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Abstract: This work examines the effects of the known boundary conditions on the accuracy of the
solution in one-dimensional inverse heat conduction problems. The failures in many applications
of these problems are attributed to inaccuracy of the specified constants and boundary conditions.
Since the boundary conditions and material properties in most thermal problems are imposed with
uncertainty, the effects of their inaccuracy should be understood prior to the inverse analyses. The
deviation from the exact solution has been examined for each case according to the errors in material
properties, boundary location, and known boundary conditions. The results show that the effects of
such errors are dramatic. Based on these results, the applicability and limitations of the inverse heat
conduction analyses have been evaluated and discussed.

Keywords: inverse heat conduction problem; boundary condition; error; bias; gradient method

1. Introduction

The inverse heat conduction problem (IHCP) has become one of the most solved prob-
lems in heat transfer [1]. Since Beck [2] and Alifanov [3] established the sequential method
and the gradient method, respectively, there have been a large number of applications
using those methods. In particular, many works have tried to retrieve the boundary condi-
tions from the experimental data [1]. The method has been applied to various processes,
including casting [4,5], composite processing [6], and welding [7,8].

However, the matter related to known boundary conditions is one of the least studied
parts of IHCP, despite the long history of the related studies. The reason is not because it is
unimportant, but because it is simply assumed known in IHCP while defining the problem.
However, in reality, there is no such boundary condition (BC) that is accurately known
without measurement, even though correlations are employed. For example, consider
a surface subject to forced air convection with a developing laminar thermal boundary
layer. Simply by measuring temperature and velocity of free stream, it might be possible
to find a suitable correlation and determine the heat transfer coefficient (HTC). However,
the uncertainty of HTC is unlikely to be assessed since the heat transfer that needs inverse
analysis would not take place somewhere like a wind tunnel. Thus, it requires a lot of
cautions to specify the boundary condition, which is presumed to be known. Sometimes,
the adiabatic condition is imposed on an insulated boundary. However, there is no such
boundary in engineering applications that prevents heat flow perfectly.

Moreover, the material properties, such as the thermal conductivity and the thermal
diffusivity, can include inaccuracies. The material tests, which are always challenges to
many thermal engineers, can induce errors. Or, sometimes, the test is impossible and the
IHCP should be solved with the material properties in the literature. Another kind of
error comes from fabrication, installation, instrumentation and, dimensional measurement.
The position of thermocouples and boundaries can be inaccurate. These inaccuracies
can undermine all the elaborations to make the IHCP solution improved. Although
steady problems are also of interest in some cases [9,10], most IHCPs are on transient
problems. Thus, a lot of efforts have been made to overcome numerical instability from
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the time marching. Before trying to employ multidimensional [7,8,11,12] or nonlinear
methods [13–15], the solution characteristics with the one-dimensional linear IHCP should
be checked first [3].

The purpose of this work is quite straightforward. It is to show the risks involved in
solving IHCP when incorrect values are engaged in the setup. This work simply follows
the established procedures of the gradient method with the Tikhonov regularization based
on the adjoint formulation [16,17]. It is a whole domain method that provides the search
direction by solving the adjoint differential equation [3]. The whole procedure to the IHCP
solution by this method is fairly involving, but already well described in several literatures,
and its performance has been proven by many researchers [1,3,18,19]. A rigorous error
analysis of the gradient method can be found in [20].

Since this work is neither about new methodologies nor about new applications, the
method will be described in the simplest possible way. In this work, a general setup for the
one–dimensional linear IHCP with constant material properties is presented. Since the heat
flux boundary condition in this work is not parameterized, the number of unknowns is
equal to the number of time steps. Note that the boundary condition can be parameterized
using a priori information to reduce the number of unknowns [1,3,21]

Then, its numerical implementation of the setup will be realized in Microsoft Excel
with a VBA code, which will be publicly open to allow others to evaluate the risk of
incorrect constants. Moreover, as it is currently impossible to find an open computer code
for the IHCP, this code can be a useful reference for engineering and developments [22].

This work has investigated the effects caused by inaccurate specification of material
properties, known BC, and positions of the sensor and boundary. Because the methods
dealing with noisy measurements have been thoroughly investigated, this work has tried to
minimize the contents relevant to that to emphasize the bias by the incorrect specifications
of the BC and constants. The effects of each incorrectly specified value, presumed known
prior to the analysis, have been tested, examined, and discussed.

2. Inverse Methods
2.1. Inverse Problem and Equations

Consider an inverse heat conduction problem as shown in Figure 1. This is a general
setup for a linear IHCP with constant properties that features multiple sensors and typical
three kinds of known boundary conditions. The unknown heat flux condition, q0, will be
imposed at x0, while one of temperature (Dirichlet) T1, heat flux (Neumann) q1, or heat
transfer coefficient (Robin) h, and the ambient temperature T∞, can be specified at x1. A tem-
perature history at x = x0, T0(t), is calculated together with q0. The inverse problem seeks
the unknown heat flux, q0(t), with the temperature measurements, Yj(t), at plural sensor
locations, x = sj, for j = 1 to Ns. Note that it is straightforward to retrieve the HTC, h0(t),
when the ambient temperature, T∞,0, is known on ∂Ω0 by h0(t) = q0(t)/[T∞,0 − T0(t)].

Figure 1. The domain of interest for the inverse heat conduction problem.
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When the measurement data are acquired for a time interval between t0 = 0 and t f ,
the residual, J(q0), is expressed as:

J(q0) =

t f∫
t0

Ns

∑
j=1

[
T
(
sj, t; q0

)
−Yj(t)

]2dt (1a)

When a zero-th order regularization term is added to the above expression, we have:

JR0(q0) = J(q0) + R0

t f∫
t=t0

(q0 − qr0)
2dt (1b)

where R0 is the regularization parameter and qr0 is the reference heat flux.
Given a constant standard deviation, σ, of measurement data gives:

T
(
sj, t; q0

)
−Yj(t) ∼= σ (2)

Thus, the IHCP has to determine a solution that meets:

J(q0) ≈ Nsσ2
(

t f − t0

)
(3)

To update the temperature field T(x, t; q0), it is necessary to solve the direct problem
shown in Figure 1, which is the following one-dimensional heat conduction equation for a
homogeneous solid medium between x0 = 0 and x1:

∂T
∂t

= α
∂2T
∂x2 in Ω for t0 < t ≤ t f (4a)

where α is the thermal diffusivity.
The initial condition is:

T(x, t0) = Ti(x) in Ω (4b)

The bottom side of the boundary is subject to a Neumann condition:

− k
∂T
∂x

(x0, t) = q0(t) on ∂Ω0 (4c)

where k is thermal conductivity and q0(t) is the unknown heat flux that should be deter-
mined from the solution of the IHCP. On the other hand, one of the following conditions
can be imposed on ∂Ω1:

T(x1, t) = T1(t) (4d)

− k
∂T
∂x

(x1, t) = q1(t) (4e)

− k
∂T
∂x

(x1, t) = h[T(x1, t)− T∞] (4f)

where T1(t), q1(t), h, and T∞ should be known prior to imposition.
To achieve a solution that satisfies Equation (3), an optimization procedure is essential.

In this work, the gradient for the optimization is obtained by the adjoint formulation. Refer
to [3,19] for detailed derivations of the adjoint problem. The gradient is evaluated from a
solution of the adjoint problem, λ(x, t). The gradient is of the form:

∇JR0(q0) = λ(x, t) + 2R0

t f∫
t=t0

(q0 − qr0)dt (5)
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where λ(x, t) is obtained by solving the following adjoint problem [1,3]:

− ∂λ

∂t
= α

∂2λ

∂x2 + 2
Ns

∑
j=1

δ
(
x− sj

)[
T
(
sj, t; q0

)
−Yj(t)

]
in Ω, t0 < t ≤ t f (6a)

with a final time condition of:
λ(x, t f ) = 0 (6b)

The corresponding boundary condition on x = x0 is:

− k
∂λ

∂x
(x0, t) = 0 on ∂Ω0 (6c)

The same kind of boundary condition should be imposed on ∂Ω1 according to the
boundary condition of the direct problem.

− k
∂λ

∂x
(x1, t) = 0 (6d)

− k
∂λ

∂x
(x1, t) = 0 (6e)

− k
∂λ

∂x
(L, t) = h1λ(L, t) (6f)

Basically, since the gradient can be determined by solving Equation (6a), any gradient-
based method, which takes its objective as Equation (1), can seek an IHCP solution by
updating the temperature field by solving Equation (4a). This work employs the conjugate
direction method (CGM), as in many previous works with the adjoint formalism. In the
r-th iteration of the optimization procedure, the new heat flux value is updated by:

qr+1
0 = qr

0 + βφPr (7)

where φ is the relaxation parameter and β is the step size. Here, the search direction in the
CGM is determined by:

Pr = ∇Jr + γPr−1 (8)

where the conjugate coefficient is determined by:

γr =

t f∫
t=t0

(∇Jr)2dt

t f∫
t=t0

(∇Jr−1)
2dt

(9)

Once a search direction, Pr, is determined, it is required to find the step length, β, that
makes J

(
qr

0 − βPr) minimum. The step length, β, can be determined by:

β =

t f∫
t=t0

Ns
∑

j=1
∆T
(
sj, t
)[

T
(
sj, t; q0

)
−Yj(t)

]
dt

t f∫
t=t0

Ns
∑

j=1
∆T
(
sj, t
)2dt

(10)
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where the increment of temperature is ∆T(x, t) ≡ T(x, t; q0 + ∆q0)− T(x, t; q0), when the
unknown heat flux is increased by an amount of ∆q0(t) = P. Fortunately, ∆T(x, t) can be
solved by solving the following sensitivity problem:

∂∆T
∂t

= α
∂2∆T
∂x2 in Ω, t0 < t ≤ t f (11a)

with a final time condition of:
∆T(x, t0) = 0 (11b)

The corresponding boundary condition on x = x0 is:

− k
∂∆T
∂x

(x0, t) = ∆q0(t) (11c)

One of the following conditions is imposed on ∂Ω1 corresponding to the boundary
condition of the direct problem:

∆T(x1, t) = 0 (11d)

− k
∂∆T
∂x

(x1, t) = 0 (11e)

− k
∂∆T
∂x

(x1, t) = h∆T(x1, t) (11f)

These are all the mathematical expressions necessary for solving the linear IHCP
shown in Figure 1.

2.2. Discretization

A uniform interval of data sampling, ∆t, and a mesh with uniform spacing, ∆x are set
for simplicity. Thus, the discrete time is:

tk = k∆t + t0 for k = 0 to Nt (12)

The final time is given as t f = Nt∆t + t0 and the numerical time step is set equal to
the sampling interval. Similarly, the spatial domain is discretized between x0 to x1 as:

xi = i∆x + x0 for i = 0 to Nx (13)

All the temperature calculated here is denoted as:

Tik(q0) = Ti(tk; q0) = T(xi, tk; q0) (14)

The measured and calculated temperatures at j-th location are represented as T j(t)
and Yj(t), respectively. The calculated temperature at Tik at xi = sj is represented by
T jk=T

(
sj, tk; q0

)
. Both temperatures should satisfy T jk(q0k)− Yjk

∼= σ. In this discretized
domain, Equation (1) is written as:

J(q0) =
Nt

∑
k=0

Ns

∑
j=1

[
T jk −Yjk

]2
∆t (15)

Based on the discretization in [18], the temperature in Equation (4a) can be updated by:

apTk+1
i =

[
ap − 2(1− θ)a0

]
Tk

i + a0

[
θTk+1

i+1 + (1− θ)Tk−1
i+1

]
+ a0

[
θTk+1

i−1 + (1− θ)Tk−1
i−1

]
(16)

where aP = ∆x/∆t and a0 = α/∆x. Moreover, the Crank–Nicolson scheme is adopted by
setting for θ = 0.5. Fortunately, Equation (16) forms a tridiagonal matrix, and the solution
can be sought fast by the TDMA (tridiagonal matrix algorithm).
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2.3. Implementations

The calculation in this work is conducted as carried out in the previous works [18,19].
The iteration loop for the optimization of Equation (1) is comprised of the following procedure:

1© Update T(x, t; q0) with current q0 by solving Equation (4a).
2© Calculate the gradient in Equation (5) by solving Equation (6a).
3© Calculate the update direction by Equation (8) with the conjugate coefficient from

Equation (9).
4© Solve Equation (11a) with setting ∆q0 in Equation (11c) as the update direction.
5© Determine the step length by Equation (10).
6© Update q0 by Equation (7).

The solution of this IHCP should satisfy Equation (3) by adjusting R0 in Equation (1b).
Iteration stoppage is sometimes not accurate enough. Thus, a suitable R0 should be found
by trial and error to meet:

(σ− ε)2 ≤ J(q0)

Nsσ2
(

t f − t0

) ≤ (σ + ε)2 (17)

where ε is set as σ/100 in this work. As mentioned earlier, the whole procedure is coded in
Microsoft Excel using VBA (visual basic for applications) and is available in [22].

3. Results and Discussions
3.1. Basic Results and Sensor Locations

Figure 2 compares the recovered heat fluxes obtained using the errorless measurement
data obtained at different sensor locations. The exact heat flux plotted together in the figure
is the one that is imposed to obtain the virtual measurement data. The heat flux form to be
retrieved is a rectangular form that is usually selected to measure the performance of the
inverse estimator, since it has abrupt changes. The default values for the tests are specified
in Table 1. The estimation stops by taking σ = 10−5 ◦C to avoid the possible infinite loop by
σ = 0 ◦C.

Figure 2. Heat fluxes estimated with the errorless BC according to the sensor locations.

All the tried cases in Figure 2 recover the unknown heat flux quite well. showing
reduction of the gradients in the rising and the falling edges, along with the distance of the
sensor from the surface. The capability of recovering such sharp edges characterizes the
deterministic bias of this inverse estimator. The biases shown in Figure 2 are inherent in
the solution characteristics and are dependent on the strength of the causal relationship
between the BC to be reconstructed and the source of the measurement. As the sensor
locations move away from the boundary of the unknown heat flux, the solution becomes
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inaccurate, showing more deviation near the rising and the falling edges. The biases in
Figure 2 change mildly, along with the distances. However, it would be quite severer with
engagement of measurement errors.

Table 1. Default values of the inverse analyses.

k (thermal conductivity) 1 W/m ◦C

α (thermal diffusivity) 10−6 m2/s

x0 (position of Ω) 0 m

x1 (thickness or position of Ω) 0.05 m

q0 (when unknown heat flux is specified) 1000 W/m2 for 300 s ≤ t ≤ 600 s
0 for other time

T0 (when unknown temperature is specified) 10 ◦C for 300 s ≤ t ≤ 600 s
0 for other time

Figure 3 shows the recovered heat flux, along with the distances for σ = 0.057 ◦C and
∆T = ±0.1

◦
C. The bias, along with the distance, dramatically changes, as can be seen in

the plot. The effect of the measurement errors has been investigated thoroughly, since the
inherent resolution loss due to the errors was considered the major source of the solution
inaccuracy. However, as aforementioned, the measurement error is not the only source of
failure in inverse heat conduction analyses. The sensor location can be incorrectly informed
due to several reasons. For example, the drilling hole for a thermocouple can be deeper
or shallower, or the sensor can be dislocated unwantedly. Figure 4 shows the estimated
heat fluxes when the sensor location is incorrectly known. As the sensor location, s1, is set
closer to x0, the estimated heat flux becomes smaller, especially near the rising edge, while
the reverse happens as s1 moves away from x0. The error in the sensor location does not
seem to cause an oscillation in the solution, but deviation is pronounced near both edges.
In the rest of this work, only errorless cases with σ = 0 ◦C have been treated, to highlight
the effects of the incorrect known boundary conditions.

Figure 3. Heat fluxes estimated with the errorless BC according to the sensor locations using noisy
data of σ = 0.057 ◦C and ∆T = ±0.1 ◦C.

3.2. Material Properties

In the linear IHCPs with constant material properties, the only material property
appearing in the governing equation is the thermal diffusivity. The thermal conductivity
shows up only in the boundary conditions. With the same thermal conductivity, the thermal
diffusivity has been varied to investigate the effects of the incorrect thermal diffusivities.
Figure 5 shows the heat flux estimated with incorrect thermal diffusivities. The reduced
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thermal diffusivity exaggerates the solution at the rising and falling edges, as shown in
Figure 5. The increased thermal diffusivity renders the solution underestimated at both
edges, but it is severer at the rising edge. Figure 6 shows the temperature on ∂Ω0 estimated
with incorrect thermal diffusivities. Similar trends as in Figure 5 are reproduced here. What
is interesting here is the trends in Figure 4 are similar to those in Figures 5 and 6. The
dislocation of the sensor changes the travel time for the thermal signal from the surface to
the sensor, as the thermal diffusivity changes the travel time by t ∼ L2/α where L is the
distance between the sensor location and the bottom boundary.

Figure 4. Heat fluxes estimated according to the incorrect sensor locations with the adiabatic
condition on ∂Ω1.

Figure 5. Heat fluxes estimated according to incorrectly specified thermal diffusivities with the
adiabatic condition on ∂Ω1.

Figure 7 shows the reconstructed heat fluxes, along with the incorrectly specified ther-
mal conductivity. Because the thermal diffusivity is unchanged, the incorrect imposition
only affects the boundary condition. As a result, the reduced thermal conductivity shifts
the solution upward, while the increased one moves down the solution, as can be seen in
the figure.

The incorrect specification of the thermal properties only happens when the thermal
properties cannot be measured. This situation can arise because of various reasons, such
as unavailability of material, difficulty of tests, and change of properties in an integrated
system. It can be stated that the incorrect thermal diffusivity is riskier than such thermal
conductivity, since the thermal diffusivity is directly related to the parabolic nature of the
heat equation. The effects of the Fourier number, α∆t/L2, are well described in [1–3].
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Figure 6. Temperature estimated according to incorrectly specified thermal diffusivities with T1 = 0 ◦C
on ∂Ω1.

Figure 7. Heat fluxes estimated according to incorrectly specified thermal conductivities with an
adiabatic condition on ∂Ω1.

3.3. Incorrect BC and Single Sensor

As an introductory problem of incorrectly specified BC, consider a case where both
the correct unknown and known BCs are Dirichlet conditions. As stated previously, it can
often be difficult to identify the accurate BC in a real estimation. When a convective BC
or an adiabatic condition are specified, the solutions will be changed. Figure 8 shows the
estimated heat flux according to the BC specified on ∂Ω1. The three curves move together
until 400 s, but they separate after then. Since the initial condition, Ti = 0 ◦C, before the heat
wave by the heat flux on ∂Ω0 does not reach ∂Ω1, the BC does not affect the solution. The
altered BC actually changes the heat loss on ∂Ω1. The adiabatic condition causes the largest
error, since it blocks all the heat loss. The error is reduced for the case with the convective
BC of h = 100 W/m2K and T∞ = 0 ◦C since it implies the temperature specification with a
thermal resistance of 1/h.

Figure 9 shows the measured and the estimated temperatures at the same location
for all three cases. Despite the different BCs, the estimated temperatures at the sensor
location are almost identical. Thus, this comparison cannot be employed as an indicator
for determination of the success of the estimation. The results in Figures 8 and 9 implicate
the following: first, wrong specification of the BC does not result in failure of estimation;
second, false imposition of the BC causes a strongly biased inverse solution.
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Figure 8. Temperature estimated with imposition of different kinds of BCs.

Figure 9. The measured temperature and the temperatures estimated at the sensor location with
different BCs on ∂Ω1.

Let us examine the effects of the incorrectly imposed HTC on ∂Ω1. Figure 10 compares
the estimated inverse solutions obtained by imposing different HTCs when the exact value
is 100 W/m2 ◦C. The increased and decreased HTCs make the solutions near the end of
the time deviated. The increased HTC virtually takes more heat from the BC, so that the
heat flux on ∂Ω0 is overestimated. The impositions of 1000 W/m2 ◦C, 10000 W/m2 ◦C,
and T1 = T∞ give almost the same results, since h = 1000 W/m2 ◦C means a negligible
thermal resistance in this setup. Meanwhile, the reduced HTC decreases heat loss on ∂Ω1
and results in negative heat flux on ∂Ω0.

So far, the cases with T1 = Ti = 0 ◦C or T∞ = Ti = 0 ◦C have been treated. However,
if T∞ 6= Ti is imposed when the correct BC requires T∞ = Ti, the solution is expected to
behave differently. Figure 11 shows the effects of incorrectly specified T∞ when the correct
condition is given by T1 = Ti = 0 ◦C and h = 100 W/m2 ◦C. The decreased T∞ moves the
estimated heat flux upward, while the increased one does the reverse. Moreover, note
that the oscillations of the solution in the early time are quite remarkable for T∞ = −2
or 2 ◦C because of significant discrepancy between T∞ and Ti. As time progresses, such
an oscillation decays and rather parallel biases are observed. Consequently, the incorrect
imposition of T∞ causes a bias proportional to the deviation in T∞ throughout the whole
time domain, and oscillations in the early time.
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Figure 10. Estimated temperature with imposition of different heat transfer coefficients when the
measurement data are obtained for h = 100 W/m2 ◦C and T∞ = 0 ◦C.

Figure 11. Temperature estimated with h = 100 W/m2 ◦C and incorrectly specified ambient tempera-
tures for Ti = 0 ◦C.

Temperature measurement can be biased by a few causes, such as a shift in the data
acquisition system and sensor drift. Moreover, even once the BC is legitimately set, the
thermal condition can be altered while acquiring the measurement data. The temperature
bias of 1 ◦C can happen in a usual thermal setup. The unknown heat flux is reconstructed
with a Dirichlet BC specified in Figure 12. The bias of 1 ◦C incurred huge fluctuations in
the early time, and relatively small deviation in the later time. The increase of bias to 2 ◦C
magnifies the overall deviations. If Ti = 0 ◦C is set instead, the oscillations in the early
time disappear.

It should be investigated how large 1 ◦C is compared to the overall scale of the
measurement data. Let us take look at the measurement data used for reconstruction in
Figure 12. As shown in Figure 7, the maximum temperature rise is approximately 4 ◦C. The
biases in the two specified BCs are 25% and 50% of the maximum, respectively. Figure 13
also shows the temperatures estimated with the falsely specified BCs. Despite the large bias
in the BC, the estimated temperatures at the sensor location follows the measurement data
very well. The only deviation observed in Figure 13 is the upward sway around t = 70 s,
despite the large variation in Figure 12. However, the small fluctuation near the early time
should not be ignored if observed.
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Figure 12. Heat flux estimated with incorrectly specified boundary temperature with Ti = 0 ◦C.

Figure 13. The virtual measurement data used for inverse estimation and temperatures at the sensor
location, estimated with different known Dirichlet BCs than in Figure 12.

Let us enlarge the estimated temperature in the early time interval. Figure 14 shows
the estimated temperature up to 400 s. The oscillation for T1 = 2 ◦C is very pronounced,
although not quite noticeable in Figure 13. This implies that small oscillations in tempera-
ture estimation amplify to large ones in inverse solutions. In another aspect, the imposition
of a Dirichlet BC requires more cautions than the heat flux or the convection BCs.

Figure 14. A magnified plot of the early time in Figure 13.
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Consider cases where the initial condition is incorrectly specified when heat flux has
to be estimated. The correct initial condition is Ti = 0 ◦C in Ω, and the adiabatic condition
on ∂Ω1 is specified. Figure 15 shows the effects of altered IC. A small change, such 0.01 ◦C,
leaves a small fluctuation in the very early time, roughly between 1 s and 100 s. When
the change is increased to 0.1 ◦C, the fluctuation in the early time becomes very severe.
However, the heat flux estimated for Ti = 0, 0.01 and 0.1 ◦C coincide with each other at
270 s. The effects of incorrectly specified IC are limited when the error is not large.

Figure 15. Heat flux estimated with the adiabatic condition on ∂Ω1 and incorrect initial conditions.

Consider a situation where the measured temperature is biased. Figure 16 shows
the estimated heat flux using the biased measurement data. The heat flux dramatically
oscillates over the entire time domain if it is estimated using the biased data as is. However,
if the IC is shifted by the same amount, the erroneous oscillation disappears and the
solution is completely corrected. If any biases in the measurement data are found, the
correction can be directly imposed on the measurement data or to the IC. It is crucial to
avoid biases in measurements of ambient, initial temperatures and Yi.

Figure 16. Estimated heat flux, estimated using measured temperature biased by +1 ◦C with the
adiabatic condition on ∂Ω1 and Ti = 0 ◦C.

3.4. Incorrect Boundary Locations

The boundary locations can be incorrectly specified due to some unwanted reasons,
such as measurement error, inaccurate fabrication and abrasion. Figure 17 shows the
estimated heat fluxes when the distance between the sensor and ∂Ω0 is fixed, while x1 is
varied. The heat fluxes follow the original solution up to 450 s. Then, they start to deviate
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from it as the whole thickness or location of ∂Ω1 increases. The deviation is mild, even
with 50% increase of the thickness, since the causal relationship between the heat flux and
the sensor is not greatly changed. The increase of the heat flux is necessary to compensate
the increased thermal volume.

Figure 17. Heat fluxes estimated for incorrect distances between the sensor and the surface of the
known BC with the adiabatic condition on ∂Ω1.

When the adiabatic condition on ∂Ω1 is replaced by a finite heat flux condition,
the solutions would be changed. Figure 18 shows the results when ∂Ω1 is subject to
q1 = 100 W/m2. The heat fluxes in the early times fluctuate, but the results are quite similar
to those in Figure 17. The fluctuations are due to the cooling rate change by the relationship
between the cooled surface and the sensor.

Figure 18. Heat fluxes estimated for incorrect distances between the sensor and the surface of the
unknown BC with a Neumann BC, q1 = 100 W/m2 on ∂Ω1.

Consider another case where the distance between the boundary of the known BC and
sensor is varied. When such distance is incorrect, the error can be large because the distance
is engaged in the causal relationship between the information source and the response.
When distance between ∂Ω1 and the sensor is fixed as 0.0175 m, the sensor position, s1, is
given by x1 − 0.0175 m. Figure 19 shows the heat flux estimated for different x1’s. As the
distance increases, the heat flux estimated between 300 s and 600 s increases accordingly.
For x1 = 0.06 m, the solution fluctuates significantly, but the rising and falling edges are
roughly predicted. However, for x1 = 0.075 m, the estimated heat flux fluctuates so severely
that it is almost impossible to predict the original heat flux.
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Figure 19. Heat fluxes estimated for incorrect distances between the sensor and the surface of the
unknown BC with the adiabatic condition on ∂Ω1.

3.5. Dual Sensors

Now, let us discuss the case of the Neumann conditions on ∂Ω1. When the boundary
is originally subject to the adiabatic condition, the imposed BC is changed from −100 to
+200 W/m2 ◦C to investigate the effects of the incorrect Neumann conditions. Figure 20
shows the estimated heat flux according to the change of the imposed BC. The positive BC
causes a negative initial swing while the negative BC causes a positive one.

Figure 20. Heat fluxes estimated for incorrect heat fluxes on ∂Ω1.

One can have an idea that multiple sensors might alleviate such a large swing due
to an incorrect BC. The same problems in Figure 20 are solved again with one more
sensor at 0.0375 m. The results are presented in Figure 21, but it does not improve the
deviations observed in Figure 20. Although it is known that the multiple sensors improve
the noise sensitivity and other related characteristics, this matter is put aside in this
work. It has to be investigated how the estimated temperatures at the sensor locations
follow the temperature measurements. Figure 22 compares the estimated and measured
temperatures at s1 = 0.0325 m and s2 = 0.0375 m. Because of the incorrectly specified BC,
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q0 = −100 W/m2 ◦C, the estimated temperatures cannot exactly follow the measurement
data, unlike the single sensor case in Figure 9. Although the trends in Figure 22 are
monotonic, the consistent deviation between the measurement and estimation incurs a
dramatic fluctuation in Figure 21 (more specifically the black line for −100 W/m2 ◦C).

Figure 21. Heat fluxes estimated using two sensors at 0.0325 m and 0.0375 m for incorrect heat fluxes
on ∂Ω1.

Figure 22. Temperatures estimated at the sensor locations (s1 = 0.0325 m and s2 = 0.0375 m) using Y1

and Y2 obtained by the adiabatic condition on ∂Ω1 but with the specification of q0 = −100 W/m2 ◦C
on ∂Ω1.

The results in Figure 20 can be improved by adding the extra sensor closer to the
surface of the unknown heat flux. Figure 23 shows the heat fluxes estimated using the
measurement data read at 0.0275 m and 0.0325 m. It can be stated that the solutions are
improved in Figure 23 in comparison with those in Figure 21. However, it cannot be argued
that the solutions are improved in comparison with those in the single sensor case shown
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in Figure 20. These results advise that an additional sensor cannot resolve the issue with
maintaining the incorrect BC.

Figure 23. Heat fluxes estimated using two sensors at 0.0275 m and 0.0325 m for incorrect heat fluxes
on ∂Ω1.

Therefore, an alternative approach is needed. In this one-dimensional IHCP, an extra
sensor can eliminate the uncertain BC. Figure 24 illustrates the scheme change by employing
the measurement data as the BC. The boundary, ∂Ω1, is moved to s2 and the measurement
data, Y2, is imposed as the Dirichlet BC. Figure 25 shows the heat flux estimated by this
approach. Using the errorless data, the result reproduces the result by the correct BC.
Moreover, the method succeeds even using the noisy measurement data. The filtering of
the imposed BC on the altered boundary marginally improves the solution.

Figure 24. Alteration of IHCP setup by transforming the measurement into the BC.
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Figure 25. Estimated heat fluxes by alteration of IHCP setup by transforming the measurement into
the BC using errorless and noisy measurement data.

4. Conclusions

This work has tested the effects of incorrectly specified constants, such as the material
properties, boundary conditions, and sensor locations. The one-dimensional linear inverse
heat conduction problem has been described and implemented to perform the tests. The
analyses of test results have found several important points. The effects of thermal con-
ductivity errors are proportional to the magnitudes of the errors. and they do not induce
severe oscillations. The change in the thermal diffusivity causes the original form of the
heat flux to be distorted, but does not incur severe oscillations.

The incorrectly specified boundary condition does not affect the solution until the
thermal signal reaches the boundary. Despite the incorrect boundary conditions, the
temperature that matches the measurement can be found. It should be emphasized that the
temperature, including the initial, boundary, and ambient temperatures, should be very
carefully specified since the errors there can cause large fluctuations. Multiple sensors do
not rectify the biases by the incorrect boundary conditions, but sensor data can be directly
imposed as the boundary condition. Moreover, note that the distance between the sensor
and the boundary of the unknown condition should be very accurate.
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Nomenclature

a0 coefficient for discretization (= α/∆x, m/s)
ap coefficient for discretization (= ∆x/∆t, m/s)
h heat transfer coefficient at x1 (W/m2 ◦C)
J residual (◦C2s)
k thermal conductivity (W/m◦C)
Ns number of total sensors
Nt number of total time steps
Pr the search direction in the r-th iteration (◦C2s m2/W)
q0 unknown heat flux at the bottom boundary (x = x0) (W/m2)
q1 known heat flux at the top boundary (x = x1) (W/m2)
R0 the regularization parameter (0th order) (◦C2m4/W2)
sj j-th sensor location (m)
T temperature (◦C)
T1 the known temperature at x1 (◦C)
T0 unknown temperature at x0 (◦C)
Ti initial temperature (◦C)
Tik temperature at discrete point xi and discrete time tk (◦C)
T jk estimated temperature at the j-th sensor location and at the discrete time tk (◦C)
T∞ reference temperature for convective boundary condition at x1 (◦C)
t time (s)
t0 initial time (s)
tk k-th discrete time (s)
tf final time (s)
x0 the position of the bottom boundary (m)
x1 the position of the top boundary (m)
Yj measurement data at the j-th location (◦C)
Yjk measured temperature at the j-th sensor location and at the discrete time tk (◦C)
α thermal diffusivity (m2/s)
β step size (dimensionless)
γr conjugate coefficient (dimensionless)
∆T increment of temperature (◦C)
∆τ time step (s)
∆ξ spatial step (s)
δ Dirac delta function
ε convergence control parameter (◦C)
ϕ relaxation parameter (W2/m4◦C2 s)
λ adjoint variable (◦C2s m2/W)
θ relaxation parameter for temporal discretization (dimensionless)
σ standard deviation of the measurement data (◦C)
Ω the internal domain
∂Ω0 the bottom boundary
∂Ω1 the top boundary
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