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Abstract: The development of urban transport in recent years has become one of the most important
issues related to improving the quality of life in Polish cities. Excessive pollution in the form of
greenhouse gases and other harmful substances from buses affects people’s health as does the
excessive noise. This article analysed the measures being taken to reduce emissions, and the results
showed that it is possible to reduce CO2 emissions by more than 28 thousand megagrams (Mg)
per annum. Policymakers in Poland should consider limiting electricity generation through coal
combustion and recognize, at least temporarily, CNG/LNG-powered buses as low-carbon rolling
stock and co-finance their purchase and the necessary infrastructure.
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1. Introduction

As Polish society grows richer so does the number of private vehicles, especially in
increasingly crowded cities, where people have to struggle with the negative health effects
caused by pollution from this growing number of cars [1,2]. About 50,000 people die every
year from poor air quality.

Public transport seems to offer a more rational use of the natural environment [3]
because it reduces fuel consumption, exhaust emissions [4–6], and noise. The concept of
sustainable public transport combines high-quality transportation with concern for the
environment [7], so these vehicles should have a power source other than diesel or gasoline.

Quality of Life (QoL) should be understood as the set of factors that contribute to a
person’s general well-being, such as health, safety, intellectual and cultural preferences,
financial security, family life and job satisfaction [8], or as McGregor et al. put it: “the level
of satisfaction with an individual’s conditions, relationships, and surroundings relative
to the available alternatives” [9]. A QoL evaluation may help design transit-oriented
development for various socio-economic groups [10], and for this the European Mobility
Week campaign deserves attention: “Since 2002, it has sought to influence mobility and
urban transport issues, as well as improve public health and quality of life. The campaign
gives people the chance to explore the role of city streets and to experiment with practical
solutions to tackle urban challenges, such as air pollution” [11]. Reducing CO2 emissions
from transport can, of course, enhance the quality of life, but there are other factors to
consider such as access, amenities and safety [10].

As the local elections in 2018 made clear, public transport is an important issue for
Poles, and it occupied a central position in the programmes of candidates for city president.
Those who expressed concern about the systematic and planned development of urban
transport, including former presidents, usually won in the first round or were elected in
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the second round [12]. Therefore, it is particularly important to reduce harmful emissions
by developing low-carbon urban transport [13–15] because a large number of Polish cities
have very poor air quality. According to the Barcelona Institute for Global Health, on the list
of the 50 most polluted cities in the EU (European Union), as many as 15 are in Poland [16],
and concentrations of harmful substances become particularly serious in winter, when
emissions from heating buildings are added [17,18].

However, the idea of a zero-emission bus fleet is currently of particular scientific inter-
est. Articles on the environmental impact of, for example, vehicles or cast iron parts [19,20]
deal with recommendations for such a transition [21–24] and the results of simulation
models are used to determine the electric energy consumption of electric buses [5] or the
business and financing models for them [25].

This kind of scenario analysis, following assumed hypotheses, is widely used to
predict the possible transformation of a system like an urban bus fleet [26–32]. For example,
researchers use it for policy evaluation [33]. However, those studies focus mainly on
prosperous countries; there is a greater need to pay attention to poorer countries that rely
on coal-based energy. Therefore, the authors of this study decided to fill this research gap
by focusing on a transition to a zero-emission bus fleet based on a Polish scenario analysis.

Section 1 presents the main problems related to the development of low-carbon
transport in Poland. Section 2 indicates changes in urban transport in the context of
low-carbon development. Section 3 presents possible ways of modernizing urban bus
fleet. Section 4 contains a description of the research methodology. In Section 5 a scenario
analysis was performed. Section 6 summarizes and refers to the most important results of
the research conducted in the manuscript, including the reductions in CO2 emissions that
may take place by the end of 2024.

2. Changes in Urban Transport in the Context of Low-Carbon Development

When analysing low-carbon development, it is important to determine how green-
house gas emissions per capita have changed in Poland compared to the EU average. In
2007–2018, average per capita greenhouse gas emissions in the EU decreased (Table 1) by
almost 19%. A similar situation also took place in a large part of the EU countries. Over the
same period, Poland did not reduce GHG (greenhouse gas) emissions [34]. It should be
emphasized that the economic growth achieved in the analysed period did not prevent the
EU countries from reducing greenhouse gas emissions per capita. On the one hand, many
technological solutions were implemented in Poland during this period, which reduced
energy consumption. However, the richer societies used more equipment that needed
energy and the mobility of Poles increased, which contributed to an increase in transport
emissions. It should also be emphasized that, statistically, Pole consumes less energy than
a resident of the EU. However, the emission level per capita in Poland is higher than the
EU average because it obtains most of its energy from high-emission coal-burning power
plants [35].

Table 1. Final energy consumption in households and greenhouse gas emissions per capita in Poland and the EU 28 [36].

Specification
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2019/2007

Final Energy Consumption in Households per Capita (in kg of Oil Equivalent) %

Poland 508 516 524 578 528 546 537 499 499 521 525 512 479 −5.7
EU 28 583 612 604 644 576 603 608 533 554 568 564 556 554 −5.0

Greenhouse gas emissions per capita (in Mg CO2 equivalent per capita) 2018/2007 (%)
Poland 11 10.8 10.3 10.9 10.8 10.6 10.6 10.2 10.3 10.6 11 11 no data 0
EU 28 10.6 10.4 9.6 9.8 9.5 9.3 9.1 8.7 8.8 8.7 8.8 8.6 no data −18.9

Even though an efficient transport system plays an essential role in the development
of a society and an economy, it contributes to air pollution and influences climate change
through the emission of harmful gases, such as nitrogen oxides and particulate matter,
such as PM2.5 and PM10 [37,38]. It also covers large areas of land that break up animal
habitats, seal the earth’s surface and contribute to excessive noise.
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Low-carbon development has become an important financial problem for Poland [39]
not only because of the threat of penalties related to having an insufficient share of RES
(renewable energy sources) in total energy production, but also because excessive concen-
trations of pollutants may lead to financial penalties from EU institutions [40,41]. In the
coming years, especially during the implementation of the current long-term EU budget
(2021–2027), as much as 356.4 billion euro will be allocated to activities in the area of natu-
ral resources and the environment [42] such as investment in developing of low-carbon
transport. Transport uses a third of the final energy in the EU, much of which comes from
oil, accounting for almost 30% of total EU transport CO2 emissions, 72% of which comes
from vehicles. On the other hand, heavy vehicles (including buses) accounted for almost
19% of emissions [43]. From the point of view of people living in cities that have older
buses, a greater problem than fuel efficiency is that these vehicles do not meet the emission
standards for new buses.

However, bus emissions are not the only pollution source that must be addressed. In
2018, private vehicles accounted for 79.3% of Poland’s total passenger transport compared
to 12.9% for buses and coaches and 7.9% for trains [44]. Even though, a lot of papers have
focused on reducing CO2 emissions from cars [45,46] and trucks [20,47], this paper will
focuses only on buses.

The European Commission presumes that the increase in the number of zero-emission
fleet buses will increase to 17–22% by 2030 due to the expected tightening of CO2 emission
standards for this vehicle segment and support for measures to implement a charging
infrastructure (BSL—Baseline scenario). The highest share of electric buses is forecast for
the REG scenario (Figure 1). In the political scenarios for 2050, 92–98% of buses will be
powered by electric motors [48]. It should be emphasized that buses are most often used in
urban areas where electrification is more accessible. On the other hand, intercity coaches,
like trucks, will have problems with access to battery charging stations [49].

Figure 1. Shares in the bus vehicle stock by type of drivetrain in 2030 and 2050 [49]. BSL—(Baseline
scenario) achieving the existing 2030 GHG emissions, renewables and energy efficiency of EU targets.
The baseline scenario covers the transport policies adopted up to the end of 2019. MIX-50—An
increased ambition scenario to achieve at least 50% GHG reductions. REG—A regulatory-based mea-
sures scenario that achieves around 55% of GHG reductions. MIX—Following a combined approach
of REG and CPRICE, which achieves around 55% GHG reductions, both by expanding carbon pricing
and with ambitious policies that are somewhat lower than those of REG. CPRICE—A carbon-pricing
based scenario that achieves around 55% GHG reductions. It assumes the strengthening and further
expansion of carbon pricing, via the EU ETS or other instruments, to the transport and buildings
sectors, combined with low-intensity transport policies without intensifying energy efficiency and
renewables policies. ALLBNK—The most ambitious scenario in GHG emissions reduction, based on
MIX and further intensifying fuel mandates for aviation and maritime sectors in a response to an
extended scope of GHG reductions covering all aviation and shipping.
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An important element in developing the low-carbon public transport is increasing the
share of electrically powered vehicles. In Poland, the share of energy generated from coal
is on average about 80%, but preliminary data for 2020 shows that this share fell below
70%. Therefore, replacing the bus fleet with an electric one only changes the source of dust
and greenhouse gases [49,50]. Only a significant increase in the share of renewable energy
sources as part of total electricity production will result in lower carbon production [51,52].
The question is whether replacing the bus fleet given the current high level of energy
generation makes sense from this point of view. Despite the limitations indicated above,
the answer to this question is in the affirmative because electric buses usually replace old
vehicles that do not meet current emission standards. Moreover, power plants that generate
electricity are equipped with highly advanced technologies for capturing pollutants such
as nitrogen oxides or suspended dust [53] and they are usually found at a considerable
distance from city centers, which means that they have a smaller impact on human health.

3. Possible Ways of Modernizing Urban Bus Fleet

Diesel oil and gasoline are main energy sources for buses, but alternative drive systems
are on the rise. Of the 12,129 buses in 2019, 1180 used alternative energy sources. A year
earlier there were only 845 such vehicles [54].

These alternative sources comprise compressed natural gas (CNG), liquefied natural
gas (LNG), electricity and hydrogen. The engines that run on LNG and CNG are the same.
The liquefied gas evaporates in the fuel system and goes to the engine just as CNG does;
the difference is in how the volume of natural gas is reduced. In CNG vehicles, gas is
compressed at a pressure of 200 atmospheres, while in cryogenic LNG tanks it is a liquid
cooled to below −120 ◦C. However, LNG technology has a refuelling advantage. Since
LNG is a liquid, it can be refueled as quickly as diesel fuel in just a minutes [55,56]. In
December 2020, there were 817 CNG/LNG buses in Poland, mostly CNG (95%). Table 2
presents their distribution by city.

Table 2. CNG/LNG urban buses in polish cities in December 2020. Selected cities are included [57].

City Amount Share in the Bus Fleet *

Warsaw 201 CNG, 35 LNG 12%
Tychy 135 CNG 75%

Rzeszow 102 CNG 48%
Czestochowa 49 CNG 25%

Radom 37 CNG 22%
Tarnow 33 CNG 35%
Gdynia 32 CNG 13%

Myslowice 30 CNG No data
Bielsko-Biala 26 CNG No data

Lubin 25 CNG No data
Other cities 112 CNG -

* estimated value.

In electric buses, there are two ways to charge the storage battery: standard charging
and fast charging [58]. Standard charging uses moderate charging power, especially over
night at the bus depot and during longer breaks. This results in a large battery capacity and
increased weight when the bus has to run all day [59]. Fast charging is used between runs.
It significantly reduces the capacity of the battery and thus its weight [60]. Fast charging
can be used with a special pantograph, the design of which allows the driver to connect
the vehicle to the power supply safely without leaving the vehicle. Moreover, there is also
a wireless solution—inductive charging [61]. Unfortunately, fast charging requires the bus
schedule to allow for sufficient charging time in certain locations [22]. In December 2020,
Poland had 416 electric buses in operation (Table 3).



Energies 2021, 14, 3295 5 of 12

Table 3. Electric urban buses in Polish cities in December 2020.

City Amount Share in the Bus Fleet *

Warsaw 161 8%
Zielona Gora 43 48%

Krakow 29 5%
Jaworzno 24 35%
Poznan 21 6.5%

Other cities 138 -
* estimated value.

In hydrogen-powered buses, electricity is generated by synthesising oxygen from the
air and hydrogen from a set of cylinders in the presence of a catalyst. Heat and water vapor
are side effects of this reaction [62], and the refueling time is quite short [63]. In January
2021, though, there was not a single hydrogen bus among the city fleets in Poland.

According to the European Environment Agency, transport in 2017 was responsible
for 24.6% of greenhouse gas (GHG) emissions in the EU 28. Overall, road transport was
responsible for 71.7% of emissions, of which trucks and buses accounted for 26.3% [64]. No
wonder that measures are being taken to reduce the contribution of harmful substances [65].

The new EU directive 2019/1161 requires a special share of “clean vehicles” in con-
tracts organized from mid-2021. A clean vehicle means zero emission (electric and hy-
drogen) or low emission (CNG/LNG). In the case of Poland, the goals to be achieved are
at least 32% of “clean vehicles” for 2021–2025 orders and at least 46% from 2026 to 2030.
The directive applies to purchase, rental, hire, instalment and public transport service
contracts [66]. Unfortunately, the Ministry of Climate and Environment in Poland would
like to focus only on zero-emission vehicles and exclude low-carbon vehicles. Meanwhile,
the introduction of CNG/LNG-powered vehicles, as the literature suggests, might produce
emission savings [26]. At the beginning of 2021, the ministry consulted on an amendment to
the act on electromobility. The Chamber of Commerce for Urban Transport pointed out that
the new regulations were more restrictive than in the EU directive and ignored the issue of
CNG/LNG-powered buses [67,68]. This calls into question current investment in rolling
stock and infrastructure. As mentioned earlier, there are currently over 800 CNG/LNG
buses, 416 electric buses, and no hydrogen buses. Due to the pandemic, local governments
responsible for urban transport have reduced their budgets, which means they will have
difficulties meeting the proposed EU goals because electric and hydrogen-powered buses
are more expensive than CNG/LNG buses (Table 4).

Table 4. Cost of buying a bus [57].

Type of a Bus Price in PLN

CNG/LNG 1,100,000
Electric 2,100,000

Hydrogen 3,000,000

The Polish government will subsidize purchases; however, it will be delivered through
a competition. For instance, the National Fund for Environmental Protection and Water
Management prepared the “Green Public Transport” program, under which an electric
bus, hydrogen bus or trolleybus can be co-financed at 80, 90 and 80% of the eligible cost,
respectively. Furthermore, this program can also finance 50% of the infrastructure costs
needed to service vehicles. Those interested must meet the criteria set out in the terms of
the program [69].

It is also important to emphasize that Poland is the largest European producer of
electric city buses. In 2020, Solaris had a European market share of 20%. In 2020, the
company delivered a total of 457 electric buses having a length of 12 or 18 m—-almost three
times as many as in the previous year when 162 Urbino electric models were delivered [70].
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Therefore, it is important to use this advantage to reduce CO2 emissions further while
supporting the Polish economy by purchasing vehicles from domestic manufacturers.

4. Methodology

The methodology was adapted to the goal and scope of research, which included
analysis of the existing literature, a scenario, source documents, mathematical statistics,
tables and charts. These methods contributed to the achievement of research goal.

The literature analysis was carried out earlier. To carry out a scenario analysis, it
was necessary to start with determining the total number of city buses. On average, over
the last few years there were approximately 12,000 registered and performing buses in
Poland [54]. Then attention was focused on the number of vehicles that ran on a particular
fuel: diesel oil, CNG/LNG, electricity or hydrogen as well as hybrids. In 2020, the share
of electric buses was about 3.5%. Diesel buses dominated with more than an 86% share.
CNG and LNG buses had less than a 7% share, and the share of hybrid buses was less than
3.5% [57]. There were no hydrogen-powered buses [71–74], but one manufacturer made
them available to carriers for testing. Taking this division into account, it is possible to
focus on the CO2 emissions for each of the given types of vehicles. In 2020, the previously
described buses emitted over 1 million Mg CO2, from the source to the wheels and 831.5
thousand Mg of CO2, from the tank to the wheels, which is important for the health of
city residents because harmful gases and dust get into the air with the CO2 emissions
(Table 5). The next step is to determine the average number of kilometers that the buses
travel during a year. According to the Central Statistical Office, it is 72,590 km [54]. There
is also a need to clarify the share of renewable energy in Poland’s total energy production.
In 2020, it was 18% and, based on the available statistical data and planned investments in
RES, 20% is expected for 2024. With this data, we move on to establishing assumptions for
individual scenarios.

Table 5. Greenhouse gas emissions and number of buses for scenarios I-III [75,76].

Description Diesel
Buses

CNG-
Powered

Buses

LNG-Powered
Buses

Hydrogen
Buses

Electric Buses

Hybrid
Buses

Electricity
Generated from

Conventional
Raw Materials

(Coal, Gas)

Electricity
Generated from

Renewable
Energy

Greenhouse gas emissions from the tank to
the wheels (expressed as CO2 eq in g/km) 1004 1014 1014 0 0 0 552

Greenhouse gas emissions from the source
to the wheels (expressed as the CO2 eq in

g/km)
1222 1171 1171 320 720 20 672

The share of buses in December 2020 (%) 86.33 6.51 0.29 0 2.84 0.62 3.41
The number of buses (December 2020) 10360 781 35 0 341 74 * 409

Buses participation (scenario
I—pessimistic) 80.11 7.47 1.01 0.93 5.48 1.37 3.63

Buses participation (scenario II—realistic) 76.43 8.02 1.29 1.33 7.05 1.79 4.09
Buses participation (scenario

III—optimistic) 73.02 8.37 1.55 1.75 8.67 2.19 4.45

Number of buses (scenario I—pessimistic) 9614 896 121 112 657 164 ** 436
Number of buses (scenario II—realistic) 9171 962 155 160 846 215 ** 491

Number of buses (scenario III—optimistic) 8762 1004 186 210 1040 263 ** 535

* theoretical number of buses powered by electricity generated on the basis of renewable energy, calculated on the basis of the 18% share of
renewable energy for 2020. ** theoretical number of buses powered by electricity generated from renewable energy, calculated on the basis
of a 20% share of renewable energy for 2024.

There are many barriers that hinder the development of low-carbon city bus transport,
such as high costs and the need to build infrastructure for battery chargers [23,77,78].
Despite the difficulties, a particularly rapid increase in the number of electric buses is
taking place in wealthy countries such as China, Germany and the U.K. [24,79].

Assumptions for the scenario analysis were based on the available statistical data
such as plans for purchasing low-carbon buses, which was possible because the authors
collected this information from local government co-financing programs for ecological
buses. For example, data for “Green Public Transport”, mentioned earlier, was obtained
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during autumn 2020 from the research of experts at scientific and local government in-
stitutions and enterprises [80]. In April and May 2021, foresight research was conducted
among representatives of transport sector enterprises, local governments, scientific circles
and non-governmental organizations, from which were able to define individual scenario
assumptions and indicate how the number of city buses should change (e.g., electric or
hybrid). When developing assumptions for individual scenarios, the authors used their
own experiences gained during, for example, application evaluations for co-financing
innovative projects and investment in for various institutions, including the European
Commission, Regional Operational Program, and National Centre for Research and De-
velopment. During the research, three scenarios were proposed that indicate the likely
development of the number of city buses by the end of 2024. All scenarios assumed
the following:

• The number of buses will be close to the average from recent years, i.e., 12,000. It
does not provide for changes in the number of buses because the analysis covers a
relatively short period of time.

• Each bus will cover an average distance of 72,590 km as before. Currently, there are
no data available that would allow determining the average distance covered during
a year.

• CO2 emission levels will stay at the current level.
• The share of hybrid buses will grow very slowly due to difficulties in obtaining

funding for their purchase.
• The share of electricity generation based on renewable energy sources will increase

from 18% in 2020 to 20% in 2024.
• A slow increase in the share of buses powered by natural gas (LNG and CNG) due

financing issues related to the relatively high emissions of greenhouse gases and
other pollutants.

5. Results and Discussion

For Scenario I (pessimistic) it was assumed that investments in new, “greener buses”
will run more slowly than predicted by the plans and assumptions currently available.
This situation may be due to the lack of agreement between the Polish government and the
European Union on the allocation and financial resources to help improve the economy
after the coronavirus pandemic. Another reason might be delays in vaccine deliveries.
In the case of Scenario II (realistic) it was assumed that all planned activities related to
investment in developing bus transport will be implemented, orders for, and deliveries
of, low-carbon buses is to be uninterrupted, and the ordered buses will be put into use
(Table 6). However, there may be minor delays in implementing tenders for the purchase
of vehicles. In Scenario III (optimistic), it was assumed that replacing diesel-powered buses
will be faster due to the mobilization of additional funds, which are not included in current
assumptions for the development of urban transport in the coming years.

Table 6. CO2 emissions for scenarios I–III.

Description

Number
of km

Traveled
per Year

Greenhouse Gas Emissions from the Tank to the
Wheels (Expressed as CO2 eq in Mg)

Greenhouse Gas Emissions from the Source to the
Wheels (Expressed as the CO2 eq in Mg)

Scenario I
(Pessimistic)

Scenario II
(Realistic)

Scenario III
(Optimistic)

Scenario I
(Pessimistic)

Scenario II
(Realistic)

Scenario III
(Optimistic)

Buses with diesel engines

72,590

700,672 668,386 638,578 852,810 813,513 777,233
CNG-powered buses 65,951 70,809 73,901 76,163 81,773 85,343
LNG-powered buses 8906 11,409 13,691 10,285 13,175 15,811

Hydrogen buses 0 0 0 2602 3717 4878

Electric
buses

Electricity generated from
conventional raw

materials (coal, gas)
0 0 0 34,338 44,216 54,355

Electricity generated on
the basis of renewable

energy
0 0 0 238 312 382

Hybrid buses 17,470 19,674 21,437 21,268 23,951 26,098

Total 793,000 770,278 749,606 997,704 980,658 964,099
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Based on the scenario analysis, it was calculated that by investing in low-carbon city
buses, it will be possible to reduce CO2 emissions by over 34 thousand Mg from the source
to the wheels) and almost 46 thousand Mg from the tank to the wheels in the case of the
realistic scenario (Table 7). However, even in the case of a slower pace of investment,
which was assumed in pessimistic Scenario (I), there will be significant reductions in CO2
emissions—almost 29 thousand Mg from the tank to the wheels and over 20 thousand Mg
from the source to the wheels. Reductions in greenhouse gas emissions will take place in
Poland as a result of EU regulations that will enforce compliance with low-carbon solutions
and an increasingly aware society that will put pressure on the authorities to ensure that
they do. In the case of the optimistic scenario, it will be possible to reduce CO2 emissions
by over 62.6 thousand Mg from the source to the wheels and almost 46.4 thousand from
the tank to the wheels. However, for such a significant reduction, it will be necessary to
mobilize additional funds to increase investment in low-carbon buses.

Table 7. Differences in CO2 emissions for Scenarios I–III by the end of 2024 compared to 2020.

Description

Greenhouse
Gas

Emissions
from the

Tank to the
Wheels

(Expressed
as CO2 eq in

Mg)

Greenhouse
Gas Emissions

from the
Source to the

Wheels
(Expressed as

the CO2 eq
in Mg)

GHG Emissions Difference from Tank to
Wheels 2024/2020 (Expressed as the CO2 eq

in Mg)

GHG Emissions Difference from Source to
Wheel 2024/2020 (Expressed as the CO2 eq

in Mg)

Scenario I
(Pessimistic)

Scenario II
(Realistic)

Scenario III
(Optimistic) Scenario I

(Pessimistic)
Scenario II
(Realistic)

Scenario III
(Optimistic)

Buses with diesel engines 755,041 918,984 −54,369 −86,655 −116,463 −66,174 −105,470 −141,751
CNG-powered buses 57,486 66,387 8465 13,323 16,414 9775 15,386 18,956
LNG-powered buses 2576 2975 6330 8833 11,115 7310 10,200 12,835

Hydrogen buses 0 0 0 0 0 2602 3717 4878

Electric
buses

Electricity
generated from

conventional raw
materials (coal,

gas)

0 17,822 0 0 0 16,516 26,394 36,533

Electricity
generated on the

basis of
renewable energy

0 107 0 0 0 131 205 274

Hybrid buses 16,388 19,951 1082 3286 5049 1317 4000 6146

Total 831,492 1,026,227 −38,492 −61,214 −83,885 −28,523 −45,569 −62,128

6. Conclusions

Reducing emissions of greenhouse gases and other harmful substances from buses
is of particular importance for improving the quality of life of city residents. There are
quite strict regulations on this matter at the European Union and national level, and Poland
seems to be a country particularly worth analysing as it has a large number of city buses
and is one of the leading producers of electric buses in Europe. The scenario analysis
carried out in this article regarding the prospects of developing of low-carbon urban bus
transport showed that a reduction in the range of 38.5–83.9 thousand Mg CO2 from the
tank to the wheels and in the range of 28.5–62.1 thousand Mg CO2 from the source to
the wheels is possible. It should be noted that to obtain a greater reduction additional
funding would be needed for increased investment in low carbon buses. Recognition of
CNG/LNG-powered buses as low-carbon rolling stock during the transition period and
co-financing of the purchase for public transport carriers will also be helpful. Other studies
also indicated this [26,81], and because of these it is possible to reduce CO2 emissions and
use money more efficiently than for the purchase of low-carbon buses.

Another form of needed assistance for urban transport operators is support in prepar-
ing cost/benefit analyses of plans to make the transition to zero-emission rolling stock. It
seems that further research should focus on ways to increase ridership. As a result, it will
be possible to increase the positive environmental effect.

It should be emphasized that the reduction in CO2 emissions would be much higher if
coal-burning electricity generation were reduced. The calculated reductions in greenhouse
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gas emissions in the three scenarios assumed they would be much higher if electricity in
Poland were produced to a greater extent on the basis of RES, which is possible especially
in rural areas. Therefore, the article showed that reducing CO2 emissions and their accom-
panying harmful gases and dust calculated are of particular importance for improving
urban air quality.

In addition to increasing the financing related to replacing a city’s bus fleet and limiting
the use of fossil fuels in electricity generation in Poland, other measures should also be
taken to develop low-carbon city bus transport. The most important of them include:

• ongoing monitoring and adaptation of the bus system to the needs of users (location
of stops, routes for individual lines);

• introducing zones in city centers that ban cars with engines that do not meet the latest
ecological standards, while simultaneously expanding parking lots on the outskirts
where it would be possible to leave non-ecological cars and use ecological urban
transport;

• implementation of educational activities to promote low-carbon transport;
• radical limitation and the future banning by local governments of the purchase of

buses with internal combustion engines;
• increasing parking fees in city centers;
• expansion of pedestrian infrastructure, especially in the vicinity of bus stops;
• expansion of bus lanes infrastructure; and
• blocking some roads to passenger car traffic.
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1637–1648. (In Polish)
2. Proost, S.; Van Dender, K. Energy and environment challenges in the transport sector. Econ. Transp. 2012, 1, 77–87. [CrossRef]
3. Pietrzak, K.; Pietrzak, O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability 2020, 12,

1052. [CrossRef]
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