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Abstract: The planning and realization of wind energy projects requires an as accurate and precise
wind resource estimation as possible. Standard procedures combine shorter on-site measurements
with the application of numerical models. The uncertainties of the numerical data generated from
these models are, particularly in complex onshore terrain, not just rather high but typically not well
quantified. In this article we propose a methodology for using a single scanning Doppler wind lidar
device to calibrate the output data of a numerical flow model and with this not just quantify but
potentially also reduce the uncertainties of the final wind resource estimate. The scanning lidar is
configured to perform Plan Position Indicator (PPI) scans and the numerical flow data are projected
onto this geometry. Deviations of the derived from the recorded line-of-sight wind speeds are used
to identify deficiencies of the model and as starting point for an improvement and tuning. The
developed methodology is demonstrated based on a study for a site in moderately complex terrain
in central Germany and using two rather different types of numerical flow models. The findings
suggest that the use of the methodology and the introduced scanning wind lidar technology offers a
promising opportunity to control the uncertainty of the applied flow models, which can otherwise
only be estimated very roughly.

Keywords: wind resource assessment; scanning lidar; flow model calibration

1. Introduction

An as accurate and precise as possible estimation of the wind resource, and the
calculation of the prospective energy yield based on it, are important prerequisites for the
successful design of a wind farm. The difficulty of the task increases with the complexity
of the site under consideration, but also with the advancing point in time within the project
life cycle at which the estimation takes place. While an initial rough estimate is sufficient
at an early stage of the project development, the final realization and financing of the
project requires maximum accuracy and, in particular, the lowest possible uncertainty of
the forecast values of the expected energy yield. For the German onshore wind market, as
an example, this demand increased even more when in 2017—with the EEG-2017 [1]—an
auction model was introduced for the remuneration of electricity generated from wind
power. Following this, bidders must submit their bid based on their expected energy yield
at the time when the auction takes place. As a parallel development, the complexity of the
sites that are planned and awarded within the auctions is increasing, as simple sites in flat
terrain with comparatively high average wind speeds are already occupied and thus less
available. This leaves onshore sites that are characterized by hilly or forested terrain, for
example, both of which pose a significant challenge to the estimation of the site-specific
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wind resource. A typical German onshore site in moderately complex terrain, as it has been
studied in more depth also for this article, even combines these two challenges.

Lee and Fields [2] have taken a more global look at the development of wind resource
assessment procedures and results and have identified a long-term trend of reduction in an
overprediction bias (of the estimated wind resource) whereas the uncertainty associated
with the prediction error is prominent. Related improvements during the last decades are
found both in modelling and measurement techniques. Depending on the complexity of
the terrain, uncertainties in the wind potential estimate can be in the order of 10% which
in turn can lead to a 30% uncertainty in the annual energy production considering that
the power is proportional to the cube of the inflow wind speed [3]. An uncertainty of this
magnitude poses an essential challenge to the financing of a wind project, especially since
it occurs at a time when it is not yet clear whether the project will be realized at all.

The wind resource assessment (WRA) as part of a wind project development, regard-
less of whether a wind farm is planned onshore or offshore, is done according to a standard
procedure described in various guidelines. WRA generally refers to the process by which
wind power developers estimate the future energy production of a wind farm [4]. A more
specific term is pre-construction energy yield assessment (EYA) that not just specifies the
purpose but also the time of the assessment. Accordingly, there is also a post-construction
EYA which, however, is not dealt with in this article. The same applies to the last part of
the WRA, the energy yield calculation. What remains is the consideration of wind condi-
tions, which can be divided into the compilation of a wind database and the numerical
modelling of wind conditions. Worth mentioning here are the guideline by MEASNET
on the “Evaluation of site-specific wind conditions” first introduced in 2009 and updated
in 2016 [5] and the Technical Guideline (TG) 6 on “Determination of Wind Potential and
Energy Yield” published by the German body FGW and now available in its 11th revision
from 2020 [6]. An international standard is also being developed and is currently available
as draft referred to as IEC CD 61400-15 [7].

The various guidelines all agree on the point that the wind resource is estimated
based on a combination of measured on-site data and numerical data from suitable models.
The numerical data are used on the one hand to extrapolate the measured data spatially,
i.e., to transfer them from one site to another (which only provides meaningful results
within a certain, terrain-dependent, radius of a few kilometers maximum). On the other
hand, a temporal extrapolation or so-called long-term correction is carried out on this basis
of combined on-site and long-term data, which is necessary because measurements are
usually only available for a period in the order of one year, but the wind potential must be
estimated for about 20 years. For both aspects, the measurement data are used to calibrate
the numerical data and thus reduce the uncertainty of the wind potential estimation. The
overall uncertainty can be reduced accordingly by improving the measurement, which
can be realized by selecting the most accurate measurement technology or by performing
measurements that cover the future wind turbine (WT) sites as accurately as possible. With
the latter it is not just referred to the measurement height, which should be at least the hub
height of the turbines—getting higher and higher, especially in complex terrain—and in
the best case the entire vertical extent of the rotor, but also the horizontal positions in the
terrain. It was e.g., shown in [8] that especially in complex terrain it is usually no longer
sufficient to measure at just one position, as it is realized with a meteorological (met) mast
equipped with anemometers along a vertical line or with a single vertically profiling lidar
or sodar device. Similarly, it was explored in [9] how adding an additional measurement to
a met mast in complex terrain positively affects the wind resource assessment. In general,
and confirmed by the mentioned studies, a conceivable solution to improve the wind
potential estimation is the use of different measuring positions, either with simultaneous
measurements using several measuring systems, or the repositioning of one measuring
system, which is possible at least with remote sensing devices and wind lidars or sodars
in particular. TG 6 takes this option into account as a so-called additional measurement
(opposed to the main measurement), which can be carried out for the purpose of vertical
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extrapolation and/or time series extension, whereby the latter also includes horizontal
extrapolation. In the case of a planned wind farm consisting of several wind turbines, the
main measurement could be carried out at the position of one turbine, while the additional
measurements cover the other turbines.

As also pointed out by Lee and Fields [2] and the references given herein, the industry
has recognized the role of remote sensing instruments in reducing the uncertainty of energy
production and wind speed from extrapolation, such as profiling lidars, scanning lidars,
and airborne drones. While (vertically) profiling lidars—just like sodars, which are still of
great importance in at least some parts of the industry [10]—can be seen as practical and
most cost-efficient replacement of tall met masts, scanning lidars come along with totally
new opportunities. In this article, we show how a single additional scanning lidar device
can be used to calibrate the output data of a numerical flow model and with this potentially
reduce the uncertainties of the final wind resource estimate. The exact methodology for
this, as well as the measurement principle of a scanning lidar and how we have applied it
here, will be explained in the next section.

An alternative approach, as e.g., pursued in [11], is to use a set of several scanning
lidar devices in a synchronized way to produce several so-called virtual met masts at
the different locations of interest at a site. Typically, two scanning lidar devices are used
together in the dual-Doppler approach. While both alternative approaches pursue the goal
of better resolving the wind flow over the terrain with measurements, we consider the first
approach and the one followed in the study reported here to be more cost-efficient, since the
use of scanning lidar technology in particular drives up the costs of a WRA measurement
campaign. Since the measurement costs are at the same time the main part of the budget
for a WRA study, additional costs must be regarded as a significant risk for the developer.
On the other hand, the use of the technology offers a very good opportunity to quantify
the uncertainty of the applied flow models, which can otherwise only be estimated very
roughly. This aspect will be taken up again and elaborated on in the discussion at the end
of this article.

The article is organized as follows: In Section 2, following this introduction, we
introduce the materials (basically measurements and data) and methods relevant to this
study. Results are presented in Section 3 and discussed in Section 4, Section 5 rounds off
the article with the main conclusions.

2. Materials and Methods

Before we go into more detail about the data studied for this article in Section 2.2, we
describe the methodology developed and applied in Section 2.1.

2.1. Methodology

As pointed out in Section 1, the methodology we have developed is about using a
single scanning lidar device, in addition to a reference measurement, to calibrate the output
data of a numerical flow model. The details of the scanning lidar measurements, together
with the specifications of the reference measurement, are further described in Section 2.1.1.
In Section 2.1.2, we go into more detail about the use of the numerical model data, and in
Section 2.1.3 about the calibration process considered here.

2.1.1. On-Site Measurements

The motivation for using a scanning lidar within a wind resource assessment cam-
paign, as proposed here, is to map the flow over the terrain at the locations of interest in
as much detail as possible. For this purpose, we use the functionality of a scanning lidar
device, which allows us to freely select azimuth and elevation angles of the laser beam and
thus also to implement planar scans. Typical planar scan approaches are the Plan Position
Indicator (PPI), for which the elevation angle is kept constant and the azimuth angle is
varied from 0 to 360◦, or the Range Height Indicator (RHI) defined by a varying elevation
but constant azimuth angle. The complete scan is composed of a set of single line-of-sight
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(LOS) measurements, each defined by a specific azimuth and elevation angle. For pulsed
wind lidars, different ranges are assessed simultaneously, so that PPI and RHI scans yield
not only trajectories but actual planes. More details about scanning wind lidar technology
and its use in the wind industry and wind energy research so far are found e.g., in [11–14].

For our methodology, we have selected a PPI scan approach, whereby the scanning
lidar device is placed in such a way that a relevant part of the site can be covered. Ideally,
this is the center of the site, and all planned future wind turbine locations are within
the range of the scanning device. This may mean, in particular, the turbine positions at
hub height—which however might not be known at the time the measurement campaign
is conducted—or the height range that is relevant for the validation of the flow models
(typically 50–200 m), respectively. Another approach could be to focus on areas that are
supposed to be challenging for the applied flow models. When applying a PPI scan with
constant non-zero elevation angle, measurement heights of the scanning lidar increase
with range—this peculiarity of the measurement approach will be taken up again in the
discussion of the results.

Particularly in complex terrain, obstacles of various kinds (including orographic site
characteristics and vegetation) can create blind spots to the scan. Placing the device at some
elevation may help to overcome the issue. A hard-target mapping and analysis is used to
locate obstacles and optimize the scan pattern. In some cases, especially for larger sites and
sites with a greater number of wind turbines planned, respectively, it may be recommended
to use more than one scanning lidar device but otherwise apply the procedure in exactly
the same way.

For a single LOS, the scanning lidar device records the radial wind speed:

vLOS(r, θ, φ) = v(r, θ, φ)·n̂(θ, φ), (1)

i.e., the three-dimensional wind vector v =
(
vx, vy, vz

)
, typically expressed in Cartesian

coordinates, is translated into spherical polar coordinates and multiplied with the unit
vector that defines the particular LOS direction. Here, θ is the azimuth angle, φ the elevation
angle and r the range or distance to the device. The actual velocity retrieved by the lidar
at a certain radial location represents a spatio-temporal convolution of the instantaneous
line-of-sight velocity field, with this depending on the explicit lidar acquisition process and
scanning parameters [15].

The devices that are suitable for our application, requiring in particular a sufficient
range of one to several kilometers, are typically pulsed lidars. As already mentioned above,
pulsed lidars come along with the benefit of providing recordings for several range gates rj
along a specific LOS i simultaneously, defining a measurement grid vLOS, i

(
rj, θi, φ

)
for a

PPI scan with a fixed elevation angle φ = const.
Typically, and especially if the scanning lidar device is not placed on a significant

elevation at the site, φ is not chosen to be zero (φ > 0), which leads to the scan not forming
a surface but a cone. Care should be taken to ensure that φ is as small as possible since large
scan elevation angles can lead to higher uncertainties due to a higher contamination of the
LOS projected wind speed by vertical components. Previous studies have suggested to
consider 20◦ as upper threshold for φ when setting up a PPI scan [16,17]. In other studies,
an even smaller value is recommended, which however is often not feasible particularly in
complex terrain.

Figure 1 illustrates the measurement setup with a PPI scan by a scanning wind lidar
device covering the site of interest. This areal measurement is supplemented by a reference
measurement at one point, which can be realized by a vertically profiling lidar or sodar
device or a met mast with several height levels, and which provides recordings of reference
(horizontal) wind speed, direction and wind shear in terms of the wind shear exponent
(see details later). The wind shear exponent is used here as a proxy for atmospheric
stability, which is rather a pragmatic than optimal choice. These data are required for
the merge of measured and numerical data which is described in detail in Section 2.1.3.
From a practical point of view, the reference measurement can be identical to the main
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measurement required by TG 6 [6]. If the scanning lidar measurement is carried out after
the end of this activity for a retrospective reduction of the WRA uncertainties, however, an
additional reference measurement needs to be executed to provide the input data to the
proposed methodology.
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Figure 1. Elevation map of the site under study with the scanning lidar position in its center. Symbols
represent the locations of wind turbines in a scenario for the wind farm Herleshausen, the lidar used
for the previous wind resource assessment, and the reference sodar measurement (which is at the
same position as the scanning lidar). Colors indicate terrain elevations above mean sea level—details
of scan are given in Table 2.

2.1.2. Wind Flow Simulation and Projection of Numerical Data

A numerical micro-scale wind flow model describes the spatial wind distribution by
solving a fluid mechanics equation system on a predefined grid in a domain over the site,
using physical parametrization. As input, the user needs to provide terrain maps (elevation,
roughness and land-use) and boundary conditions (e.g., input wind speed, wind direction
and stability). In a WRA study, the output of the wind flow models is used to spatially
transfer the measured wind conditions from the reference instrument location to the WT
locations. This is done by applying speed-up factors that account for topographical effects.
A simplified model setup can be based on a pre-defined standard configuration with some
wind direction sectors as input and stability factors (if reference measurements provide
these) that can be chosen depending on the measured on-site wind conditions.

The most general output of a numerical wind flow simulation is a three-dimensional
wind field, i.e., a three-dimensional wind vector for each point of the (again three-dimensi-
onal) simulation grid. In order to compare this output with the measurements of a single
scanning lidar as described in Section 2.1.1, we project the numerical data onto the measure-
ment grid vLOS, i

(
rj, θi, φ

)
. This again requires a coordinate transformation from typically

Cartesian to spherical polar coordinates and the consideration of the specific unit vectors
that define the configured PPI scan. The projection provides the data matrix

(
vLOS, ij

)
sim.

which is in the next step compared to
(
vLOS, ij

)
meas. obtained directly from the scanning li-

dar measurements. This comparison is done for a specific wind direction ϕ and atmospheric
stability as covered by the numerical simulations. Wind speeds are typically not varied
for the simulations, which is why they do not represent an additional input parameter
here. This assumption is supported by a dimensional analysis based on Monin-Obukhov
similarity theory (MOST). The scaling behavior has been re-evaluated recently in [18,19].
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That reduced the simulation matrix considerably which has been shown in [20] in case of
meso-micro coupling using multiple meso-scale points that overlap with the micro-scale
domain. Wind shear, as a proxy for atmospheric stability, is expressed by the power law
shear exponent α which can also be derived from the reference measurement covering at
least two measurement heights according to:

vh2 = vh1·(h2/h1)
α (2)

where h1 and h2 are the two measurement heights and vh1, vh2 the respective horizontal
wind speed values. It should be noted that the choice of using the wind shear exponent
as a proxy for atmospheric stability is generally accurate only in case of flat homogenous
terrain without either forest or variation in land-use. Even if these conditions are not met
for our study, using this proxy has a merit since we are considering it in relative terms
with respect to neutral conditions while everything else is fixed. That is why we see it as
a pragmatic and here still sufficient choice. A more advanced but still simple method is
introduced in [21] combining the shear exponent with the turbulence intensity as another
proxy for atmospheric stability.

2.1.3. Calibration of Numerical Flow Data

The measurement data are processed by applying a quality filter. A specific filter we
have selected for our application is described in Appendix A. The filtered valid measure-
ment data is then averaged to 30-min block averages. The averaged data matrices are each
assigned a reference wind speed vhor, re f , direction ϕre f and wind shear exponent value
αre f that are derived from the simultaneous reference measurements. Values of ϕre f and
αre f are binned, i.e., rounded to some discrete values that define the respective bins, so that
they are comparable to the input parameters of the numerical simulations.

Measured and simulated data matrices are now grouped according to these two
parameters but still have different reference wind speeds in the majority of cases, namely
when the measured reference wind speed does not correspond to the usually constant
input wind speed used in the simulations. To eliminate this discrepancy, we carry out a
normalization of the data matrices assuming that such a manipulation does not affect the
characteristics of the wind flow. A straightforward normalization method is to divide both(
vLOS, ij

)
meas. and

(
vLOS, ij

)
sim. by the corresponding value of the outermost grid point, i.e.,

r = rmax, along the mean wind direction ϕre f . This gives:

(
vLOS, ij

)
meas./norm. =

(
vLOS, ij

)
meas.

(vLOS, i=̂ϕre f , j=̂rmax)meas.

(3)

(
vLOS, ij

)
sim./norm. =

(
vLOS, ij

)
sim.

(vLOS, i=̂ϕre f , j=̂rmax)sim.

(4)

After this normalization the measured and simulated data matrices of radial wind
speeds can be correlated and deviations can be assessed. We call this a calibration because
the results can be used to assess and quantify a model uncertainty which is a highly
relevant input to the WRA evaluation. For this article, the deviations (∆vLOS, ij) are assessed
according to:

(∆vLOS, ij) = [
(
vLOS, ij

)
sim./norm. −

(
vLOS, ij

)
meas./norm.]/

(
vLOS, ij

)
meas./norm. (5)

2.2. Demonstration Study

The methodology described in the previous subsection is demonstrated by means of
an example study, details of which are given in this subsection. In Section 2.2.1 we describe
the site under investigation, in Section 2.2.2 the used measurement technologies and the
measurements carried out, and in Section 2.2.3 the applied flow modelling with the two
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Computational Fluid Dynamics (CFD) models run for the site. Results of the study are
presented and discussed in the following sections.

2.2.1. Description of Site

The site studied for this article lies in the municipality of Herleshausen in the state
of Hesse (Germany) close to the border of Thuringia and is characterized as moderately
complex dominated by forest. In the considered scenario, five wind turbines (with a hub
height of 161 m each) are planned in the wind farm Herleshausen on and around a hill at
heights between 300 and 400 m above mean sea level, as shown in Figure 2 together with
the prevailing land-use type and orography. Elevations between the wind turbine locations
planned in this scenario vary up to 50 m, leading to significant speed-up effects and posing
a challenge for any wind flow model. For a specification of land-use types see additionally
Table 1.

1 
 

 
(a) (b) 

  

Figure 2. Planned wind turbines in the considered scenario and measurement setup, symbols as in Figure 1, with (a) terrain 
orography, and (b) land-use map. 

 

Figure 2. Planned wind turbines in the considered scenario and measurement setup, symbols as in Figure 1, with (a) terrain
orography, and (b) land-use map.

Table 1. Specifications of land-use types as used in the models.

Roughness Length Height Plant Area Index

Forest 0.6 m 20 m 4.2
Grove 0.5 m 16 m 0.9

Buildings 0.5 m 7 m -
Open land 0.1 m - -

2.2.2. Used Measurements

A TG 6-compliant wind measurement with a vertically profiling wind lidar was
carried out at the site already in 2015/16. However, as our study was only conducted
subsequently, these measurements could not be used as direct reference measurements. For
this reason, we have installed a supplementary sodar device, as shown in Figures 1 and 2,
that provided reference measurements of horizontal wind speed and direction (both at
120 m height) and the wind shear exponent (derived from the measurements at 60 m
and 120 m) to the wind flow mapping of the scanning lidar and the flow modelling. The
installed device is a Doppler miniSoDAR System by Atmospheric Systems Corporation
(Boulder, CO, USA) configured to measure at 16 heights between 30 m and 180 m.

The scanning lidar device that was deployed at the site is a Galion 4000 [22], a long-
range pulsed Doppler wind lidar and Wood Group product. In optimal conditions, it
provides wind measurements in a distance range of up to 4000 m, starting at 80 m, with up
to 130 sequential range gates of 30 m each. The laser’s shooting frequency is 100 Hz and the
data sampling rate up to 2 Hz, depending on the specific instrument settings configured.
The instrument has an all-sky scanning capability allowing e.g., for a PPI scan strategy as
pursued in this study. For the detailed settings selected during our campaign, see Table 2.
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Table 2. Specifications of measurement campaign for scanning lidar and reference sodar measurements.

Period of (Concurrent) Measurement
31 October to 11 November 2019,

7 to 26 February 2020
(Corresponds to 912 30-min Datasets)

Scanning lidar measurement specifications:

Range of azimuth angles θi
0–360◦ in steps of 10◦

(36 beams in scan)
Fixed elevation angle φ 20◦ (with system 364 m ASL and 3 m above ground)

Range gates rj 42 range gates with 30 m resolution starting at 80 m
Completion time of scan 95 s

Reference sodar measurement specifications:
Range of measurement heights 30–180 m in steps of 10 m

Measurement configuration 3 beams: 1 vertical, and x-/y-direction along 16◦-cone
Transmitter frequency 4.5 kHz
Sampling frequency 0.25 Hz

The two devices were installed next to each other, see Figure 3, at a location that was
identified as optimal in terms of the device’s clear view and coverage of the measurements.
From this position, next to the planned turbine location WT3, the scanning lidar beams in
the configured PPI scan could reach four of the total five planned wind turbine locations
in the given scenario. Details of the configured scan are given in Table 2. Measurements
with this scan strategy were run for a total period of about four weeks in fall 2019 and
winter 2020 (details are also given in Table 2) with an alternative strategy not discussed
here pursued in the period in between.
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Figure 3. On-site installation of scanning lidar (left) and reference sodar (right) with illustration of
scan pattern, color contours show example measurements of radial wind speed within scan. Cone
angle and ranges seen here are an example used for illustration only.

2.2.3. Applied Flow Modelling

In this study, two micro-scale CFD models have been used, FIWind and FITNAH.
Fraunhofer IWES Wind Simulation Environment (FIWind) is an in-house tool developed
by Fraunhofer IWES based on OpenFOAM. The version used in this work is based on
OpenFOAM-5. The second model is Flow over Irregular Terrain with Natural and Anthro-
pogenic Heat Sources (FITNAH) [23,24] which is a meso-scale type model adapted and
advanced by GEO-NET for wind mapping and resource assessment.

Both the above mentioned CFD models are steady-state Reynolds-Averaged Navier-
Stokes (RANS) models. The flow is considered incompressible under the Boussinesq
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approximation. Despite the similarities in the core physics, there are several significant
differences between the models: for the FIWind setup, an Atmospheric Surface Layer (ASL)
model has been used based on [25], which means that the Coriolis force is ignored. FITNAH,
on the other side, includes an Atmospheric Boundary Layer (ABL) model which—in
contrast to FIWind—has the capability to predict veer. Another major difference is the type
of mesh used: unlike FITNAH, which is a structured code, FIWind can use an unstructured
mesh. In FIWind a cylindrical domain with horizontally uniform grid is used for all wind
directions whereas in FITNAH a rectangular domain with a horizontally uniform grid is
used. Both models include a canopy model for forest modelling representing the canopy
by extra source terms in the momentum and turbulence equations. The land-use map as
per Figure 2 has been used and the roughness values and forest parameters in Table 1. The
plant area density profiles for forest and grove type follow [26]. More details about the
general FIWind formulation can be found in [25,27].

In order to have a good basis for a comparison between the two models, the differences
in the model setups are kept as small as possible. The same grid resolution of 25 m has
been used with the same land-use and forest parametrization, thus the same roughness and
plant area density profiles. Only neutral conditions have been considered with 36 simulated
wind directions in FIWind and 12 directions in FITNAH, both uniformly distributed. The
difference in the number of modelled wind direction sectors is mainly due to limitations
in computational resources. Details of the model setups are summarized in Table 3. As
mentioned before, only one reference wind speed is necessary since the velocity field can
be scaled later. Only neutral stratification has been considered to eliminate the uncertainty
associated with the choice of thermal parameters. Moreover, there are some differences in
the implementation of the thermal solvers in the two codes, which is however eliminated
by modelling neutral conditions only.

Table 3. Specifications of FIWind and FITNAH model setup for the study presented in this article.

FIWind FITNAH

Direction sectors 36 (first centered at 5◦) 12 (first centered at 0◦)
Input wind speed 10 ms−1 5 ms−1

Height of input wind speed 100 m 9000 m
Atmospheric stability neutral neutral

Grid spacing 25 m 25 m

3. Results

First, in Section 3.1, we describe how the data from the entire measurement campaign
was sorted and assigned to individual flow cases. In Section 3.2, we investigate a single
flow situation that corresponds to one 30-min dataset, and in Section 3.3 we present a
statistical analysis of four selected flow cases.

3.1. Data Coverage

After processing the data, a two-dimensional capture matrix, summarizing the dis-
tribution of the recorded data with respect to the reference parameters, was derived to
map the coverage of individual flow cases. The dimensions of the capture matrix are
reference wind direction ϕre f and vertical wind shear exponent αre f as obtained from the
on-site reference data, i.e., the sodar recordings in our case. The reference wind direction is
measured at 120 m above the sodar instrument, and the values αre f are derived by fitting a
power-law profile to the wind speed measurements at the two heights 120 m and 60 m, as
described above. The data are then binned according to wind direction bins / intervals
of 30◦ and wind shear exponent bins/intervals of 0.2, resulting in the matrix shown in
Figure 4. The two-dimensional data distribution is investigated in order to select the most
relevant flow cases. For our study, these are cases with an inflow wind direction from the
sectors around 210◦ and 240◦ and a wind shear exponent in the range between 0.1 and 0.5,
i.e., in the bins around 0.2 and 0.4.
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In principle, all flow cases that are considered as relevant based on the data from the
main measurement and a suitable long-term reference dataset should be covered by the
additional measurement involving the scanning lidar with a sufficient number of samples.
In our study, this could not be realized to full extent due to the limited and rather short
length of the campaign. This is why we focus on four flow cases only to demonstrate the
principle of capability of the proposed methodology.

3.2. Single Flow Situation

For a single flow situation, we consider an individual 30-min dataset comprising
the reference sodar measurements, the corresponding averaged PPI scan obtained by the
scanning lidar, and the projected flow simulations by the two numerical models with
boundary conditions as defined by the reference measurements. The flow situation we
selected for the purpose of demonstration was recorded on 12 February 2020 01:30 UTC and
is characterized by a reference wind direction of ϕre f = 240◦ and a wind shear exponent of
αre f = 0.4.

Measured and simulated data matrices
(
vLOS, ij

)
meas./norm. and

(
vLOS, ij

)
sim./norm. as

well as their deviations (∆vLOS, ij), presented as contour plots over the underlying terrain,
are shown in Figure 5. The majority of identified deviations follows the terrain with most of
them being related to speed-up effects due to the hills, as in the south-west of the deployed
scanning lidar device. When the wind approaches from south-west, it speeds up right
before the hill on which the device is installed. This speed-up is overpredicted by both
models but being more visible in the FITNAH results. The grey areas indicate a mismatch
between the scanning lidar’s and the virtual lidar’s blind region, i.e., the corresponding
region (in the measurement or the projected simulation data, respectively) where the
LOS direction is perpendicular to the wind direction. For this region we expect a higher
uncertainty of the scanning lidar measurements due to the measurement principle and
geometry, respectively, as further detailed in Appendix B. But the width of the grey region
also increases as the simulated wind direction deviates from the actual prevailing wind
direction. For the presented flow simulation the input direction (at 120 m) has been 229◦
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and 244◦ for FITNAH and FIWind, respectively, where the larger mismatch of FITNAH is
solely due to the smaller number of simulated wind direction sectors.
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(

vLOS, ij
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sim./norm.

from numerical simulations with FIWind and FITNAH, respectively,

(c,e) the corresponding deviations (∆vLOS, ij).

3.3. Selected Flow Cases

As already mentioned above, we have further selected four different flow cases, which
are predominant in the capture matrix for the site conditions. These are the wind direction
sectors around 210◦ and 240◦ combined with the wind shear exponent bins around 0.2
and 0.4, resulting in the four aforementioned cases. In this work, the cases with shear
exponent 0.2 are considered more neutral compared to 0.4. Although 0.2 shear exponent is
higher than the classical 1/7 shear exponent for neutral conditions, it is more reasonable
in this case since we have a complex terrain with heterogeneous forest. This topic has
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been discussed in an early technical note [28] and more recently in [29]. In both articles,
researchers showed the variation in shear exponent based on measurements with respect
to terrain complexity and stability. In many of these observations, the neutral conditions
have a shear exponent around 0.2 with a wide scatter.

All recorded individual flow situations, i.e., processed 30 min datasets of scan-
ning lidar measurements, with reference wind conditions lying in these wind direc-
tion and shear exponent bins were collected and averaged to give the contour plots in
Figure 6 (ϕre f = 210◦) and Figure 7 (ϕre f = 240◦), panels (a) and (b). As in Figure 5, we
compare measured and simulated LOS data, considering for each wind direction sector
(around 210◦ and 240◦, respectively) two shear exponent bins covered by the measurement
data. Simulated data remain the same since the input shear exponent or stability is not
changed for the models and simulations. The comparisons with the corresponding mea-
surement therefore show how well the simulations cover the different shear conditions.
These comparisons in panels (d, e) and (g, h) are to be considered together with the con-
tour plots in Figures 8 and 9, respectively, which show the statistical uncertainties of the
collected measurements. For this the standard error of the averaged PPI data is shown.
Blind spots are clearly visible where obstacles have reduced the data availability. The
statistical uncertainty has also been considered as lower threshold for the deviations shown
in Figures 6 and 7.

We can make the following observations:

- When comparing the contour plots for the individual flow situation in Figure 5 and
the averaged flow cases in Figure 7, with the same wind direction sector (240◦) studied
here, it is obvious that any local inhomogeneities, which are seen in the single flow
situation comparison and can be connected with the non-stationarity of the wind
conditions, are now averaged out.

- The conical gray patterns again indicate a misalignment of the measurements with the
simulations—for the averaged flow cases, this misalignment is however in a similar
order for the two models.

- For both wind directions shown in Figures 6 and 7, the absence of the veer, i.e., wind
direction shear (or rotation of wind with increasing height), in FIWind is indicated in
terms of the pronounced deviations of the simulation results to the measurements at
the outer parts of the PPI contour plots, which correspond due to the conical shape of
the scan to higher altitudes. The results for FITNAH do not show these deviations to
this extent, which may be explained by the fact that the veer is covered by the model
as pointed out in Section 2.2.3.

- Furthermore, we observe an over-speeding around the hill on which the scanning
lidar was placed for the FITNAH results. This effect is reduced for the case with
the lower shear exponent αre f = 0.2. Since the same terrain data is used as input to
FITNAH and FIWind, we assume this over-speeding to be due to the other boundary
conditions, i.e., the considered wind profile and again the reference wind direction.



Energies 2021, 14, 3280 13 of 22
Energies 2021, 14, x FOR PEER REVIEW 13 of 22 

 
Figure 6. Measured and simulated PPI patterns, as well as corresponding deviations, for the averaged flow cases with

ϕ = 210◦ and α = 0.2 (middle column) and α = 0.4 (right column), respectively—(a,b)
(

vLOS, ij

)
meas./norm.

from scanning

lidar measurements, (c,f)
(

vLOS, ij

)
sim./norm.

from numerical simulations with FIWind and FITNAH, respectively, (d,e),

(g,h) the corresponding deviations (∆vLOS, ij). Measurements for α = 0.2 and 0.4 were averaged from 80 and 102 individual
flow situations, respectively.



Energies 2021, 14, 3280 14 of 22
Energies 2021, 14, x FOR PEER REVIEW 14 of 22 
 

 

Figure 7. Measured and simulated PPI patterns, as well as corresponding deviations, for the averaged flow cases with 𝜑 = 240° and 𝛼 = 0.2 (middle column) and 𝛼 = 0.4 (right column), respectively—(a,b) (𝑣 , ) ./ . from scan-
ning lidar measurements, (c,f) (𝑣 , ) ./ . from numerical simulations with FIWind and FITNAH, respectively, 
(d,e), (g,h) the corresponding deviations (∆𝑣 , ). Measurements for 𝛼 = 0.2 𝑎𝑛𝑑 0.4 𝑤𝑒𝑟𝑒 averaged from 140 and 105 
individual flow situations, respectively. 

Figure 7. Measured and simulated PPI patterns, as well as corresponding deviations, for the averaged flow cases with

ϕ = 240◦ and α = 0.2 (middle column) and α = 0.4 (right column), respectively—(a,b)
(

vLOS, ij

)
meas./norm.

from scanning

lidar measurements, (c,f)
(

vLOS, ij

)
sim./norm.

from numerical simulations with FIWind and FITNAH, respectively, (d,e), (g,h)

the corresponding deviations (∆vLOS, ij). Measurements for α = 0.2 and 0.4 were averaged from 140 and 105 individual
flow situations, respectively.



Energies 2021, 14, 3280 15 of 22Energies 2021, 14, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement 
data, i.e., normalized wind speed in LOS direction (𝑣 , ) ./ ., shown in Figure 6a,b. 

 
Figure 9. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement 
data, i.e., normalized wind speed in LOS direction (𝑣 , ) ./ ., shown in Figure 7a,b. 

We can make the following observations: 
- When comparing the contour plots for the individual flow situation in Figure 5 and 

the averaged flow cases in Figure 7, with the same wind direction sector (240°) stud-
ied here, it is obvious that any local inhomogeneities, which are seen in the single 
flow situation comparison and can be connected with the non-stationarity of the 
wind conditions, are now averaged out. 

- The conical gray patterns again indicate a misalignment of the measurements with 
the simulations—for the averaged flow cases, this misalignment is however in a sim-
ilar order for the two models. 

- For both wind directions shown in Figures 6 and 7, the absence of the veer, i.e., wind 
direction shear (or rotation of wind with increasing height), in FIWind is indicated in 
terms of the pronounced deviations of the simulation results to the measurements at 
the outer parts of the PPI contour plots, which correspond due to the conical shape 
of the scan to higher altitudes. The results for FITNAH do not show these deviations 
to this extent, which may be explained by the fact that the veer is covered by the 
model as pointed out in Section 2.2.3. 

- Furthermore, we observe an over-speeding around the hill on which the scanning 
lidar was placed for the FITNAH results. This effect is reduced for the case with the 
lower shear exponent 𝛼 = 0.2. Since the same terrain data is used as input to FIT-
NAH and FIWind, we assume this over-speeding to be due to the other boundary 
conditions, i.e., the considered wind profile and again the reference wind direction. 

Figure 8. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement

data, i.e., normalized wind speed in LOS direction
(

vLOS, ij

)
meas./norm.

, shown in Figure 6a,b.

Energies 2021, 14, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 8. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement 
data, i.e., normalized wind speed in LOS direction (𝑣 , ) ./ ., shown in Figure 6a,b. 

 
Figure 9. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement 
data, i.e., normalized wind speed in LOS direction (𝑣 , ) ./ ., shown in Figure 7a,b. 

We can make the following observations: 
- When comparing the contour plots for the individual flow situation in Figure 5 and 

the averaged flow cases in Figure 7, with the same wind direction sector (240°) stud-
ied here, it is obvious that any local inhomogeneities, which are seen in the single 
flow situation comparison and can be connected with the non-stationarity of the 
wind conditions, are now averaged out. 

- The conical gray patterns again indicate a misalignment of the measurements with 
the simulations—for the averaged flow cases, this misalignment is however in a sim-
ilar order for the two models. 

- For both wind directions shown in Figures 6 and 7, the absence of the veer, i.e., wind 
direction shear (or rotation of wind with increasing height), in FIWind is indicated in 
terms of the pronounced deviations of the simulation results to the measurements at 
the outer parts of the PPI contour plots, which correspond due to the conical shape 
of the scan to higher altitudes. The results for FITNAH do not show these deviations 
to this extent, which may be explained by the fact that the veer is covered by the 
model as pointed out in Section 2.2.3. 

- Furthermore, we observe an over-speeding around the hill on which the scanning 
lidar was placed for the FITNAH results. This effect is reduced for the case with the 
lower shear exponent 𝛼 = 0.2. Since the same terrain data is used as input to FIT-
NAH and FIWind, we assume this over-speeding to be due to the other boundary 
conditions, i.e., the considered wind profile and again the reference wind direction. 

Figure 9. Standard error (defined as standard deviation divided by the number of samples) for the averaged measurement

data, i.e., normalized wind speed in LOS direction
(

vLOS, ij

)
meas./norm.

, shown in Figure 7a,b.

4. Discussion

In this section we discuss the obtained results by addressing the following points:
first, we discuss the insights gained and the potential of the introduced methodology; then
we look at its limitations; and finally, we explain how the methodology can be applied
within the framework of a WRA study and thus achieve the set goal of advancing a WRA
in complex terrain with scanning lidar measurements.

4.1. Potential of the Found Results

The objective for the introduction of the scanning lidar measurements has been to
detect deviations of the numerical data or the models, respectively, from the measurements
that could lead to an error in the estimated wind potential following the standard WRA
procedures. Indeed, the results presented in Section 3 indicate that projecting numerical
flow simulations on the scanning lidar geometry and comparing these data to the real
measurements by the deployed scanning lidar device can reveal large deviations. Some of
these deviations are due to a sensitivity to the setup of the numerical model and particularly
the number of simulated wind direction sectors. Such resolution effects need to be carefully
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considered when interpreting this kind of calibration and deriving uncertainties from it.
But, once this is controlled, the deviation maps can provide useful insight in areas for
which the speed-up effects of the flow are not represented correctly or in the missing of
certain physical effects in the one or the other model. The latter was indicated for the
example of veer that is not included in one of the models. Wind shear and veer effects
are covered by the scanning lidar measurements as the implemented PPI scan describes a
cone (with an elevation angle φ > 0) and thus cuts through the three-dimensional wind
field at different heights depending on the range or distance from the instrument. For the
observed effect we cannot say with absolute certainty that it is indeed veer—the PPI scan
only gives a cone-shaped section through the three-dimensional wind field, so it could be
any other effects leading to the same projection.

4.2. Limitations and Challenges to the Introduced Methodology

As already mentioned, some deviations result from the fact that the simulated and
measured wind directions and shear exponents only match to a limited extent. These
deviations can be reduced, in principle, by reducing the size of the bins, i.e., increasing
the resolution for the comparison. However, this is not always possible due to limited
computational resources, especially having the application of the procedure in a standard
WRA study in mind. The limited resolution of reference wind directions could be taken into
account by weighting the individual flow situations averaged in a bin, which was however
not done here. The respective resolution with the size of the bins must be taken into account
in the final assessment of uncertainties to be derived based on the proposed procedure,
which is discussed in the last paragraph of this section. Moreover, only one stability
condition was considered here, namely neutral. For the measurements it is, however,
difficult to isolate purely neutral conditions, which results in some uncertainty regarding
the interpretation of the results. The measurements could be filtered and both turbulence
intensity and shear exponent can be used as proxy for thermal stability. In such complex
terrain with forested patches, it would be actually more accurate to use turbulence intensity
for each stability class in relative terms with respect to neutral conditions.

Another limitation exists in the assumed stationarity. The measurements are averaged,
first over 30 min periods and then over all individual situations found for a particular flow
case, to be comparable to the steady-state simulations. Depending on the stratification of
the atmosphere and the prevailing turbulence length scales, the initial averaging may not
always be sufficient to get rid of the local inhomogeneities as it is seen in the studied flow
situation in Section 3.2. Remaining inhomogeneities are mixed with terrain-dependent
deficiencies of the models. The further clustering to flow cases helps to separate the latter
whereby the corresponding bin sizes are to be determined with care. For a more thorough
handling of stationarity, the data may be first filtered to exclude mesoscale fluctuations
following e.g., the procedure in [30] before a more quantitative method is applied to check
the stationarity of the statistics of interest (cf. for instance [31]). Studying the statistical
uncertainty of the averaged measurements, in terms of the standard error as shown in
Figures 7 and 9, may give a hint on the effectiveness of the averaging even without a more
in-depth investigation of stationarity.

The applied normalization also requires particular attention. In order to bring the
simulations and measurements to a comparable state, we removed the information of
the boundary wind speed by applying a corresponding normalization. For this we have
assumed that the wind field distribution over the terrain is independent from the boundary
wind speed itself but depends only on the terrain and atmospheric stability. One of the
factors which may challenge this assumption is the steepness of the terrain. For high
steepness, it is common to observe flow separation, resulting in different distributions of
the wind field for low and high wind speeds. Other effects that may play a role here and be
necessary to be taken into account are those related to the Froude number or the buoyancy
of the capping inversion which may lead to flow modifications such as gravity waves. A
more refined normalization procedure may take care of this effect.
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For an assessment of the uncertainties related to the methodology, we should consider
the following further aspects. First, both the simulated and the measured data are subject
to discretization—for the simulations defined by the numerical grid, for the scanning
lidar measurement by the chosen azimuth and range gate resolution. Due to the different
initial geometries, there may be uncertainties in the projection of the numerical data. The
measurement data are, further, characterized by a finite measurement volume that extends
only along the LOS for our application. For a pulsed lidar, we have a constant sampling
volume for all range gates and corresponding constant range resolution. A third aspect to
consider is the uncertainty of the reconstructed wind speed with respect to azimuth and
wind direction. Scanned components that are perpendicular to the mean wind direction
vanish, so that the areas in the vicinity are characterized by a higher degree of uncertainty.
A simplified analytical investigation of these geometric uncertainties is summarized in
Appendix B. Finally, the uncertainty assessment has to be applied on a wide range of
atmospheric conditions in order to unlock the full potential of the proposed methodology.

4.3. Application within WRA Study

The purpose of the introduced methodology is to calibrate the output data of a numer-
ical flow model with the data from a scanning lidar measurement, and with this potentially
reducing the uncertainties of a wind resource estimate. In the most general metrological
definition, calibration means the comparison of the values measured by a so-called device
under test, which are here the flow models, with those of a calibration standard of known
accuracy [32]. The calibration standard is in our case the prepared set of radial wind speed
measurements by the scanning lidar. With a suitable verification procedure (not further
discussed in this article) we can make sure that the accuracy of our calibration standard is
known, which does not necessarily mean that the associated uncertainties are particularly
low. However, because we work with direct measurements of the radial velocities and do
not apply any further reconstruction methods to the measurement data, we can actually
assume relatively low uncertainties even in complex terrain.

The outcome of the comparison that comprises the calibration can result in one of the
following conclusions:

- no significant errors are found for the device under test,
- a significant error is found but no adjustment is considered, or
- an adjustment is undertaken to correct the error to some acceptable level.

Often the term calibration is only used for this latter adjustment which however is
not fully correct according to the strict metrological definition. Of particular practical
importance is the accompanying quantification of uncertainty: an estimated uncertainty
can be related both to the level of significance and acceptance referred to in the evaluation of
the comparison. An adjustment (in our case, of the flow model or its settings and boundary
conditions) may help to reduce the uncertainties but not beyond the significance level that
is defined by the uncertainty of the scanning lidar measurements used for calibration and
the limitations of the undertaken comparison as e.g., the mentioned limited resolutions.

It is a legitimate question whether enough significance remains in the end for the
results of this calibration to have a relevant impact on the wind resource estimates within a
WRA study. Although we have not yet been able to show this in the present study (mainly
due to the limited period and coverage of the undertaken measurements), we assume
that this is the case. The introduced methodology offers an opportunity to quantify the
uncertainty of the applied flow models and means a paradigm shift from the usual way of
dealing with the uncertainties of flow model simulations. Determining the uncertainties
via this type of calibration and no longer just roughly estimating them does not necessarily
mean that the determined values in the first step are lower. But in the long term, we think,
this approach offers a basis for using and developing flow models in a more targeted way
and thus achieving higher-quality wind resource estimates.
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5. Conclusions

In this article, we have shown how a single additional scanning lidar device can be
used to calibrate the output data of a numerical flow model and with this potentially reduce
the uncertainties of the final wind resource estimate. This in particular provides a large
opportunity when considering flow patterns and not just single points in different ambient
conditions. In detail, the methodology consists of mapping the characteristic flow over
the site and terrain of interest and comparing the flow model simulations, which are an
integral part of the standard wind resource assessment, to these measurements. By using
the scanning lidar measurements obtained from a PPI scan as they are and projecting the
flow model simulations onto the geometry defined by this scan, measurement uncertainties
can be kept low and the significance of the comparison is maximized.

The methodology was demonstrated based on the data of a measurement campaign for
the site of Herleshausen in central Germany characterized by moderately complex terrain.
The simulations of two different flow models, FIWind and FITNAH, were compared
with the obtained measurements. Before, the measurement data were filtered based on
a combined range-CNR filter, allowing us to reproduce a large amount of the flow over
the considered terrain. The considered flow models tend to overestimate at least specific
points of the projected and scaled wind fields by up to 90%. A tuning of the models
may be a natural further step of the methodology but was not within the scope of the
presented analysis.

Although this study did not comprise a complete wind resource assessment, the
results found demonstrate the potential of the methodology. We can conclude that the use
of scanning lidar technology in WRA studies offers a new and promising opportunity to
quantify the uncertainty of the applied flow models, which can otherwise only be estimated
very roughly. The application of the technology is targeted in such a way that additional
costs are kept as low as possible and an optimal intersection between added value and
additional expenses is found.
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Appendix A. Filter Applied to Scanning Lidar Data

All scanning lidar data that were evaluated for this study were pre-processed by
applying a combined CNR and range filter which is described in the following and il-
lustrated in Figure A1. Unfiltered data of a wind lidar, as shown in Figure A1a, often
contain artefacts that are generated by particularly high or low backscatter due to e.g.,
obstacles/hard targets or low aerosol concentrations. A standard approach is to consider
only recordings with a certain signal strength and e.g., a carrier-to-noise ratio (CNR) within
a defined range. Lower CNR thresholds, as also shown in Figure A1b, are very common
and limit among others the maximum measurement height of a vertically profiling lidar or
the range of a more or less horizontally scanning lidar, respectively. But upper thresholds
are sometimes applied as well to exclude situations with unusually high backscatter.
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Figure A1b illustrates that a too conservatively chosen threshold value for a CNR
filter, here −23 dB, may exclude a large amount of data and also data regions that show no
artefact. For this reason, it may be advisable for some applications to consider also other
types of filters. For this study we have used a simplified filter (compared to approaches
seen by [33,34]) that improves availability by combining a CNR filter with a lower threshold
value of −30 dB with a range filter. This additional step removes peaks along the line
of sight based on the expected spread of radial wind speeds. Range filtering is used
extensively in image processing, as described in [35], and already applied to long-range
wind lidar data in [36]. For this type of filter, a threshold value is considered which is
depending on the azimuth angle θi and corresponds to the maximum recorded dispersion
σ of the radial wind speeds along this direction, i.e.,:

Thi = max(σi, r=0, . . . , σi, r=rmax ). (A1)

As shown in Figure A1c, this range filter performs quite well in deleting obvious
artefact regions in the exemplary PPI scan. In combination with a reduced CNR filter—see
Figure A1d—it is possible to remove all unwanted data points without losing too much
data.
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Appendix B. Scanning Lidar Uncertainty Modelling

The PPI scan data of a scanning lidar device, as we have used them for this study,
are composed of individual LOS measurements each defined by a well-defined geom-
etry. The geometric parameters—i.e., explicitly the range r, azimuth and elevation, θ
and φ, respectively—are to be considered together with an uncertainty each that propa-
gates through to the measured LOS wind speed. This propagation can be comprehended
analytically as it is outlined in [37].
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Figure A2 shows the derived contributions for one of the flow cases we have studied
for the Herleshausen site—with a reference wind direction of ϕ = 210◦ and wind shear
exponent of α = 0.2. The underlying terrain was used as input as for the numerical flow
simulations described above, and the fixed elevation angle of the PPI scan was set to 20◦ as
in the real measurements. As reference wind speed we have considered 1 (normalized),
and uncertainty contributions are given as percentage values with reference to this. For
azimuth and elevation we have considered an input uncertainty of 0.1◦, respectively, for
the range an uncertainty of 1 m, and for the measured wind speed an uncertainty of 1%.

Comparing the three uncertainty contributions from range, elevation and azimuth,
the contribution of the last of these three is the largest with a greater impact for LOS
directions perpendicular to the prevailing wind direction. The elevation uncertainty is
clearly determined by the terrain and has its largest contribution where the azimuth
uncertainty vanishes for the considered flow case.

As an extension of the model developed in [37], we have added another contribution
due to the uncertainty in reference wind direction. This uncertainty contribution may
be caused both by a measurement uncertainty of the recorded reference wind direction
and the misalignment of wind directions from numerical models and measurements for
the comparison and derivation of deviations. This direction contribution, also shown in
Figure A2, follows the same pattern as the azimuth contribution but with significantly
larger values when considering an input wind direction uncertainty of 5◦ as suggested for
this study. Combining all individual contributions in an overall geometric uncertainty, the
direction uncertainty is clearly dominant. This emphasizes the necessity for reducing this
impact by e.g., introducing a finer binning for the comparisons of numerical and measured
data and with this improving the matching of observed and simulated wind directions.
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