/s+j(Xm+X2)

,

Ir12 = I1
jXm

R2/(2−s)+j(Xm+X2)

Ir21 = I2
jXm

R2/s+j(Xm+X2)

Ir22 = I2
jXm

R2/(2−s)+j(Xm+X2)

It is well known that frequency does not significantly affect Pcore [33–35]. Therefore,
frequency adjustment does not affect the reduction of core loss [36]. Moreover, Prcl is a
very small value compared with Pscl [37,38]. Thus, Pscl is significant for the appropriate
energy-saving frequency calculation. In (2), the Pscl depends on the I1 and I2 [36]. It is well
known that the steady-state condition is used to analyze energy saving. Therefore, the I2
can be neglected because it is a very small value in the steady-state condition. Thus, Pscl
depends only on the I1 as shown in (3). It can reduce a complicated equation to a simple
equation for loss calculation in this paper.

Pscl = I2
1 R1 (3)

In previous works on the three-phase induction motor [18–23], the appropriate fre-
quency can be calculated from the derivative of the total power loss with respect to a
frequency equal to 0, and this is a concept for energy saving. This concept is applied for
energy-saving purposes in the SPIM in this paper. However, this concept is complicated
and consuming. Therefore, a new approach to calculate the appropriate energy-saving
frequency is proposed. The derivative of the main coil current with respect to a frequency
equal to 0 (dI1/d f = 0) is the new approach to finding the appropriate energy-saving
frequency proposed in this paper. Moreover, the computational results in Figure 6 show
that there are appropriate frequency values at any speeds of the motor to minimize total
power losses. The algorithm to calculate the appropriate frequency to minimize loss is
presented in this paper. In Figure 6, the appropriate frequency can be calculated from the
derivative of the main coil current with respect to a frequency equal to 0. This principle is
called “the energy-saving algorithm”. In this paper, the proposed algorithm will be applied
in the SPIM driving the centrifugal pumps.

In machine theory, the main coil current of the SPIM depends on Z f and Zb, as
depicted in (4). Z f and Zb can be calculated in (5) and (6), respectively.

I1 = f (Z f , Zb) (4)

Z f = 0.5
jXm[R2/s + jX2]

R2/s + j(X2 + Xm)
(5)

Zb = 0.5
jXm[R2/(2− s) + jX2]

R2/(2− s) + j(X2 + Xm)
(6)

The X2 and R2
2−s terms are small values compared with Xm. Therefore, Z f and Zb

can be rearranged in terms of Z f and Zb to decrease the complexity, as shown in (7) and
(8), respectively.

Z f ′ = f (s, R2, Xm) =
0.5jXm[R2/s]
R2/s + jXm

(7)
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Zb′ = f (Xm) =
0.5jXm

jXm
= 0.5 (8)

In this paper, the derivative of the main coil current with respect to a frequency equal
to 0 in (9) is applied to calculate the appropriate energy-saving frequency. The variables of
A, B, C, and D can be expressed in (10) to (13), respectively.

dI1

d f
= 0 =

A
B
− C

D
(9)

A = V1(a2E4 + a(E2 + E4)) (10)

B = E7(R1 + E5)− E5(a2R1 + Ra)− R1Ra (11)

C = −V1(a2R1 + Ra − E7)(E2 + E4)(Ra + a2E5 − E7 + jaE5) (12)

D = (−a2R1E5 − (Ra − E7)(R1 + E5))
2

(13)

where
E2 = jπLmutual(R2/s)

(R2/s+j2π f Lmutual)

E4 =
2π2L2

mutual f (R2/s)
(R2/s+j2π f Lmutual)

E5 = jπ f Lmutual(R2/s)
(R2/s+j2π f Lmutual)

,

E7 = j
2π f C

As for Equation (9), the depth-first search (DFS) [39–42] is applied to search the
coefficients of A, B, C and D for the appropriate energy-saving frequency calculation. After
using the DFS, the appropriate frequency of the proposed algorithm is achieved.
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4. FUZZY Controller Design

The appropriate energy-saving frequency calculation proposed in the previous section
can provide minimum power loss for the SPIM drive-fed centrifugal pump. The appro-
priate frequency from the energy-saving algorithm part shown in Figure 1 is sent to the
inverter to adjust the frequency feeding the motor. This is because the frequency adjustment
alone cannot control the motor speed equal to the speed reference. Therefore, the water
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flow rate cannot be controlled to a constant value. In this section, the motor speed control
to keep the flow rate of water to a constant value is described. It is well known that the
fuzzy controller is widely used in many engineering applications because of its efficiency,
intelligence, and human-like decision making [43–45]. In addition, it does not require the
mathematical model of the system for controller design. Therefore, in this paper, the fuzzy
controller is used to control the motor speed. In Figure 1, the buck converter adjusts the
peak voltage feeding the motor to control the motor speed, for tracking the reference speed.
The speed error (es) between the speedre f erence and the speedactual calculated by (14) is the
fuzzy input, as depicted in Table 2. The d of switch Qb is the fuzzy output.

eS = Speedre f erence − Speedactual (14)

Table 2. Linguistic variables and linguistic values.

State Linguistic Variables Linguistic Values Definition

Input
es

(speed error value)

very_neg (very negative) Speedreference << Speedactual
neg (negative) Speedreference < Speedactual

zero Speedreference = Speedactual
pos (positive) Speedreference > Speedactual

very_pos (very positive) Speedreference >> Speedactual

Output d
(duty cycle)

very_dec very decrease
dec decrease

cons constant
inc increase

very_inc very increase

Details of the linguistic variables and linguistic values of the fuzzy controller and
the definition in this work are shown in Table 2. A triangular shape is applied for the
membership functions (MF) of the input error with five linguistic values (very_neg, neg,
zero, pos, very_pos), as depicted in Figure 7. The duty cycle is used as the output MF of the
fuzzy controller. The zero-order Takagi-Sugeno model or the bar constant shape is applied
for the output MF, as shown in Figure 8, with five linguistic values (very_dec, dec, cons, inc,
very_inc). Moreover, the input and output MF parameters of the fuzzy controller used in
this paper are presented in Table 3. The trial-and-error method will be applied to define
the parameters of the fuzzy controller for the minimum error between the reference speed
and the actual speed of the SPIM.
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Table 3. Input and output membership function parameters.

Input Membership Function

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

−300 −300 −300 −300 −300 −150 −10 10 150 10 150 300 150 300

Output membership function

y1 y2 y3 y4 y5

10 10 10 10 10

The Takagi–Sugeno fuzzy inference is selected herein because it is appropriate for the
real-time system [46]. In addition, the weighted average method [45] is used to calculate
the fuzzy output in the defuzzification process, as shown by (15). For this process, µ(km) is
the MF value, and the output value is represented by km.

xWA =

m
∑

m=1
µ(km)× km

m
∑

m=1
µ(km)

(15)

Speed tracking using the fuzzy controller is shown in Figure 9. The actual speed (solid
line) can track the reference speed (dash line). Thus, the proposed fuzzy controller can be
used to control the speed of the SPIM.
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5. The Experimental Result

The experimental result of the energy-saving approach proposed in this paper is
presented in this section. The testing rig of the considered system in Figure 1 is depicted
in Figure 10. The 48-V battery is the main source of the system, and the soft-switching
DC/DC converter is used to increase the DC voltage from the battery before supplying the
voltage to the buck converter. The buck converter is the main part that adjusts the peak
voltage feeding the SPIM to control the speed. In addition, the inverter is applied to adjust
the appropriate frequency from the energy-saving algorithm to minimize the power loss of
the SPIM at any speed.
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The Arduino MEGA 1280 microcontroller board is the main processor used to calculate
the appropriate energy-saving frequency and control the motor speed using the fuzzy
controller. This microcontroller is not expensive, and it is suitable for commercial use.
The specifications of the ACH-375S series, which includes the combination of the SPIM
and the centrifugal pump, are 0.5-hp, 220-V, 50-Hz, and 2762-rpm. In this paper, there are
four methods for testing the consumed energy in terms of the input power and the power
factor, such as valve control, voltage control [3,4], V/f control [5–9], and the energy-saving
approach. The water flow rate value for testing is varied from 40 to 76 L/min. The water
flow rate control uses the fuzzy controller to control the motor speed. The experimental
results are shown in Figure 11.

From the results in Figure 11a, the input power from the energy-saving approach can
provide minimum input power compared with other methods at any flow rate. In the case
of power factor correction, the voltage control is the method to achieve the best power
factor, as shown in Figure 11b. Nevertheless, this method consumes the input power more
than the V/f and the energy-saving control. For the V/f control, the consumed input power
is nearly the same as the energy-saving approach, and the power factor is low in value
compared with other methods. Unfortunately, the proposed method cannot provide the
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best power factor because the power factor will slightly decrease when the input power is
reduced but the apparent power is constant. However, the proposed method can provide a
higher power factor than the V/f control, as shown in Figure 11b. Thus, the experimental
results can confirm that the energy-saving approach proposed in the paper can provide
minimum loss, and it is suitable for driving the electric pump to save energy. In addition,
the maximum percentage of energy saving will appear at a flow rate equal to 40 L/min,
as depicted in Figure 11. The percentages of the energy saved form the proposed method
compared with the valve control, voltage control, and V/f control are equal to 74.31, 64.25,
and 5.94, respectively. However, the percentage of energy saving is decreased when the
flow rate is increased. Therefore, this is a significant consideration for improving the energy
saving approach in the future. From the experimental results in this section, the results can
confirm that the proposed algorithm can provide minimum power losses from the motor
in terms of energy saving. Moreover, this algorithm can reduce electrical consumption and
increase motor life.
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6. Conclusions

The energy-saving approach is proposed to minimize power loss from the SPIM drive-
fed centrifugal pump. The calculation of the appropriate energy-saving frequency is also
presented. Moreover, the parameters in the rotor part, mutual inductance and the moment
of inertia are identified by using the ATS because these parameters are difficult to know
or measure. The fuzzy controller is applied to control the motor speed to maintain the
constant flow rate of the water. The details of the fuzzy control are summarized in the
paper. In addition, the hardware setup in the laboratory is also presented in the paper.
There are four methods for testing the consumed energy in terms of the input power and
the power factor, such as valve control, voltage control, V/f control, and the energy-saving
approach. The experimental results show that the proposed energy-saving algorithm can
provide minimum power loss for driving the SPIM at any flow rate. The motor using
the energy-saving approach and V/f control nearly consumes the input power, but the
energy-saving approach can provide a good result in terms of the power factor. Moreover,
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the SPIM drive-fed centrifugal pump using the energy-saving approach can increase motor
life and reduce electrical consumption.
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Nomenclatures

AC alternating current
ATS adaptive Tabu search
DC direct current
V/f voltage per frequency
SCR silicon control rectifier
SPIM single-phase induction motor
C motor capacitance (F)
Cb buck converter capacitance (F)
I1 main coil current (A)
I2 auxiliary coil current (A)
J moment of inertia (kg·m2)
Lb buck converter inductance (H)
Lm mutual inductance (H)
Lmutual mutual inductance (H)
L1 main coil inductance (H)
L2 rotor inductance (H)
La auxiliary coil inductance (H)
NT number of data
P number of poles
Pcore core copper loss (W)
Plosses total power losses (W)
Prcl rotor copper loss (W)
Pscl stator copper loss (W)
Ra auxiliary coil resistance (Ω)
R1 main coil resistance (Ω)
R2 rotor resistance (Ω)
Speedactual actual speed (rpm)
Speedexperiment experimental speed (rpm)
Speedreference reference speed (rpm)
Speedsimulation simulated speed (rpm)
VAC input voltage of SPIM (V)
Va input voltage for buck converter (V)
Vb output voltage of buck converter (V)
Vbatt battery voltage (V)
V1 input voltage of the main and auxiliary coils (V)
Xm magnetizing reactance (Ω)
X2 rotor reactance (Ω)
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Zf forward impedance (Ω)
Zb backward impedance (Ω)
a turn ratio of coil
d duty cycle (0–100%)
errorav average errors of the motor speed (rpm)
es speed error (rpm)
f frequency (Hz)
kc coefficient of core loss
S slip of induction machine
x1,x2, . . . ,x14 input membership function of fuzzy controller
y1,y2, . . . ,y5 output membership function of fuzzy controller
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