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Abstract: Currents’ Physical Components (CPC) theory with spectral component representation
is proposed as a generic grid interpretation method for detecting variations and structures. It is
shown theoretically and validated experimentally that scattered and reactive CPC currents are highly
suited for anomaly detection. CPC are enhanced by recursively disassembling the currents into 6
scattered subcomponents and 22 subcomponents overall, where additional anomalies dominate the
subcurrents. Further disassembly is useful for anomaly detection and for grid deciphering. It is
shown that the newly introduced syntax is highly effective for identifying variations even when
the detected signals are in the order of 10−3 compared to conventional methods. The admittance
physical components’ transfer functions, Yi(ω), have been shown to improve the physical sensory
function. The approach is exemplified in two scenarios demonstrating much higher sensitivity than
classical electrical measurements. The proposed module may be located at a data center remote from
the sensor. The CPC preprocessor, by means of a deep learning CNN, is compared to the current
FFT and the current input raw data, which demonstrates 18% improved accuracy over FFT and 45%
improved accuracy over raw current i(t). It is shown that the new preprocessor/detector enables
highly accurate anomaly detection with the CNN classification core.

Keywords: CPC–currents’ physical components; MDMS—meter data management system; HGL—
harmonic generating load; RNN—recurrent neural network; AI—artificial intelligence; CNN—
convolution neural network; IDS—intrusion detection system; WGN—white gaussian noise; head
end system—HES

1. Introduction

Anomaly detection attracts considerable research efforts, mostly by means of analytic
models [1–3]. Work was performed regarding various types of anomaly detectors and
various objectives such as: Vacca’s review book about anomaly detection on computer
networks intrusion detection systems [4], Kovanen et al. performed anomaly detection
survey work on encrypted traffic [5], part of a book “Lecture Notes in Computer Science”
by Springer, and Kamat et al. performed an anomaly detection survey work for preventive
maintenance [6]. Multi-channel anomaly is a more sophisticated since it requires multi-
plicative computation resources and sometimes a collaboration of the channels: generation
of a collaborative view. By “collaborative” it is meant that this is an aggregative view.
“Multi-channel anomaly detection” work was performed on C-LSTM networks with a
good review section by Tae-Young et al. [7] for computer networks: web traffic covers
the majority of today’s intrusion detection systems: contents of data and C-LSTM is a
cascading of “Convolutional Neural Networks” and “Recurrent Neural Networks” deep
neural networks. Zhang et al. performed anomaly detection research for the electric grid
using time-series data [8], mainly for intrusion detection. Calafon et al. and L. Zhang
et al. reported that electric grid anomaly detection uses multi-channel detection [9–12].
A characterization of the grid works is that they are quite effective using statistical and
artificial intelligence (AI) methods. However, the works do not use specific electricity
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knowledge “fused” with the AI, but rather a statistical knowledge or raw time-series data.
By fused it is meant that it is part of the architecture. Anomaly detection for an electric
grid is important for implementation of a cyber-attack intrusion detection system (IDS) [8].
In order to withstand grid field requirements, such a system is required to be: (1) and (2)
multi-channel and preferably, but not necessarily also collaborative, (3) real-time and not
post-processing, (4) be remote from IoT sensors: be located at the data center, (4) and be
precise in order to not miss any anomalies. In addition, it is preferable if it has, on one hand,
the ability to distinguish grid noise from a true anomaly, and on other hand, analyze grid
noise, in case it is not exclusively noise: meaning on one hand, visualize White–Gaussian
Noise, and on the other hand be able to ignore it. Current day grid anomaly detectors
are not embedding electricity theory within the architecture and are only using electric
parameters as statistical data. They are multi-channel but are not collaborative [11,12],
possibly due to computational complexity or un-awareness of “collaborative” relevancy for
grids: designing a five-channel collaborative high-order dimensional space is feasible but a
design of a 10,000-dimensional space is much more complex: complexity is not linearly
increasing, but is rather an exponential growth, because signature is collaborative and the
training dataset involves scenarios, and added value is to be investigated. A characteristic
power plant, a drilling rig, or a nuclear reactor require such sensor volume. Any large
industrial premise in the wide sense is such: a military base, an aircraft carrier, a hospi-
tal. “Collaborative” is important because a smart intruder shall attempt to cause minor
unnoticed changes to several locations—similar to a primary version of the “Stuxnet”, until
noticeable collaborative damage is caused [13]. By that time, it is too late, or unnoticed at all,
and the cyber-attack may continue damaging the grid for extended periods of time. Grid
anomaly detection is also effective for grid preventive maintenance. Previous works on
grid load diagnostics include [14–16]. Motor vibration analysis is also of high interest and
preventive maintenance research was performed regarding this subject [16]. The second
role of grid anomaly detection is preventive maintenance. The cost-saving by electric
grid preventive maintenance is significant. Without preventive maintenance, the grid is
replaced segment by segment, after a predetermined lifetime period such as 15 years. This
is a mixture of electric grid reliability requirements and techno-economic research decision
making. In addition, during a grid’s lifetime, maintenance teams go out to the field for
validation of each grid segment, using expensive equipment, manpower and operating
at a large volume of work. For example, distribution transformers, are currently tested
in the field by infrared cameras for hotspot identification and by ultrasonic microphones
for vibration measurement pre-arc/corona evolution. Both maintenance methods: (1) grid
gradual replacement, and (2) preventive maintenance, are manual and costly. Electric grid
equipment gradually deteriorates due to corrosion, weather hazards, gravitation (weight)
and the currents flowing through it, heating it and causing volume changes. Preventive
maintenance as an alternative, is alerting on “specific grid segments” focusing the effort
only on the problematic segments. According to numerous Cost-Benefit-Analysis works
referred to by [17], it is demonstrated that cost-saving is significant and is a source of “grid
deployment ROI”: for a 100 Mega-Watt-hour manufacturing power market and grid; for
example, it is cost-saving [17] an estimated amount of 29M Euro/year, on-going. Over
fifteen years of “smart metering declared lifespan” for example, that amount aggregates
up to 440M Euro and assists in smart grid deployment ROI.

A few aspects should be noted with respect to present preventive maintenance practice:
(1) Due to computational complexity, electric grid IDS described in literature are usually
not “multi-channel”. (2) They include no electricity theory embedded within AI, only
electric params as statistical data; sensor is regarded only as a time-series data. (3) There
is room for accuracy improvement for the entire spectrum of grid locations and installed
electric components. In practice, most anomaly detectors are communication channel
content based, while analog ones are rare. The proposed system is analog exactly in order
to address this gap: widen the sensory image, make it more precise and faster at decision
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making. Generally, the accuracy of existing systems is low; high accuracy is attained only
in specific systems.

The idea proposed in this paper is to enhance the existing anomaly detectors by true
electricity knowledge. That is attained by a “Currents’ Physical Components” theory
preprocessor preceding a deep learning anomaly detector. If, for example, this module
is proceeded with CNN it may affect the CNN automatic feature generation through the
electricity knowledge poured into the data processed by CPC. The accuracy enhancement
may be then several folded contributions: (1) less required data less time required to
notice the true anomaly, (2) higher potential inherent accuracy due to some current com-
ponents are isolating the anomaly, (3) if electric theory is grid-interpreting, meaning able
to reconstruct the grid structure and elements through grid signature, then it is second
folded improving accuracy because now features are electric components granular and
topology granular, (4) if cascaded to a deep learning anomaly detector—it is interesting to
research how the “directing of feature” affects the detector performance. This paper shall
investigate “Current’s Physical components” electric energy transport for these potential
benefits. Current Physical components (CPCs) theory has been well accepted in the past
three decades [18–20]. It was developed by L.S. Czarnecki as a theory of (1) non-linear (2)
and non-sinusoidal currents (3) for three phase “four and three” wire circuits. Uniqueness
of the theory is the ability based on a single current and voltage measurement to split
the current into five physically meaningful components that are not necessarily in the
same energy flow direction. Imagine these computed currents as five sensors collecting
each different type of data. An intuitive presentation of “CPC construction” is located
in chapter “Materials and Methods” Section 2.1. An intuitive presentation of cascading
CPC to CNN is presented there in Section 2.2. Over the years CPC was compared to
instantaneous theories such as PQT, and to vector pointing theory and found advantageous.
An in-depth review and survey of electric power transport theories is found for example
for instantaneous theories [21] and for periodic averaged theories in [22]. Theory was
developed and demonstrated a comprehension of measured results for single and three
wire systems. An enhancement to transients known of “semi-periodic signals” is also
available. Papers dealing with CPC are yet published [19,20]. The theory excels in the
treatment of electric circuits, a lot due to its ability to analytically enable the comprehension
of electric circuitry. The theory was used extensively in previous years for active power
compensation, and more recently to flicker noise characterization of wind-turbines, due to
wings–wind interaction, and on empirical observations for anomaly detection of electric
equipment using what is called a merging of CPC + Z-transform [23]. The proposed
solution is cascading the CPC preprocessor Head-End-System (HES) with a conventional
anomaly detection core: after all a final anomaly detection determination is required,
and in addition it may cause an improvement and multi-channel collaboration via the
convolution operation if it is multivariate. While selecting the proper anomaly detection
core, several options where considered: (i) the Recurrent Neural Networks [7] (RNN), of
which Long-Short-Term-Memory (LSTM) is one example previously used by our group
for multi-variate multi-step Electricity load forecasting. This network excels in serial data
processing. Work done on usage of RNN for anomaly detection is, as an example [7]. An
example of deep learning anomaly detection is the autoencoder [24]. An autoencoder per-
forms some functional operation and then its inverse operation, finally yielding an identity
operation: Î = P̂◦ ˆP−1. While yielding identity operation, the exceptional phenomena are
excluded as outliers, because they are located farther in the virtual “anomaly space” from
the mean curve generated by the auto-encoder [24]. The “outliers excluded” subgroup
decremented from “original group” marks the outlier sub-group which are considered as
the anomaly. In another group of machine learning—deep learning and classical machine
learning—anomaly detectors handle the "imbalanced data" and then when it is balanced,
they use classification and clustering algorithms to split the signals into normal/abnormal.
Sometimes the anomaly detector acts as the balancer [25]. Anomaly data is highly im-
balanced, as the anomaly is the rare event, and the steady-state behavior is considered
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normal. Classical machine learning architectures must be mentioned herein for anomaly
detection, such as classifying (supervised learning) and clustering (unsupervised learning)
algorithms. There is a wide variety of such algorithms: Support-Vector-Machines, logistic
regression, random forest, K-means, K-nearest neighbor, bootstrap-bagging. Their main
advantage is low computational cost, less required dataset, and their disadvantage is lack
of self-feature generation and less accuracy provided that the deep learning is operating
effectively, which is a major if. The self-feature generation enables a variety of grid segment
types and anomaly detection. The other group that may be used is the Convolutional
Neural Network (CNN), which is also a deep learning network that is used for automatic
feature generation—its first advantage herein. It also excels, as shall be shown, in “spectral”
feature generation—another consideration, since CPC is a spectral theory [18]. The RNN
feature generation stems from multi-variate and multi-step learning and implementation,
and at the most may stem from a few neural layers. The CNN features are known to
be powerful. On the other hand, the RNN family excels in time-series processing [7,24]
and may require less data. Last is, that with CNN, the convolution operation is naturally
“collaborating” multi-channels if properly inserted, and this assures the construction of a
multi-channel dimensional space. In the current work, grid interpreting denotes extraction
of loads, equivalent R, L, C electric scheme. This paper focuses, however, mainly on
anomaly detection. CPC is a priori found to be a potential candidate suitable candidate
for the objective of grid interpreting, as it originally disassembles the current into five
physically meaningful components.

If such R, L, C sensitive CPC + CNN models, for example, are effective, then they
are suitable for (1) real-time, (2) remote, (3) multi-channel, (4) highly accurate, (5) require
less data and faster decision for objectives of (a) preventive maintenance [26–29], (b) grid
anomaly detection, and load extraction through measurement. Such circuit extraction
methods are found in scientific branches parallel to electric machinery, such as Lithium
battery equivalent schematic [30] deconstruction. Previous interesting work on load ex-
traction and biological systems equivalent electric load schematics is found in [31]. A
similar methodology was also developed in RF circuit measurements [32,33]. Preventive
maintenance and cyberattack prevention are important for human safety and components
defect tracking. For example, avionics electric infrastructure and manufacturing assembly
lines require defect tracking [34], and electric transformers require corona/arc preventive
identification. The paper suggests the usage of CPC as a grid and machinery deciphering
mechanism. Generic electric anomaly detection sensory models aim at a sensitivity increase
by a factor of 1000 compared to conventional models. This paper wishes to observe whether
the CPC “scattered current” is very sensitive to true anomalies. This paper shall investigate
an enhancement of “information less” physical components in terms of “change detection”
through new disassembly using CPC rational recursively in order to extract additional
scattered-like currents instead of one, and additional rationally reasoned current physical
components instead of 5 currents in original CPC theory. Moreover, the proposed approach
exhibits advantages for electric load scheme deconstruction. Initially, this paper investi-
gates the subcomponents of a current physical component with the majority of anomalies
when there is a minor change in the system. One of the main goals of CPC theory is, of
course, determining the parameters of balancing reactive power compensators, while the
overriding goal of CPC theory is to assign physical phenomena to currents; thus, they are
easily recognizable and interpreted. For anomaly detection, disassembly is justified and is
potentially intriguing due to possibility of some of the current’s physical components being
natural anomaly detectors. “Preventive maintenance” and “cyberattack identification”
using CPC, if operational, is real-time, remote and potentially multi-channel due to facili-
tation of anomaly detection; it is continuously monitoring the grid compared to manual
proximate periodic maintenance. It is remote, performed at the data center. It is real-time
with a provided IoT sensor, such as a waveform recorder, which refreshes the data center
every minute or at periodic instances. A question may arise as to why we should consider
embedding CPC sensory models cascaded to deep learning when deep learning exists?
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A potential answer that shall be studied: large factories, such as power plants, nuclear
reactors, and offshore drilling rigs, contain approximately X10,000-X100,000 analog signal
sensors; the proposed method requires at least X10,000 less input. Considering detection
without CPC: handling the signals as raw data generates large data that computationally
loads the deep learning anomaly detection core beyond certain IoT channel counts. Then,
we need to take the output anomaly yes/no of each such a subcluster of IoT-s and insert
it into a second hierarchal layer. This forces the IoT sensory channels to form clusters
in small counts; otherwise, the computations are too numerous for the server. Handling
them as spectral and physically meaningful quantities reduces signal dimensionality to
~40 for the harmonics count and 5 for the currents physical components count of compact
anomaly data. Finally, another reason is that considerable research effort is devoted to
analytic anomaly modules and less to sensory preprocessing models. Much work exists
on the analytics module with relative neglect of preprocessing to the AI and data prepa-
ration model. The first attempts to use CPC for anomaly detection in smart grids were
reported in [26,27]. Using raw data: there is no guarantee that the correct anomalous signal
subcluster of highly correlated signals will be selected, thereby reducing the collaborative
anomaly detection probability. Another advantage over these scalable solutions is that
this sensor preprocessing CPC model assures real-time early alert (1) because it consumes
much less raw data and (2) due to the collaborative anomaly space integrating infinitesimal
parametric changes. CPC may also explain electric power phenomena through physical
significance [18]. To obtain these goals, some micro-enhancements shall be studied. First,
the usage of the currents’ physical components is studied in this paper, not as RMS val-
ues, but as time-domain and spectral-domain “signatures”; does it provide significant
information, even if negligible changes exist that are not detectable by other theories? The
second aspect that is addressed in this paper is an enhancement of CPC theory by recursive
operation of “CPC rational” to further disassemble the existing currents. From the power
transport theory used for “active filtering”, it makes no sense to further disassemble the
currents. However, for anomaly detection, it can be justified. Preventive maintenance
and cyberattack identification using CPC, if operational, is real-time and remote. It con-
tinuously monitors the grid compared to periodic manual human maintenance. From
load deciphering and more sensitive anomaly detection points of view, it is interesting to
investigate (a) whether it is possible to further disassemble the currents and (b) whether it
is significantly useful. Another theory enhancement performed in the paper is called the
“CPC Z-transform” [23], which analyzes the “admittance transfer function” rather than
only currents and uses its counterpart Laplace transform to study the possibility of load
“equivalent electric scheme” extraction for linear loads or linear load approximations. The
proposed method does not require signal injection. It is based on the grid voltage inherent
noise. By combining the two methods (a) “time-domain CPC” and “spectral-domain CPC”
amplitude and phase signatures as mathematical preprocessing virtual sensors (to the
classification core), features are generated for future machine learning usage for anomaly
detection. (b) Admittance functions “CPC + Laplace transform” are briefly demonstrated
for load extraction. Combined with the fact that meters with waveform recording capability
are spread in some countries in high-, medium-, and low-voltage grid segment substations,
and some voltage consumers and energy manufacturers, remote preventive maintenance,
load extraction, and load diagnostics are possible instead of on-site technologies. Another
conclusion from this study, if successful, is that current physical components are physically
meaningful components as implied by this paper. It may be reinforced herein, as they
may show different behavior under the onset of anomalous phenomena, as opposed to
opinions referring to them as mathematical-only components [18]. All this development,
if it succeeds, leads us to suggest referring to CPC as beneficial for the “grid interpreting
method/mechanism”, and this is novel to its previous roles in active filtration and flicker
analysis of wind turbines. Toward data science, in a second example of a rectifier AC/DC
converter, features generated using high-order dimensional spaces are shown by example.
CPC is the main issue of this paper. In order to demonstrate that it is a natural anomaly de-
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tector by itself, it is cascaded with a deep learning network serving as an anomaly detector.
The deep learning network enables then to compare three types of data system behavior:
raw data, FFT operated on raw data and CPC operated on raw data. Since CPC is a spectral
theory, it may be visualized as “raw data−→ FFT −→ CPC”. CPC original disassembly
shall yield five currents physical components and a certain expected sensitivity that shall
be validated. The research shall demonstrate that there is still room for improvement: what
are CPC limitations that are desired to be improved? CPC current disassembly rational is
not taken all the way down. That is because in assignments where CPC is used, there is
no necessity for further disassembly. With active filtration, known circuit analysis, electric
power computation, analysis of wind-turbine flicker noise—CPC is sufficient and more.
Anomaly detection [23] and grid interpreting are relatively novel applications of CPC.
Let us mention some of the requirements from such a system: remote, real-time and not
post-processing, multi-channel, more accurate, faster decision, and less required raw data.
The research shall study whether these properties are benefited from incrementing the
physical component count. A question is asked how does the “components count” affect
grid interpreting? This is attended briefly herein. The physical components are increment-
ing the number of “measured currents” from one to quite a few. More currents comprise
more information. Multiply this by the CPC spectral nature—let us say 50 harmonics, and
that enables generating many equations instead of a single equation. When interpreting the
grid beyond a certain volume of branches and R, L, C components circuit complexity, the
same total signature can be mapped to various topological circuits. Additional equations
eliminate the various options, leaving only a single matching circuit.

The research shall study whether the addition of physical components applies only to
the single phase, as mostly presented in paper, or does it apply perfectly to three phase
three/four wire; the same with suitability to harmonic-generating-load (HGL), which is
not trivial as shall be shown. That comparison enables a quantitative estimation of CPC
preprocessor added value, and also enable attempts to generate a multi-channel anomaly
detector. The proposed anomaly detector is a completely different implementation. It
starts with a CPC preprocessor, which we shall attempt to prove, digesting the anomaly
and does nearly all the anomaly detection task. It is intriguing what shall happen when a
digested time serial where anomaly is intensified to binary 0,1 levels time series of some of
the physical components. It acts as data balancer. Two extreme directions may occur: it
may direct the CNN automatic feature generation to make the detection even more precise.
In that way, it may require much less data for detection, shortening detection period. On
the other hand, it may cause a problem to the CNN since it is now a series 00011100001. If
on one hand the CNN shall require less data cascaded to CPC, then maybe that vacancy
could be exploited in favor of multi-channel at the same computation cost. The main
paper’s objective is to investigate CPC, and the secondary it to explore its co-work with
CNN anomaly detector. In this paper, a paper website is set with scrambled code (DLL)
implementing the proposed CPC theory and enhanced CPC and a table of the theorems to
assist during reading the testing chapter to correlate the results to theorems. This paper’s
objective is to demonstrate that CPC representation boosts interpreting electric grid and
machinery signals, primarily for anomaly detection but also for cyber-attack Intrusion
Detection System (IDS).

2. Materials and Methods
2.1. Introducing CPC Theory—An Introduction Directed to Anomaly Detection and Grid
Interpreting

CPC theory is presented herein briefly—anomaly detection and grid interpretation
oriented. A full introduction is given in the papers described in introduction section and
in [18]. Figure 1 illustrates the currents construction procedure, harmonic by harmonic.
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Figure 1. demonstration of extraction of Current’s Physical Components from total current and from
current and voltage harmonics.

The following disassembly of total current into physical components is performed:

itotal(t) = itotal,distribution(t) + itotal,customer(t)
itotal(t) = iactive(t) + iscatter(t) + ireactive(t) + iU(t) + icustomer(t)

(1)

where:
itotal(t)—total current
iactive(t)—active current
iscatter(t)—scatter active current
ireactive(t)—reactive current
iunbalanced(t)—unbalanced current
icustomer(t)—customer current
Each of these currents has a physical meaning. The CPC disassembly procedure takes

each harmonic, and initially disassembles the current harmonic according to propagation
direction, left hand (|ϕi| > π/2) or right (|ϕi| < π/2 hand. The current propagating
left-hand from grid to load is named distribution current iDistribution and the current propa-
gating right-hand from load to grid is named customer current iCustomer. The distribution
current is then harmonically further disassembled. Each current harmonic contains a real
component which is named active, and an imaginary component which is named reactive.
The active current component in the Budeanu sense [35]. CPC does not split the distribution
reactive current harmonic, but it splits the active into active, fixed named simply iactive and
active, scattered named iscattered. After classification, all the harmonics belonging to same
current type are summed according to following rule.

icurrent−type(t) =
√

2 ∑
n∈NType

inejnω0t, v(t) = U0 +
√

2Re

{
∑

n∈N
vne−jnω0t

}
(2)

where:
Ntype—the set of all harmonics of type ∈ {one of: active, scattered, reactive, unbalanced,

customer}
in—current harmonic
vn ∈ voltage harmonic
U0—voltage DC component
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Since harmonics are orthogonal and “real and imaginary” are also orthogonal, the
physical components also abide to following equation:

|itotal(t)|2 = |iactive(t)|2 + |iscatter(t)|2 + |ireactive(t)|2 + |iU(t)|2 + |icustomer(t)|2 (3)

This paper shall investigate whether some of these currents may provide information
as regards to anomaly. Then CPC is a simple procedure and if it preprocesses the data to
an actual machine learning anomaly detector, observe what is happening. Further this
paper shall investigate into the potential of wealth of information that is provided by each
separate physical component. In large circuits the generated two-ports signature may fit
several optional circuits. Eliminating options and selecting the most probable is easier with
additional equations, and these may come from the separate physical components.

2.2. Introducing “A Preprocessor Cascaded to Anomaly Detection Core” Design

A preprocessing virtual sensor located at the data center may greatly benefit anomaly
detection. If it saves computational resources from the core and arrives at the conclusion
with regard to faster anomalies, then it may better serve two issues: (1) enabling the
anomaly detection core to process vectorial multi-IoT channel sensors and (2) being real-
time. After the development of the properties of the newly proposed preprocessing
detector, collaboration with the AI anomaly detection deep learning core is presented.
The vision of the proposed work, which is not fully described herein, is to enable faster,
less required raw data, more sensitive and multi-channel analog anomaly detector and
enable grid interpreting. For that, it is required that we investigate and prove several
issues: (1) attempt to prove that CPC is a natural and strong grid anomaly detector—
the current’s physical components being the anomaly detectors. Benefit from electricity
knowledge to anomaly detection (2) their benefit in three dimensions: (1) required amount
of data, (2) required amount of time, (3) accuracy—as compared to other technologies.
After evaluating that subject of the current paper, connect in cascade to a CNN anomaly
detector. The architecture that is the subject of this paper is described in the following
scheme. Figure 2 left is demonstrating a classical anomaly detector scheme, where anomaly
detection core such as deep learning, is receiving raw data and processes it. Right represent
another.

Figure 2. Classical electricity anomaly detection architecture vs. proposed architecture. Instead
of raw data, a CPC preprocessor utilizes electricity knowledge to enhance core anomaly detector.
Selecting CNN—The preprocessor affects the automatic feature generation.

Architecture: right figure is flowing from right to left. A preprocessing module is
preceding the core. At the preprocessing front-end, some new knowledge is insert, such
as electricity knowledge. The front-end is inevitably directing the core training and self-
feature generation if it exists. Regarding the core during training stage as an optimizer of
optimization problem, the front-end redirects the optimization procedure. A conventional
grid anomaly detector is often receiving raw data. Proposed scheme is using CPC as a
preprocessor to the anomaly detector, using electricity knowledge to facilitate identification
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and act as a data balancer. If some of the currents shall be strong anomaly detectors then
the anomaly shall be refined. Data shall be more balanced. The study is then whether this
couple—CPC + CNN—is benefiting. First of all, the CNN is capable of accepting any time
series: raw data, or FFT, or CPC. If CNN is benefiting in the three properties described
above, then it shall be an achievement. The research shall show two additional benefits:
(1) grid interpreting. During reverse engineering from two-ports voltage and current
waveform measurement, the signature fits quite a few circuit options. The multitude of
physical components generates additional equations used to extract additional data as
regards to circuit structure. A series of 14 theorems lay the precise foundations of grid
interpreting using CPC and general electricity theory. (2) multi-channel anomaly detection.
If the cascade facilitate the CNN work, then computation power may be exploited for
multi-channel. CNN being may automatically feature generate a multi-dimensional space
through the repeated convolution layers. Next chapter is initiating the theory development.

2.3. Development of CPC Time-Domain and Spectral-Domain Model Sensing

The CPC original theory is presented in [18]. The first sensor models used were
discrete Fourier transforms of the voltage and current physical components.

ik(t)
Ik(n) = FFT{ik(t)}{
|Ik(n)| = Absolute{Ik(n)}
φk(n) = angle(Ik(n))

(4)

where:
ik(t)—current physical component of type k in the time domain
Ik(n)—current physical component of the type k FFT transform at spectral frequency n
k—CPC current physical component
type ∈ {Active, Scattered, Reactive, Customer, Unbalance }:
Active—spectral fixed admittance current component
Scattered—spectrally varying current component of total active current
Reactive—reactive current component
Customer—customer current component
Unbalance—load unbalance current
n—harmonic index 1,2,3
|Ik(n)|—absolute value amplitude—discrete spectra of the current physical component

of CPC type k, harmonic index
ϕk(n)—phase angle spectra of the current physical component relative to the kth

harmonic voltage.
Herein, the phase spectral signature is not considered less important than amplitude

spectra.

2.4. Enhancement of CPC in Favor of Grid Deciphering Mechanism—Formulation of E-CPC
Theorems

Development of the idea of using CPC as a grid deciphering method/mechanism:
E-CPC rule 1: an enhancement may be applied to CPC, as the separation of “reactive
current” into reactive fixed spectrum and reactive scattered current, which is the same as
active and active-scattered in the original theory:

similar− to : iA,total(t) = iA, f ixed(t) + iA,Scatter(t)
then : iR(t) = iR, f ixed(t) + iR,Scatter(t)

(5)

where:
iA,total(t)—active current in the classical Budeanu [35] meaning. Current that aligns

phase angle with voltage
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iR—reactive current in the classical Budeanu [35] meaning. Current that is ±π/2 gap
phase angle with voltage

iA,total(t)—active current component in the time-domain formulation, such that when
visualized in the spectral plane it is the steady-state component in the CPC sense [18]

iA,Scattered(t)−active current component in the time-domain formulation, such that
when visualized in the spectral plane, the frequency variable component is the CPC
sense [18]

iR(t), iR, f ixed(t), iR,Scattered(t)—same as the above currents accordingly, only reactive
currents are disassembled.

In the Budeanu sense, it may be shown that original Budeanu power [35] is equivalent
to CPC in the manner that it may be expressed as proven in appendix work [36] in Sections
6.1. CPC cluster of all active components is equivalent to conservative active current
definition. Same applies to reactive. Powers are as follows:

PActive =
1
T
∫ T

0 v(t)i(t)dt = ∑n vnin cos(φn)

QReactive =
1
T
∫ T

0 v(t)i(t− π/2)dt = ∑n vnin sin(φn)
(6)

where:
v(t)—total instantaneous current, i(t)−total instantaneous voltage
vn, in—voltage and current harmonics of order n as computed by FFT over a single

period
The CPC definition is equivalent, but it splits currents into customers and distributions

and then fixed and scattered. This is shown theoretically by the broad appendix work [36].
i(t)—in the sense of the sum of harmonics in, where each harmonic current is phase

shifting π/2 as referred to the voltage harmonic. This is different than shifting entire
current by (grid− period)/2 since for each harmonic π/2 is a different time delay.

The preceding theorems regarding diagnostics applies for describing preventive main-
tenance that would benefit from following theorems, are for example [37–39]. Assisting
signal processing and mathematical works used herein for proving the following theorems
are [40–43].

A note regarding the coming henceforth graphs: a rather complete set of graphs may
be found in [44].

Theorem 1. Scattered current sensitivity theorem: The scattered current may be significantly
smaller than the total active/reactive current, yet the ‘spectral change’ information is located there.

Proof of Theorem 1. Because sensitivity measure SIR/A
ω of the system change is there, SIR,A

ω

− IR/A sensitivity with respect to ω is as follows:

SIR
ω ≡

1
IR,A

∂IR,A(ω)

∂ω
=

1
IR,A

∂IR,A,Scattered(ω)

∂ω
,

∂IR,A, f ixed(ω)

∂ω
= 0 (7)

where:
Sy

x—sensitivity measure of y with respect to x (standard definition)
IR,A—reactive or active current (equation holds for both)
ω—electric frequency. �

Considering Equation (7) the effect of the scattered current is semi-equivalent to the
phenomena described in Figure 3. In Equation (7) differentiation can also be operable over
discrete frequencies as difference rather than differentiation.
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Figure 3. Scattered current as the “spectral AC” component, while the other component is the
“spectral DC” component.

The mean field and “fluctuations around the mean field” are explained in [18,45,46],
and the proof and discovery are presented in the current work:

Ge(ω) = Ge = P/‖u‖2, ia = Geu
Gn = Gn(ωn) =

In(ω)
Vn(ω)

, iScatter(ω) = ∑n(Gn(ωn)− Ge)unejωnt (8)

where:
In(ωn), Vn(ω)—voltage and current harmonics, where ωn = nω1, where n is the

variable. ω1 – grid frequency, or grid frequency prime harmonic
Ge—CPC load equivalent conductance
Gn—harmonic load conductance
In Equation (8), this shift in terminology is comprehendible. ia is mean field and

spectrally fixed. iScatter is spectral fluctuations around the mean field. The probability of
identifying anomalies in the scattered current is intensified by the spectral signature over a
nonfixed spectral function. That is due to change integration:

∆ichange =
∫ ω2

ω1

∂iA/R,total/∂ωdω =
∫ ω2

ω1

∂iA/R,scatter/∂ωdω (9)

where:
∆ichange—signature measure, integration over the spectral range
iA/ R, total—active/reactive current: sum of scattered plus fixed as expressed in the

frequency domain (post FFT)
Discussion: The scattered current fluctuates around the mean field. The mean field is

{active current and reactive} “non scattered current”. If the anomaly is onset and still weak,
then it is more apparent in the “fluctuations around the mean field”. It is not observable
within the mean field.

Theorem 2. Reactive scattering current sensitivity. The reactive→ {fixed or scatter} current
signature is more likely to catch changes than the total current or active current. Signature is in the
sense of observing the entire spectra, or as expressed in Equation (9).

Proof of Theorem 2. Changes over reactive components due to external effects such as
current/voltage are likely to arise. The resistive spectral relation is fixed and reactive is
pole/zero dependent:

iR(s) = v/R, iC(s) = sCv, iL(s) = v/(sL)
s = σ + jω : ∂iR/∂s = 0, ∂iC/∂s = Cv + sCv′, ∂iL/∂s = L[(∂v(s)/∂s) · s− v(s)]/(−s2L)

(10)

where:
iR(s)—resistive current, current through a resistor converted to Laplace domain(s)
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iC(s), iL(s)—capacitive and inductive currents accordingly, Laplace transform-ed
s—Laplace variable which is a complex variable
σ—real component of s expressing attenuation/gain “exponential coefficient”
ω—frequency. �

Theorem 3. Reactive current sensitivity. Phase may contribute to anomaly detection not less than
the amplitude signature in reactive components.

Proof of Theorem 3. Reactive currents of purely reactive components are:

iC(jω) = j(ωCv) = ej π
2 (ωCv), iL(jω) = e−j π

2 (v/(ωL)) (11)

where expressions of Equation (10) are developed for purely linear capacitive and inductive
loads.

E-CPC rule 2: Orienting CPC toward being an electric grid interpreting mechanism,
further current disassembly that makes sense may be performed with CPC customer
current: (1) breaking it into active and reactive current components—the same disassembly
method taken from classical CPC, deciphering oriented:

iCustomer(t) = iC(t) = iC,A(t) + iC,R(t) (12)

where customer/distribution current is based on a selection rule operated over harmonic
components: phase delay >,< π/2. CPC customer current is a current physical component
in which the net is outgoing from customer to grid. Reasons for customer current are as
follows: (a) open delta connection—inward current through phase R goes outwardly from
the load into the grid through phase S. (b) More obvious scenario: harmonic generating
load (HGL): a nonlinear load generates a harmonic current that does not exist in the voltage
waveform. Some of them are net outward from load to grid. Currently, expression for
admittance is not always possible. The difference from classical CPC current deconstruction
is that at CPC for distribution current [18] following relation is correct:

Yn = In/Vn = Gn + jBn (13)

where:
Yn—admittance of harmonic index n, computed as specified by the equation and

defined by CPC
In, Vn—current and voltage harmonics of index n after FFT transformation of time-

domain variables
Gn, Bn—Real (active) and imaginary (reactive) admittance components. �
However, decomposition of “customer current” into harmonics is possible, and de-

composition into real and imaginary is possible, if a modification from CPC is made in
favor of anomaly detection, as shall be shown at Equation (27). For example, interpretation
of current harmonics of wind farms, using CPC may be found in [37]. The motivation
for using CPC as an early alert model is that some current physical components may
constitute only a fraction (~0.1%) of the total current. That specific component may contain
anomaly information, especially if it is the spectral changed component. Using, “conven-
tional electrical” methods - it is demonstrated that it is occasionally unnoticeable. For
example, “measurement/distribution transformers”, prior to arc or corona occurrence,
tend to mechanically vibrate. One among many papers on the topic is [38]. A mechanical
vibration inserts an electric inter-harmonic vibration. The second example is an AC/DC
rectifier with slowly varying load or grid voltage observed from the grid. Justification that
specific physical components are effective for both anomaly detection and load extraction
is provided in text bellow.
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2.5. Generation of Additional Scatter and Reactive Currents by Recursive Operation of CPC

Even if there is no physical meaning, the proposed mathematical disassembly: (a-1)
evidently generates anomaly signals as scatter and reactive signals, and (a-2) generates
additional equations, which assists in identifying additional unknown variables during
grid interpretation. However, we show below that it has a physical meaning because
CPC disassembly does not go all the way down. CPC [18–20] and the proposed E-CPC
single-phase executables and recorded dataset are available in [44] (access to this dataset is
available by request). The original CPC does not break down to all the possible physical
components using the same initial reasoning. It is shown here how additional disassembly
may be performed, and its advantages for anomaly detection and grid interpreting. (1)
Grid and premise anomaly detection for preventive maintenance and intrusion detection
systems. (2) Grid interpretation: additional equations may enable more parameter extrac-
tion. Figure 4 shows the proposed disassembly. (1) As shown in Equation (2), the reactive
current is disassembled into fixed and scattered current, as with classical active current
in the Budeanu sense, i.e., the sum of distribution and customer reactive currents. (2) The
customer current disassembles into active and reactive currents, as shown in Equation
(7). Furthermore, these subcurrents are disassembled according to the proposed E-CPC
theory into fixed and scattered components. This disassembly generates 22 current phys-
ical components, which, as Czarnecki evidenced in [18], are mathematical components.
This situation is analogous to L.D. Landau quasiparticles [45]. They are virtual particles,
but they describe microscopically complicated systems and explain numerous effects in
condensed matter physics.

Figure 4. Further disassembly of CPC in favor of the grid/machinery disassembly method. Scattering
currents are marked with a gray background, new currents are in red text.

There are two advantages to the E-CPC proposed disassembly representation. (1)
six scattering currents arise rather than one. The testing chapter inspects the theory that
scattered currents occasionally carry anomaly detection information. It should also be
determined whether the new scatter/reactive scatter subcurrents act as anomaly detectors
once the apparently information-less components are disassembled into 10−3 and 0.999. (2)
Whether much weaker phenomena unnoticed with the proposed signatures in Equation (1)
in classical CPC is noticed by disassembly of E-CPC.

2.6. Reuse of Existing CPC Functions

Figure 5 disassembly may be generated by the CPC recursive operation, either as
splitting into {active and reactive} or as splitting into {fixed, scatter}, as shown in Figure 5.
The disassembly of reactive current may be performed simply by analyzing the reactive
current as active. E-CPC rule 3—reactive phase shift:{

ireactive, f ixed, ireactive,scattered

}
= CPC(j ∗ ireactive(t), v(t)) (14)

where:
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j—is the complex
√
−1 and v(t) is the measured voltage.

ireactive, f ixed—the spectral mean-field component of reactive current as defined by CPC
ireactive, scattered—the spectral fluctuations around the mean field as defined by CPC

that changes the reactive current into active and then is disassembled into “active” and
“scattered”.

Figure 5. Reoperation of CPC as {active, reactive} and {fixed, scatter}.

The customer current separation into active and reactive is performed by recur-
sively operating CPC over the customer current. There, it is not disassembled yet into
active/reactive, and so therefore it contains both segments. The analysis is performed over
the customer current shifted by π/2. That is because active/reactive current is performed
over distribution current and the operation −j = e−jπ/2 switches the distribution and
customer:

{icustomer,active, icustomer,reactive} = CPC(−j ∗ icustomer(t), v(t)) (15)

The same objective may be obtained by operating it over −j ∗ icustomer. Then, the
distribution current, which is the customer current, changes to zero. Then, it is again
disassembled into fixed and scattered subcurrents. This paper is about applying CPC as
an anomaly detection preprocessor prior to the anomaly detection core. It must be under-
stood that this reoperation of CPC reasoning over CPC physical components generates
six scattering currents and six reactive currents, which are shown in the experiments to
increase sensitivity to a new level such that CPC is less sensitive. It has already been shown
in theorems 1 and 2 that they are potentially more sensitive than the rest of the currents.

2.7. Benefits of Enhanced CPC as a Grid/Machinery Deciphering Method

The CPC is effective for reverse engineering an electrical scheme by measuring a
single two-port. Two groups of equations are derived from the CPC. The theory is built as
if parallel branches with the same voltage operate on each current physical component [23].
In Figure 6, the currents are constructed as if parallel in CPC.
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Figure 6. Current component structure inherent to the CPC.

The following set of theorems is correct.

Theorem 4. “admittance function separability theorem”. As observed in the above schematics,
the admittance transfer function may be modeled as composed of several admittance physical
components:

YTotal(Z) = Yactive(Z) + YScattered(Z) + YReactive(Z)+
+YCustomer(Z) + YUnbalanced(Z) = ∑i

Ii(Z)
V(Z) ≡ ∑m Ym(Z)

(16)

where:
m—branch admittance index
YTotal(Z)—total admittance as computed at two ports and measured from I(Z), V(Z) [23]
Yi(Z) i ∈ {Active, Reactive, Scattered, Customer, Unbalance} f or conventional CPC

and i ∈ {E− CPC 22 components} f or E− CPC
The relation is maintained with an enhanced CPC with 22 currents.
(a) It must be clear that the CPC Z-transform [23] is more than a Z-transform of CPC,

but is rather the admittance transfer function. All Z/S transform tools are enabled to CPC,
(b) an understanding that CPC disassembles admittances and not only currents. (c) Note
that, for the first time, CPC is the ultimate electricity anomaly/change detector.

Theorem 5. “Current physical component separability theorem”. Looking at an electric scheme
with n parallel branches, the following current relation is maintained in the CPC:

∀ω im,total = ∑
n

in,m (17)

where:
im,total—total current physical component of type m index ∈ {CPC, enhanced CPC

current types} and n branch index
in,m—current in-branch n of CPC type
m ∈ {Active, Reactive, Scattered, Customer, Unbalance} or
m ∈ {E− CPC current types}
ω—electric angular frequency
In addition, the following CPC admittance relation is maintained:

∀ω Ym,total = ∑
n

Yn,m (18)

where:
Ym,total—total current physical component ‘admittance’ of type m ∈ {CPC current types}
Yn,m—current physical component ‘admittance’ in parallel branch n of CPC type m

including the enhanced CPC of this paper
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Proof of Theorem 5. the theorem’s proof is nearly self-explanatory. Rigorous proof is pos-
sible but is not detailed here. Taking a “devil’s advocate” approach, the capacitive branch
current may occur opposite in direction and equivalent in magnitude to the inductive
other branch current, violating Equation (17). The reactive branch currents hypothetically
contribute to the total active current. However, this may only occur at a certain resonance
frequency. In the “entire spectral range” perspective, Equations (17) and (18) are correct.

The following theorems are qualitatively verified in test case 1. There is a hidden
assumption that the total current reflects the load and not only customer current. �

Theorem 6. ”RL serial circuit admittance disassembly” reactive admittance theorem: for a linear
load that includes only resistors and inductors (such as an induction AC motor, the total→
reactive→ scatter admittance, that is computable equals the sum of all parallel reactive ‘admittances’
of the branch’s RLC connection.

An example of a serial connection for reactive admittance is:

Ytotal→Reactive
∼= Ytotal→Reactive→Scatter = Im{Ytotal} = ∑

m
−ωLm/(R2

m + ω2L2
m) (19)

where:
Lm, Rm—branch indexed n: inductance and resistance serial linear components
Ytotal−→reactive—total “reactive” E-CPC admittance component, which means the sum

of YCustomer−→reactive + YDistribution−→reactive
Ytotal−→reactive−→ scattered—total E-CPC reactive component, its subcurrent Reactive→

Scatter, which in the case of purely linear parallel branches of serial RL of Figure 5 is
equivalent to Equation (19). Another issue in using CPC expansion (24) may be esti-
mated as the Reactive −→ f ixed component is rather small but not zero, and component
Reactive −→ scatter is the larger component observed by Equation (19). Figure 7 is illus-
trates circuit of Theorem 6, a parallel array of serial R, L connected components.

Figure 7. Serial {R, L} connection—parallel branches. Demonstration of Theorem 6.

The theorem is written because it may mistakenly be considered that the following is
correct: Ytotal→reactive = ∑m 1/(jωLm). This is in accordance with Theorem 5 Equation (18).
However, for serial RL per branch, admittances do not accumulate, as in Equation (18).

Proof of Theorem 6: This is simple arithmetic of serial RLC admittance per branch, then
summation. �

Theorem 7. “RL serial circuit active admittance disassembly theorem”: for linear loads with resis-
tive elements in the parallel branches, the customer→ active→ fixed admittance that is computable
equals the sum of all resistors and admittances. Let ‘i’ be branch index. Example for serial RL:
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Ytotal→active = Re{Ytotal} = ∑
m

Rm/
(

R2
m + ω2L2

m

)
(20)

This is written because the following may mistakenly be considered correct: Ytotal→active =

∑m 1/Rm or Ycustomer→active shall mistakenly be considered equal to it.

Theorem 8. “RLC serial circuit reactive admittance theorem”: for linear loads with a serial mixture
of inductors and capacitors in the load parallel branches, the total→ reactive admittance, which is
computable, equals the sum of all parallel imaginary segments of branch admittances:

Ytotal→reactive = ∑m Ytotal→reactive,m(ω) = ∑m Im
{

Ytotal,m
}

Ytotal→reactive = ∑m−j(ωLm − 1/ωCm)/[Rm
2 + (ωLm − 1/ωCm)

2]
(21)

where:
Rm, Lm, Cm—branch indexed n, serial RLC “linear components” per each branch m.
Ytotal−→reactive—total “reactive” E-CPC admittance component, which denotes the sum

of YCustomer−→reactive + YDistribution−→reactive
Ytotal−→reactive,m—total reactive current in-branch index m
Ytotal,m—total current in-branch index m

Theorem 9. “RLC serial total admittance separability”: for linear loads with a mixture of inductors
and capacitors in the load parallel branches, the total admittance, which is computable, equals the
sum of all parallel active admittances separately + reactive admittances separately. Example for a
circuit with parallel branches of serial RLC connection is Figure 8:

Ytotal(s = jω) =
= ∑m [Rm − j(ωLm − 1/ωCm)]/[Rm

2 + (ωLm−1/ωCm)2]
(22)

where:
Rm, Lm, Cm—branch indexed n, serial RLC “linear components” per each branch m.
Ytotal—total admittance at two ports of measurement. These are most of the left ports

in Figure 8.

Figure 8. Admittance of parallel branches of various {R, L, C} serial configuration values.

Theorem 10a. “admittance correlation to CPC”. Equating the transfer measured-computed
admittance function for linear load, the total (customer + distribution)→ reactive→ fixed current is
close to zero. Although the reactive component of, for example, the parallel branches of serial RLC
look spectral, in CPC, a spectrally constant component is extracted according to [18]:
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Ge = P/‖u‖2 = ∑n∈ND⊕NC
Gnu2

n/∑n∈ND
u2

n

where : Gn = Rm/
[

R2
m + (ωnLm − 1/(ωnCn))

2
] (23)

Be = Q/‖u‖2 = ∑n∈ND⊕NC
Bnu2

n/∑n∈ND
u2

n

where : Bn = −(ωnLm − 1/(ωnCn))/
[

R2
m + (ωnLm − 1/(ωnCn))

2
] (24)

where:
Rm, Lm, Cm—branch indexed n, serial RLC linear components
n—harmonic index, m—branch index
ND—set of harmonic indices that are in the distribution current [18]
NC—set of harmonic indices that are in the customer current [18]
This theorem relates to an important issue. The component-based active/reactive

admittance transfer functions from Equation (19) are based on “total” active and reactive
currents and not only customer. But for HGL there is a required extension to be described
at Equation (2) bellow, because admittance computation cannot be obtained according
to Equation (13) because there is no matching voltage harmonic. For linear loads above
is immediate. Figure 9 illustrate how grid parallel branches’ components may be drawn
based on CPC harmonic admittances.

Figure 9. Schematic illustration of E-CPC enabling grid scheme extraction by the provision of
multiple equations through harmonics. Demonstration of Theorem 10a.

Theorem 10b. relation between CPC and classical theory:

ireactive,total = iCPC,reactive,distribution + iCPC,reactive,customer

iactive,total =
(

iCPC,active→ f ixed + iCPC,active→scattered

)
distribution

+ (−”−)customer
(25)

where:
Ireactive,total—reactive subcomponent of total current. CPC is the sum of “customer→

reactive” and “distribution⇀ reactive” currents
Iactive,total—active subcomponent of the total current. CPC is the sum of the “distribu-

tion active” current plus the “customer active” current. E-CPC terminology active current
is again the sum of “fixed” and “scattering” currents

ICPC,reactive,distribution—the E-CPC distribution current and its reactive subcomponent
ICPC,reactive,customer—the E-CPC customer current, its reactive subcomponent
Equation (25) is important because “measured-computed admittance” is based on

Equation (23). CPC+Z-transform [23], whereas the proposed electric scheme for comparison
is described by Equation (22).

Theorem 11. For a linear load, the total (customer + distribution)→ active→ scatter current is
not zero. It is based on Equation (23). The theorem is given so as not to mistakenly assume that
Ytotal,real = ∑n 1/Rn simply becauseitotal,real = ∑n in,real . The active component of each branch
contains spectral reactive components.
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Theorem 12. Method enlargement to HGL: Theorems 3–5 are also correct for the harmonic
generating load (HGL) [18]. Practically, there might be changes. Mathematically formulating it
referring to paper [18]:

i f rule− is− correct f or : {all n ∈ ND} then
rule− is− correct− f or : {all n ∈ NC} &&{n ∈ NC + ND}

(26)

where:
NC, ND, NC + ND—population of all harmonics belonging to the customer current,

distribution current, and total current, respectively
n—a harmonic index
Example: Following Equation (14) it is correct for n ∈ Nc, ND, NC + ND. Figure 10

illustrates Theorem 12.

Figure 10. Schematics of Theorem 12: the theorem that is correct for ND (distribution current) is
correct for Nc (customer current) and ND + Nc (total current).

Enhancement to HGL poses a CPC limitation for usage in favor of grid interpretation
and anomaly detection. There are current harmonics without a matching voltage harmonic.
The admittance cannot be computed. The following “non-CPC” enhancement enables HGL
treatment. Experimental proof is not the subject of this paper:

Ie = P/‖u‖
In = FFT{i(t)}
I′Active = IActive, f ixed + IActive,Scatter = Re{I(n)}
IReactive = Imag{I(n)} , {Ir,n}
I′n = Ir,n − Ir,e ⇒ Iscatter,HGL = ∑n I′nejωnt

(27)

where:
P—active power
u—voltage RMS
In, I(n)—current i(t) Fourier transform
I′Active—HGL active sum of active, fixed and scattering currents
I′Reactive —HGL reactive customer current
IScatter, HGL—scatter HGL current

Theorem 13. anomaly enhancement by admittance. Admittance physical components improve
anomaly detection. Proof: spectral sensitivity is a measure of ‘the change’ signature since it is based
on ‘many frequencies change detection’:

(1/Ym)
∂

∂ω
(im(ω)/vm(ω)) =

[
i′m(ω)/im(ω)− v′m(ω)/vm(ω)

]
(28)

where:
Ym—total admittance measured/computed at the current indexed m index ∈ {CPC,

enhanced CPC current types} .
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im—total current in-branch indexed n
vm—voltage in-branch indexed n
Equation (28) is correctly interpreted not as the admittance dependency stand alone

on current i′/i and over-voltage v′/v. The correct interpretation, is that “admittance is
independent of voltage amplitude”. Since the current depends on the voltage through
i = Yv, the voltage-dependent component is approximately subtracted leaving only the
“non-voltage dependent”. Simulations performed with various voltage sources, white
noise + pure sine, sawtooth, and rectangular waveform, yield identical spectral admittance
functions. Theorem 13 is especially important: admittance is indifferent to grid input,
and both anomaly and grid interpreting are intensified. Admittance normalizes with the
voltage amplitude, as shown in Figure 11.

Figure 11. Admittance normalizing the current by grid effects, equating all harmonics and leaving
only the grid internal characteristics. If V1 is 100 times stronger, it does not matter for the Y1, Y2 ratio.

Extraction of the grid scheme from measured spectra is demonstrated in Figure 12.
Comment: drawing functions such as Equation (23), this summation of rational polyno-
mials is shown in Figure 11 and is also drawn for RC circuits. Each parallel branch is a
min-max pair in Figure 12.

Figure 12. Admittance function simulated results (a) |Ytotal( f )|. (b) phase(Ytotal( f )). (a) + (b)—4 parallel branches of serial
RLC. (c) the function of ∑n −ωCn/

(
1 + CnRnω2) for n = 1, . . . ,4 various Rn, Cn(Ln = 0) values.
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Theorem 14. separability of inductive and capacitive admittances. Inductive and capacitive compo-
nents may be separated from the total (customer + distribution)→ reactive→ scatter admittance.
Proof: using at least two harmonics i = 1, 2:

Ycustomer→reactive→scattered(ωi) ∼= Ycustomer→reactive(ωi) = Yinductive(ωi)+Ycapacitive(ωi) (29)

where:
Ycustomer−→reactive(ωi)—CPC customer reactive admittance subcomponent at any har-

monic frequency ωi
Ycustomer−→reactive−→scattered(ωi)—CPC scattered subcomponent of customer→ reactive

admittance. Scattered admittance only approximately equals the reactive current for linear
circuits and usually for nonlinear circuits.

Yinductive(ωi), Ycapacitive(ωi)—inductive and capacitive reactive admittance compo-
nents

Hence, in the following Theorems 1–14, the terminology “enhanced CPC as a grid/machinery
interpreting method” is comprehended. Theorem 15 has yet to complement the series when
cascading an anomaly detection core with an E-CPC preprocessor.

Theorem 15. Separability of inductive and capacitive admittances. Inductive and capacitive com-
ponents may be separated from the total (customer+ distribution)→ reactive→ scatter admittance.
Proof: using at least two harmonics i = 1, 2:

Ycustomer→reactive→scattered(ωi) = Yinductive(ωi) + Ycapacitive(ωi) (30)

Hence, following Theorems 1–15, the terminology “enhanced CPC as the grid/machinery
deciphering method” is comprehended. Theorem 16 has yet to complement the series when
cascading an anomaly detection core with an E-CPC preprocessor.

2.8. Enhancement to Three-Phase Three-Four Wire and Inclusion of Unbalanced Load

The E-CPC model constructed above is single-phase. Enhancement of E-CPC- and
E-CPC-assisted anomaly detection to three-phase three or four wires is straightforward.
Except for the unbalanced case, all phase descriptions are independent. This means that
having a software module per single phase may be multiplied to handle three phases
and, if required, neutral. The unbalanced current physical component remains. The CPC
unbalanced component shown in [18] following equation shows an enhancement to CPC
spectral components:

Y = G + jBe + A, i = iActive + iReactive + iUnbalance
iUnbalance = ∑n∈NA

(A′n + jA′′n)Unejωnt (31)

The unbalanced current computation at [18] is per a single harmonic. Equation (31)
enhances straightforwardly to a multi-harmonic case. The unbalanced current following
E-CPC rationale may also be disassembled into active, reactive components and from there
to fixed, scatter.

2.9. Quantitative Comparative Evaluation of the E-CPC Model Anomaly Detection Property Using
a CNN Deep Learning Core—Enablement of Multi-Channel “Anomaly Detection”
Presentation of the Concept

The following chapter is implemented with E-CPC/CPC to clarify what is innovative.
The objective of this chapter is to demonstrate that the innovation of the E-CPC prepro-
cessor, as the “natural” anomaly detector, exceeds the scope of a sensor and enables a
“multichannel anomaly detection core” that is remote and real time. Collaboration indicates
that all IoT signals collaborate in anomaly detection; negligible changes are aggregated into
a single significant anomaly signal. The E-CPC preprocessing unit proceeds in the current
experiment to a deep learning classification core, which is located at the datacenter. It is
known that the CNN has a “self-generating features” capability through the preliminary
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CONV neural layers. CPC/E-CPC directs feature generation; as a natural anomaly detector,
it performs effective classification. CNNs are selected from various deep learning anomaly
detectors for the following reasons: (1) Natural “collaboration” of multiple IoT channels
through repeated convolution, which naturally generates a multivariable space. (2) Excel
in spectral analysis [30–33], where CPC is a spectral theory. It is worthwhile mentioning
that while CNN increases virtual space dimensions through self-feature generation, AI
techniques for dimensionality reduction are available [47]. Collaboration is why CNN is
used rather than LSTM, which excels in time-series anomaly detection. It is suspected that
the CPC/E-CPC preprocessor will benefit other deep learning cores or even clustering
anomaly detectors. This issue is beyond the scope of this paper. (3) It is presented that
E-CPC/CPC reduces the required quantity of raw data inserted into the anomaly detection
core. The available computational power by the core may be used to significantly increase
the fan-in. The latter is only briefly presented herein and should be the subject of another
paper. Instead of guessing which IoT channels are correlated and clustering them, there is
room now for more channels. (4) The core enables comparative quantitative estimation
of (1) E-CPC (2) vs. raw data, (3) vs. FFT, and (4) vs. CPC. Due to paper length, only
CPC vs FFT, the 2nd best technology, is presented. (5) Speech recognition has a frequency
range similar to that of the recording apparatus; kHz persuaded the team to use this model.
This is a minor cause. The success of the cascading E-CPC/CPC preprocessor with a deep
learning anomaly detection core opens several new opportunities that appear to have not
been possible, at least at such quality, before. (1) A highly accurate “multichannel analog”
cyberattack Intrusion Detection System (IDS). Previously, most IDS were communication
protocol based. (2) A “preventive analytics” system. Both systems are now suitable with an
E-CPC/CPC preprocessor for electric grids and industrial premises. Multi-channel effect is
less researched experimentally by current work and theoretical foundations are researched.
This is because E-CPC executes most anomaly detection, making computational room
for IoT multi-channel without deep learning core collapse or a large epoch count due
to computational complexity. To (1) comparatively estimate the benefit of E-CPC over
existing technologies, (2) complete the theoretical frame into a complete system, (3) and to
evaluate suitability to a (3.1) multi-channel (3.2) remote (3.3) real-time anomaly detector,
where the E-CPC preprocessor is located at the datacenter, a cascading to deep learning
CNN classification system core is performed. An increase in multi-channel ability makes
it closer to accomplish two systems at least at an improved level: (1) remote real-time
multichannel preventive maintenance stand alone, (2) remote real-time multi-channel
preventive maintenance combined with Non-Intrusive Load Monitoring (NILM) and (3)
remote real-time cyberattack IDS, again stand alone or combined with NILM. The NILM
algorithm separates the electrical loads, thereby enabling anomaly detection at a single load
level. First, the quantity of required data for core training is of the order of magnitude of
50,000 times less than raw data. That factor is variable, but the reason is demonstrated here.
A 4 kHz sampler transmits 4000 time-series data pieces per second. Let us assume that the
anomaly that has been sensed is evolving for at least 1 sec. Since E-CPC is harmonic, it
decreases/concentrates the data into 800 samples/cycles. Let us take the first 40 harmonics
as sufficient, as shown in the Results chapter, meaning an X100 condensate factor. E-CPC
was shown empirically and semi-theoretically in previous paper sections to decrease the
required anomalous signal by 103. This is because according to the original significance
of the scatter currents, “the spectral fluctuates around the “spectral” mean field”. Scatter
and reactive scattering currents are entirely constructed of anomalies, although 100% of
anomalies are not necessarily present. It does not matter that it is not 100% of the anomaly
as long as close to 100% of scatter currents are anomalous. It is not difficult to conclude
that fluctuations around the mean field may be 103 times smaller than the mean field
(raw data). Two multiples have been identified: 100 and 103. This leads to the theoretical
conclusion that a 100,000 factor exists between E-CPC and raw data in noticing the onset of
anomalies, and a 1000 factor exists between FFT and E-CPC. The following CNN anomaly
classification core is suggested. A natural question may arise as to why to employ CNN
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and not LSTM, which specializes in time series. The answer is because the process is
considered spectral because CPC is spectral. To comprehend in-depth why CNNs are
considered spectral, the following theorem is discussed. Even if a deep learning CNN is
known for its “self-feature-generation”, it does not prevent data preparation by the E-CPC
preprocessor. CNNs may self-generate features after the leap performed by E-CPC, and
they may shorten the epochs count required to converge because clustering is a more
definite a priori. The latter shortening is not the subject of the current paper; integration
E-CPC + CNN is. Figure 13 illustrates the data concentration relationship between raw
data, and FFT taking only the first 40 harmonics sampled at 4kHz, and power-based E-CPC.

Figure 13. Illustration of multiplication factors in the quantity of data used in each system.

Theorem 16. CNN acts as a spectral transfer function during both training and testing datasets.

Proof. Step a: demonstration of spectrality. Convolutional means convolution operation:

y(n) = c(n)⊗ x(n) = ∑
k

c(n− k)x(k) ≡
discrete→continus

t∫
0

c(t− τ)x(τ)dτ (32)

where
c(n)—1D CNN neural network neuron coefficients of the CONV layer
x(n)—input time-series vector/scalar. For this paper, current raw data, or E-CPC/CPC

current data
y(n)—time-series output of the convolution CONV layer working over the time series

x(n)
At frequency domain where X(ωn) = FFT{x(n)} :

Y(ωn) = C(ωn)X(ωn) (33)

where:
ωn—frequency (rad/sec) in rad/sec of harmonic n, meaning ωn = nω0
X(ωn)− = X(n) FFT transform of time-series x(n)
C(ωn)− = C(n) FFT transform of “CONV layer coefficients” matrix
Y(ωn)− =Y(n) FFT transform of output of CONV layer y(n). �

Step b: Demonstration of the actual spectral behavior occurrence. During testing and
training, long time series are inserted, and many epochs are executed using a stochastic
gradient descent backpropagation algorithm; emphasis is on stochastics. If signals are
ergodic, then the spectral point of view is legitimate [44].

2.10. “CNN for the E-CPC Anomaly Detection” Scheme—A Multi-Channel Anomaly Space

The implemented CNN is presented here. It is inspired by speech recognition
CNNs [48–51], (1) primarily due to E-CPC spectral nature (2) and due to the similar-
ity between sound frequencies and the waveform recorder sampler frequency enabling
easier knowledge transfer. There is no actual limitation to kHz domain. It is observed that
apparently, it was a spectral issue, and then the network acts as a transfer function. Act 2:
prove that the process is spectral. During the testing stage. Time-series raw data. If it is
semi-periodic for long periods of time as compared to the sampling frequency, i.e., seconds
and longer, it is an ergodic process; therefore, it has a spectral statistical nature X(ωn). It
is sufficient that it is a transfer function during the test stage. During the training stage,
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1000 epochs with the stochastic gradient descent (SGD) backpropagation algorithm is a
statistical process, and 1000 epochs for the 4 kHz sampled signal is ~0.25 s. Therefore, even
during the training stage, it is a statistical procedure; only the neural network is not a linear
matrix because it also has a slow envelope time variance. It must be emphasized that each
neuron has an activation gate that prevents saturation but also inserts some nonlinearity.
Figure 14 is exact schematic of implemented CNN.

Figure 14. Classification core CNN architecture used once cascaded to E-CPC, second time cascaded
to FFT of raw data, and a third time to raw data.

Some schematic descriptions are oriented to the current work [46–49] of the network
building block. The convolution operation is 1D as defined in Equation (26). It shifts one
time-series left each time. The max pool takes the max of these scalar operations at each
CONV block. Batch normalization is a preprocessing technique to standardize the data
between the layers and make it unit 1 order of magnitude. Everyone familiar with a normal
distribution knows this normalization. It avoids unnecessary saturation by setting values
to ±1 around a zero virtual mean yet enabling outliers, meaning exceptions outside the
standard deviation:

ZN = (
z−mz

sz
) (34)

where:
ZN—Normalized (N tag) variable at the interface between layers. Not to be interpreted

as exponent N of Z
mz—mean of neuron data
sz—standard deviation of neuron data
Upon receiving E-CPC data, which are processed, the CNN generates features using

the CONV layers; based on the processed data, the scattering current is similar to a logistic
sigmoid and intensifies the anomaly. It potentially reduces the required epochs count. A
fully connected layer indicates that all layers of neurons are connected to the previous
layer. This is different from layers that are not fully connected with some wiring “cut”.
The question is why this CNN acts as an anomaly detector core. The generated features
highlight the anomaly. Repeating CONV both at the time-series level and the several-layer
level generates detection. The code was implemented using the Keras Python library. Since
E-CPC was implemented in MATLAB R2021a, it converted MATLAB to Python 3.9.5 using
“libermate” from the GitHub open-source-code library.
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3. Results
3.1. Experimental Layout

Table 1 provides a high-level view of experiments as a whole is explained so the
experimental objective is better comprehended throughout their presentation and the
context relating to theoretical presentation is better comprehended. For correlation of
results to theory look for “in accordance with theorem x, Equation y: theorem title”; this is
so that correlation is comprehended. Theorem title is maintaining essence of theorem.

Table 1. Test cases and their relevance to presented theory.

Case Study Experiment Description Relevancy Prioritized

Loose screws of the motor mount
through grid measurement

An AC motor with all screws closed
(normal) vs. 6 screws mildly open—a

mechanical anomaly phenomenon

Demonstrate that without CPC anomaly
is unnoticeable while with CPC it is

noticeable.
Show a mechanical anomaly is also

electrically noticeable

Enhanced CPC—by further
disassembling the currents

An AC motor with all screws closed
(normal) vs. 6 screws mildly open—a

mechanical anomaly phenomenon

Demonstrate that E-CPC is even more
sensitive to an anomaly than CPC-“-

A systematic approach to generating
features for AI anomaly detection

An AC/DC inverter as observed from the
grid: gradually modify output voltage
once, and gradually modify the output

load once

Demonstrate a systematic method for
noticing a multivariate problem anomaly

Connect E-CPC as a preprocessor to a
CNN anomaly detector Measure FFT over raw data vs. E-CPC

Quantitatively evaluate the accuracy and
quantity of data required for anomaly
detection and show E-CPC supremacy

3.2. Case Study 1: Diagnose Mechanical Safety Phenomena: Loose Screws of Motor Mounts
through Grid Measurement

Throughout the entire testing, the reader is referred to the “deciphering theorem
table” [44] for convenience since this chapter contains references to theorems and equations.
Testing is conducted with a loaded AC motor that is allowed to slightly vibrate by releasing
motor chassis screws. Five currents’ physical components, each (Equation (41)), CPC
and proposed E-CPC single-phase executables and recorded datasets and reports are
available in [44]. The objective of this section is to show that CPC is sensitive to mechanical
phenomena unnoticed from the total current. Figure 15 is showing experimental results of
“all screws closed” vs. “6 bench screws only mildly open”. Supply voltage and supply—
meaning total current. At amplitude spectra—cannot confidently notice a change between
the scenarios. Time domain view appears the same. By confidently it is meant: “with high
confidence level”.

The differentiating signals are shown here. Full graphs are shown in [44]. Observing
Figure 16 bellow, several results are noticeable: (i) the active and mainly scattered current
physical components show a difference between normal/anomalous, both at amplitude
and spectra.

The scattered current/admittance as a successful anomaly detector is in accordance with
Theorem 1 Equation (7): “Scattered current sensitivity theorem”. Theorem 3 Equation (11) is
also demonstrated: “reactive current sensitivity”. The phase spectra are not less important
for matching Theorem 3 Equation (11), Theorem 2 Equation (10). The signature measures
the spectral change in current, and spectral “change” from each frequency to another is
more sensitive to anomalies. Theorem 7 Equation (20): “RL serial circuit active admittance
disassembly theorem” demonstrates that it penetrates active admittance but is less frequency
dependent. (ii) When closing the screws, the result is repeatable, which is important. If results
are not repeatable, there is nothing to train. Figure 17 shows how a 4 loosen screws situation
manifests in reactive current harmonic amplitude and phase spectra.
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Figure 15. Normalized graphs: “non-distinguishing” anomaly (enabling mild vibration) features
between all motor mounts, “6 screws open” and none opened (reference), “total voltage and current”
even as amplitude spectral signature.

Figure 16. Loaded AC motor setup. Load is performed with a DC motor. CPC distinguishing
signatures: normalized ‘scattered’ current and admittance.
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Figure 17. Loaded AC motor: reactive current and admittance in nonvibrating and vibrating cases.
Reactive admittance significantly enhances change.

A contributory factor to repetends is that Theorems 1–14 are generic. (iii) The differ-
ence is unnoticeable through entire currents itotal(t), iactive,classical(t) even with amplitude
and phase spectra. This means that the conventional electricity technique does not identify
these initially weak anomalies. (iv) The scatter and active currents are only ~10−3 of the
total current, yet they are the currents detecting the anomaly for matching to Theorem 1
Equation, Theorem 2 Equation“reactive scattered current”, and Theorem 3 Equation (11)
”reactive current theorem”. (v) The phase spectra are a contributory signature on top of the
amplitude spectra. Rationally, scattering currents fluctuate around the mean spectral field,
and a small change appears there initially. Electric information is remembered by phase:
capacitors and inductors behave in accordance with Theorem 3 Equation (11): “reactive
current sensitivity”. (vi) Anomaly intensity is intensified by the “differentiation”, i.e., scat-
tering currents. Observing reactive current also identifies the anomaly in accordance with
Theorem 2 Equation and Theorem 6 Equation“RL serial circuit admittance disassembly”.
Phase is sensitive to reactive changes. Scattering current is 10−3 of the total current. In
Figures 13 and 14, the admittance intensifies detection in accordance with Theorem 13
Equation” anomaly enhancement by admittance”. The spectra are normalized by volt-
age spectral variance, and only changes in reflecting load characteristics are computed.
Generally, mechanical vibrations are typical of distribution, power, and measurement
transformers. They vibrate prior to developing a corona or an arc. Using the method is
for transformer “preventive maintenance”, for example. The waveform recorder used was
a standard class 0.2 s smart meter collaborating with a standard power quality monitor
module Satec INC PM 180 and 4 kHz waveform recorder.

3.3. Case Study 2: Enhanced CPC—By Further Disassembling the Currents

This section demonstrates that the E-CPC yields more sensitive anomaly detection
than the CPC. The mildly opening of 6 motor screws attaching the motor to the bench
was noticed with the CPC but unnoticed by the conventional electricity theory. However,
below the opening of 6 screws, vibration was unnoticed by the CPC. Next, whether the
“enhanced CPC” is more sensitive to changes was tested, as theoretically suggested in
Materials and Methods. All graphs are shown in [44]. One screw open vs. all screws closed
is shown in Figure 18. Harmonic amplitudes and locations are different. The admittance
function intensifies the anomaly, and the admittance phase spectra are also distinguished,
as discussed and in accordance with Theorem 13 Equation (28)” anomaly enhancement
by admittance”. Extraction of equivalent scheme details: observation of loaded AC motor
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equivalent scheme is correlated to the graphs. Observing the admittance spectra, in Figures
15 and 16, change is intensified. The admittance normalizes with the voltage.

Figure 18. Reactive→ scattered current and admittance spectra, all screws closed vs. one screw
mildly opened.

The reactive→ scattered current is modified as described by and in accordance with
Theorems 1–3 Equations (7)–(11). The entire reactive current is apparently unchanged due
to vibration. The reactive→ fixed current is close to zero, but it looks different between
the two incidents [44] (reactive→ reactive). This is because reactive fixed is not entirely
zero in accordance with Theorem 6 Equation (14). The zero-ness of reactive→ fixed current
in Theorem 10 Equation (23) indicates that the majority of the reactive component is net
spectral, while the Be admittance is much smaller. Another point is that customer→ reactive
identifies change more than the original (distribution current→) reactive. The first current
is computed from n ∈ ND, while the second current is computed from n ∈ NC. The
reactive→ scattered admittance is in accordance with Theorem 6 Equation (14) “RL serial
circuit admittance disassembly”, while customer→ reactive→ scattered is also included
in total reactive→ scattered current. It should be noted (!) that the motor scheme is not
entirely a parallel branch scheme. However, the scheme is close enough for equation
(19) to be maintained, being only a single branch and a single voltage division. Resistive
components: the total current and its equivalent scheme are known. Resistive elements
are fixed; however, in the RL scheme, they contribute to spectral admittance, both active
and reactive, in accordance with Theorem 6 Equation (19) “RL serial circuit admittance
disassembly” and Theorem 7 Equation (20) ” RL serial circuit active admittance disassembly
theorem”. The measured-computed customer admittance is not fixed in accordance with
Theorem 7 Equation (20). Sanity checks performed from analysis. (1) For customer currents,
the distribution current should be zero. (2) For reactive current –active current should be
zero. (3) The sum of all current physical components must equal the initial start of the
current. (4) The customer→ active→ scattered is close to zero and contains the customer
Ge admittance defined by and in accordance with Equation (23). The customer→ reactive,
fixed is not zero but close to it and contains the customer Be admittance defined by and in
accordance with Theorem 10a Equation (23) ”admittance correlation to CPC”. The major
sensitive component is customer→ reactive→ scattered and is in accordance with Theorem
5 Equation (19) “Current physical component separability theorem”. (5) If enhanced CPC
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implementation uses CPC(j ∗ icustomer) to force active, scattered, it switches ‘also’ active
and reactive and should be reminded. (6). Complete graphs are given in [44]. Figure 19
shows a case where a single screw loosen and how it reflects in the customer→ reactive
current. Amplitude of first harmonics is small but different and it is repetitive.

Figure 19. ‘customer→ reactive → fixed’ current and admittance are small but not entirely zero
(10−19). Reflects that reactive component Equation (24) Cn = 0 (capacitance at reactive admittance).

3.4. Case Study 3: Diagnosing a Mild Change in Electric Load Over a Rectifier—Grid
Measurement

The objective of this case study is (1) to present a multivariate problem and (2) demon-
strate a completely different content world than an AC induction motor. In this example, a
series of tests was performed, where at each point, a small modification of either the load
resistance or the output DC voltage was performed. Small enough steps such that when
observed from the grid, no significant modification of input total current was observed.
The AC/DC converter is a nonlinear load and HGL [18] and tested whether CPC may be
applied for anomaly detection. Figures 20 and 21 demonstrate an experiment with fixed
output voltage and slightly varying load resistance. Figure 20 is voltage, and Figure 21
is current—first time-domain then amplitude and phase spectra. The observation: unno-
ticeable differences at total current spectra and at voltage, except perhaps current phase
spectra but with apparent insufficient confidence level.

Test program: a matrix of work points {vout,DC : 24÷ 30 V} –X {Rout : 9.79÷ 10.87 Ω}
that slowly vary with small steps of (0.5 V, 0.4 Ω) is generated. For each work-point, wave-
forms vgrid(t), igrid(t) are recorded for 10 sec. Figures 18 and 19 demonstrate that for
two work points, {vout = 24 V, Rout = 10.86 Ω } and {vout = 24 V, Rout = 10 Ω }. The test
starts with a comparative study of the total current vs. CPC, similar to test case 1. Obser-
vations from Figure 20 above. (1) Total, active, reactive currents—changes are relatively
minor. Figures 20 and 21 show CPCs of the same voltage, and slightly different loads. There
are apparently observable changes point-to-point unnoticed from supply voltage/current,
observable in active→ scattered current in accordance with Theorem 1 Equations (7) and
(9) “Scattered current sensitivity theorem”.
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Figure 20. Loaded AC/DC converter: differences observed in CPC physical components at the same
voltage and different output loads.

Figure 21. Loaded AC/DC converter: differences observed in CPC physical components at the same
voltage and different output loads.

3.5. Case Study 4: A Systematic Approach of Generating Features for AI Anomaly Detection

The objective of this study is to provide a systematic study by example of an adaptation of
a multivariate problem to E-CPC and AI feature generation. In addition to analyzing the case
study of AC/DC inverters, opportunities are exploited to demonstrate how effectively CPC is



Energies 2021, 14, 3275 31 of 41

used for feature generation and multidimensional space is defined for anomaly identification.
Features are inserted either into multidimensional space [45–47] or into multivariate deep
learning, such as Recurrent Neural Networks (RNN) and the representative LSTM, which is
beyond the scope of this paper. It is reminded that the view here is as observed from the grid.
The first step is feature generation, constructing a multidimensional space as described in
Figures 20 and 21. Two types of experiments were conducted: (1) slightly modifying the load
over the rectifier and maintaining a fixed output voltage and (2) slightly modifying the output
voltage while maintaining the fixed load. Generalized graphs were designed. Figures 22–24
describe a sample of the results b for Vout = 30 V, Vout = 28 V.

Figure 22. Loaded AC/DC converter 30 V vs. 28 V, variable load (Ω) total, active, scattered, reactive
current. Differences are marked with red ellipses (currents are not normalized). Only amplitude
graphs are drawn.
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Figure 23. Loaded AC/DC converter with fixed 11.06 Ω output resistance vs. 10.86 Ω output
resistance, variable output voltage (V)—customer, reactive currents. Differences are marked with
red ellipses (currents are not normalized). Only amplitude graphs are drawn.

Figure 24. Loaded AC/DC converter with fixed 11.06 Ω output resistance vs. 10.86 Ω output
resistance, variable output voltage (V)—active, reactive, total current. Differences are marked with
red ellipses (currents are not normalized). Only amplitude graphs are drawn.
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Conclusions are similar to the rest of the voltage range. The entire graphs are shown
in [44]. The feature formulation is as follows:

|im| = |im( fn = n f1, rout, Vout)|

|im| = |im( fn = n f1, rout, Vout)|
≺ im = angle{im( fn = n f1, rout, Vout)}

(35)

where
fn—frequency of harmonic n
rout—output resistance
Vout—output voltage. A parameter in the below graphs
im—current physical component where index m is {active, scattered, reactive, customer

and for 3-phase load, unbalanced}
Using high-order dimensional space in machine learning is possible, not necessarily

as described, for example, in [45–47]. Future work will compare the insertion of CPC
features into a deep learning autoencoder vs. letting the RNN autoencoder generate its
features. High-dimensional space enables visualization of normal and anomalous work
points, as located in different locations in that space. Conclusions from the comparative
study. (1) A difference is observed in ((total)& (customer))→scattered in accordance with
Theorem 1 Equation (9), and reactive current in accordance with Theorem 2 Equation (10)
and Theorem 3 Equation (11). (2) Customer current is relatively high due to being an
AC/DC converter; many new harmonics are generated by the AC/DC converter, which is
an HGL load that is in accordance with Theorem 14 Equation (26) “Separability of inductive
and capacitive admittances”. (3) Most importantly, the total current to the rectifier’s input
is relatively stable with a modified output voltage and with a modified amplitude, meaning
conventional electricity theory does not sense load changes as early. (4) Scattered current,
which is less than 10% of the total current, senses both output voltage changes and rectifier
load changes in accordance with Theorem 1 Equation (9) “scattered current sensitivity
theorem”. Again, it is shown that the CPC-based spectral physical components are sensor
sensing components that are nearly unnoticeable otherwise. Experimenting with constant
load and variable output voltage, observing Figures 20–22, the conclusions are similar. (1)
The total current is primarily customer current in accordance with Theorem 14 Equation
(26). (2) Small currents, such as scatter and reactive currents, are indicators of changes in
load or output voltage better than total current.

3.6. Case Study 5: Results of the Comparative Study of E-CPC vs. FFT Over Raw Time-Series
Data and Theoretical Discussion

The next issue is how data are inserted into the CNN test results and the following
theoretical summary. The time series x(n) is broken into chunks forming an image-like 2D
array. The theorem above is simply reformulated as 2D. Three data types are comparable:
(1) raw data x(n) = v(n), i(n). (2) FFT data each period or each second taking one period.
(3) E-CPC each period or each second taking a period. The tested recordings are of the AC
induction-motor. Figure 25 is snapshot from accuracy results at simulation between FFT
data – top results and CPC data—bottom result.



Energies 2021, 14, 3275 34 of 41

Figure 25. Comparative results of FFT vs. E-CPC for the deep learning CNN classification core over
{3 anomaly signals} × {3 recorded systems} × {3 normal signals}.

The results of E-CPC vs. FFT are as follows: training dataset constructed of 4 anomaly
Signals: (1) the induction motor opened screws, (2) 10−3 rectangle waveform added

to the original waveform added through MATLAB Simulink, (3) 10−3 white Gaussian
noise (WGN), and (4) 10−3 sawtooth. Three recorded systems: (1) AC induction motor,
(2) AC/DC converter, and (3) “smart grid PV cell fuel cell and battery” from a MATLAB
Simulink file exchange. Three normal signals: (1) sine wave, (2) rectangular wave, and (3)
sawtooth. Over these experiments, characteristic results are shown in Figure 13. Results are
similar in the other tests. E-CPC scattering currents are indifferent to WGN, as spectrally,
it is a flat line. This may be exploited as an advantage: fixed currents are WGN anomaly
detectors, while scattering currents may be used to indicate that WGN may be a normal
signal arriving from electric devices. The CPC preliminary anomaly detection sensor,
located at the data center, preprocesses the raw data prior to the classification core as
follows.

Table 2 emphasizes the four apparent benefits of E-CPC as a preprocessing smart
virtual sensor: (1) more sensitive, (2) much fewer data than raw data required to feed the
classification core to arrive at the conclusion anomalous/un-anomalous, (3) less required
time to identify anomaly due to two factors: (a) faster sampling rate, (b) less required data
by E-CPC preprocessor, and (4) multichannel. Figure 26 illustrates the time and sensitivity
scales at raw data, versus FFT and CPC.

Table 2. Comparative performance report between three models combined with the CNN classification core.

Property.
{Training/Testing/Training and

Testing} Stage

Raw as
Data Input FFT as Input E-CPC, CPC as

Input

Sensitivity multiplication factor
(affect in training/testing stage) 1 Theoretical:

~ 104

80 = 125

Empirical: at least 103

Possibly: 105

(assuming time linear onset of
anomaly)

Data shrinking multiplication factor into a CNN core
Training and testing stages 1 Theoretical:

100
Empirical and

theoretical: 100,000

Maximal speed of decision from anomaly onset
“multiplication factor”

(assuming at least 4000 samples) due to sampling rate (*)
Training and testing stages

1

Theoretical:
4000

(for 4 kHz
sampling)

Theoretical: 4000
(for 4 kHz sampling)

Estimated fan-in
Training and testing stages 1 Theoretical: 50 Theoretical: At least 50

possibly much more

(*) Even if the maximal speed is different than 1, the multiplication factor is the relevant parameter.



Energies 2021, 14, 3275 35 of 41

Figure 26. illustration explaining why E-CPC means less time, and fewer data as compared to FFT
and raw data.

Observing Figure 26, during the onset of anomalies, the FFT preprocessor requires
O(Itotal(ω)) for anomaly identification (traffic light red), which consumes time T. The
E-CPC preprocessor requires O

(
Iscatter ∼ 10−3 Itotal(ω)

)
for anomaly identification and

that consumes, heuristically assuming linear onset ~10−3 T. A ratio of ~100 exists between
the raw data and FFT assuming a 4 kHz sampler. FFT observes ~40 first harmonics and
deduces within 2 cycles normal/not normal, while no-preprocessor requires ~1 sec data
meaning 4000 samples. O() indicates the order of magnitude. The scattering current at
E-CPC acts as an activation gate, ReLU or sigmoid function. The value of scattering current
in anomaly jumps is in terms of percentile by hundreds-of-percent. A green light indicates
normal, while a red light indicates abnormal. The FFT decreases data from 4000 samples/s
into 40 harmonics selected from 400, thus enhancing the speed. E-CPC is a spectral theory.
The scattering and reactive/reactive scattering currents are focused on the “fluctuations
around the mean field”. They are shown to be experimentally ~10−3 of the total current
and yet very strong anomaly detectors. This multiplication of FFT data cut and earlier alert
yields up to 40,000 times faster. This may not be too much, as the difference is from 1 s to
0.25× 103 s. However, cyberattacks over electric grids are often unnoticed in real time even
after many seconds during the onset period. It is evident through the experiment that the
sensitivity improvement and the data shrinking improvement. The max “decision-making
speed” multiplication factor is theoretical and is driven by Theorem 16: “CNN behavior as
a spectral transfer function”. The last row is the estimation and is the subject of another
study.

3.7. Comparison of the Proposed CNN Architecture to Other Studies

(a) Similar work on electric grids: when discussing previous comparative work, the more
accurate location to look for is not grid anomaly detection in general; that yields
tens of references. Samples of non-electric anomaly detection are [51,52], none of
grid anomaly detectors, is multichannel. Example 1D CNN works are [53–55] and
LSTM works are [56] and CNN LSTM work [7]. A literature survey was performed
starting in 2010. The conclusion is as follows: similar work has been performed on
multichannel anomaly detection but probably not with regard to implementation for
electric grids. Only or mostly a single-channel work has been performed over an
electric grid.

(b) For usage of electricity theory knowledge for data preparation (preprocessor), no
other work has been found, so this may be the first one, or at least the first one with
extensive electricity knowledge.

(c) Accuracy: 95± 5% is the highest reported accuracy among all reported detectors, but
some comparative work over anomaly detection datasets must be performed to make
a solid conclusion. Currently this is not sufficiently established. There have been
reports of 92% accuracy. The average reported accuracy is ~70%.
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(d) Grid references are based on the energy load profile as input, which has a low sam-
pling rate of 0.001 Hz (every 15 min). This work is based on current and voltage
recordings, which are rapidly sampled at 4 k Hz and may work well with 1 kHz.
There are many voltage and current waveform recording probes in the grid at many
deployments worldwide; therefore, this work does not require IoT installation in such
projects. These probes are used for (1) fault location (2) and power quality monitoring.

4. Future Research

E-CPC has considerable potential as follows:

(a) “Fan-in of IoT signals”. Due to the vacancy of 40,000 times less raw data, this may
imply that fan-in with the same computational complexity can increase to up to 40,000
times larger than the raw data fan-in, which remains to be determined. However, it is
shown that a preprocessing virtual sensor located at the data center, i.e., remote, much
less raw data consumption, and more accurate, potentially leads to larger fan-in. The
collaborative features make this sensor leap at anomaly detection.

(b) “E-CPC + grid interpreting”—pushing the sensitivity limit further with electric-
scheme- based anomaly detection. The E-CPC preprocessor, although executing a
leap at anomaly detection, is not brought to its maximal performance. This may be
achieved using grid deciphering theorems, especially 10-a, and Figure 8, if each of the
electric components is inserted as a distinct anomaly detection signal. This has not
yet been performed and is a future work of the group.

(c) E-CPC as a generic preprocessor and virtual sensor. Not confined to the boundary
of electric currents and voltages. This extension horizon is two-fold: there are five
content worlds with equivalent physics to electric circuits, meaning there are pairs of
signals {x, y} equivalent to {voltage, current}: (1) magnetic, (2) heat transfer, (3) direct
motion, (4) rotation motion, and (5) fluid dynamics. These contents worldwide are
completely equivalent to electric circuits, so the results of this paper should be valid
there. However, any signal x(t) may be split into active: Real{x(t)} and reactive:
Imaginary{x(t)}. Assuming some mean-field value extraction may be computed,
fluctuations may be computed. The entire extent of E-CPC may be computed. There
are fixed and scattered signal subcomponents. The current rule iTotal = ∑n in is matter
conservation, a rule existing in many/most world contents. The power rule:

Z2
Total = ∑

n
Zni2n (36)

is energy conservation. It exists in all world contents, so E-CPC must be a generic
preprocessor suitable for any signal.

5. Conclusions

Theoretical results were generically formulated by fifteen theorems majorly to linear
loads but extended also to HGLs. The presented research obtained the following two
functional goals: (1) Improvement of grid anomaly detection for two objectives—grid “pre-
ventive maintenance” and grid “intrusion detection system”. (2) The other goal was “grid
interpreting”. In order to obtain these goals a proposed architecture of CPC preprocessing
Head-End-System, cascaded to a CNN 1D architecture was proposed and tested. The main
focus of current paper was on CPC. CPC exhibited several micro-improvements that were
proved and demonstrated in favor of enhancement of the two mentioned main goals:

1. Enlargement of “CPC physical components” components count, where each com-
ponent serves as another type of grid sensor, all this without installing additional
sensors:

• “Scatter and reactive currents” are natural anomaly detectors. They act nearly as
0/1 logic output. They were not invented by proposed work, but rather applied
to the stated objectives.
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• The “scattered currents” are insensitive to White-Gaussian-Noise (WGN) since
that interference is spectrally constant, meaning fixed.

• Active/reactive fixed currents do notice WGN since they contain the spectrally
fixed component. WGN may/or may not be an anomaly.

• “Customer current” is detecting current/harmonics arriving from load. Again –
not invented, simply looked again at new perspective of grid change detection.

• Distribution current is detecting flow arriving from grid to load.
• Unbalance current is a natural detector of load unbalance.

CPC preprocessor may now be regarded as a “special phenomena” detector and
classifier. Focus was mainly on anomaly and less on grid interpreting.

2. Anomaly detection by CPC shown to be three folded- thereby enhancing its effect:

• Anomaly detection via the current’s physical components.
• CPC as good grid interpreting method, enables potentially anomaly detection

at electric scheme level and R, L, C components. This was demonstrated by
two theoretical example experiments: (a) an array of parallel branches of serial
R, L, C load. (b) separability theorem demonstrating how CPC enables through
harmonic analysis to separate inductive load from capacitive load.

• CPC in collaboration with CNN anomaly detector. The collaboration is stronger
than each sub-component. The paper is focused on CPC, and CNN was used
to enable comparative research over the input data. It is clear now that ‘CPC +
CNN’ has a virtue of its own and should be further investigated.

3. Suitability to handle three phase three or four wire circuits was demonstrated: it
was not invented. The enhancement was shown theoretically. Suitability to handle
non-linear Harmonic Generating Loads (HGL): either as customer current that is
not disassembled such as CPC acts, or at E-CPC at customer current’s proposed
disassembly.

4. A new point of view has been shed on CPC, that’s different than original view but
is mathematically, 100% equivalent. New point of view is effective for usage in the
new disciplines and due to universality to other content worlds. That was not issue
of current paper, simply a notification to generate incentive for a future paper: (i)
“scatter current” is a spectral fluctuation over spectral mean field—This is a technique
known from physical theories. (ii) “Active/reactive fixed currents” are the “spectral
mean field”. (iii) “Active current” may be regarded as real component of spectral
represented current, Reactive may be regarded as the imaginary component – thereby
this is paving the way towards CPC as universal anomaly detector and universal
data/fluid flow grid interpreter. That is beyond paper scope. Paper has triggered the
curiosity.

5. Electricity theory knowledge was poured into deep learning architecture via prepro-
cessing and data preparations: the cascade “CPC + CNN” was performed. There is
usage of electric parameters by other works on grid analytics, but mainly as “statistical
parameters”.

6. Improved data quality: comparatively over four simulations—the study showed
that this enhances detection accuracy as compared to raw data, and FFT. (CPC is
enhancement on FFT).

7. Speed-up the anomaly decision making and smaller amount of data—these points
require further study, but the potential was shown. Due to FFT—only the 40 primary
harmonics represent the loads well, and further compression due to CPC is obtained.
At raw data 4kHz sampled ~800 time-series points exist for the same data.

8. Multi-channel IoT anomaly detection –multi-variate separate channels, as the CNN
has been shown to be successful MV-CNN in other disciplines—that is not paper’s
contribution. But usage cascaded with CPC, is the paper’s contribution, and multi-
channel usage for grid although not novel, is shown herein differently. Potentially
“multi-channel collaborative”—generate an aggregative anomaly detection through
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proper usage of convolution operation is implied by paper, although not demon-
strated.

9. Grid interpreting. This is shown by two examples: (4.1) in Figure 7 as enabling
“N parallel branches of serial R, L, C interpretation, where N is unknown”, (4.2)
and at “separation of L, and C extraction” using CPC as theorem shows. With-
out CPC reactive admittance is sum of inductive and capacitive impedances (serial
case)/admittances (parallel case). Relevancy to “grid interpreting” is not the main
subject of paper, but it may be shown preliminary as additive added value, and we
mention it.

The results were experimentally shown for two test cases: (1) mild mechanical vibra-
tion of a loaded induction motor and (2) modified load, or output voltage of an AC/DC
converter. Each example was demonstrated as reflected in the grid. The benefit of using
CPC currents as anomaly detectors, even phenomena that occur at device outputs as seen
from the grid, was demonstrated. Regarding the relatively conventional CPC, using theo-
rems such as the “frequency signature”, it was shown that generic and systematic anomaly
detection is enabled, provided that spectral amplitude and phase are used, rather than
time waveforms or RMS values. The 14 theorems were correlated to anomaly case studies.
In Figure 6, they were used to run and draw graphs of theoretical computed admittance.
It was clearly demonstrated that for parallel branches with serial RLC, each branch has a
clear signature that is traced to the circuit structure. The subject of grid deciphering is a
future paper, and the current paper is focused on grid generic anomaly detection. For test
cases, the first case study suggests effectiveness for mechanical vibration identifications
and hidden anomalies in induction motors. This is effective for preventive maintenance
of equipment tested for vibrations, such as transformers and motors, in assembly lines,
or post installation. In the 2nd case study, an AC/DC converter fits plenty of electrical
equipment with a converter power supply. Alt.: cyberattack identification. Here, again,
it suggests remote preventive maintenance, as observed from the grid. A 2nd case study
was used to further demonstrate feature generation using CPC and enhanced CPC for
anomaly detection. The method constructs multi-dimensional spaces from the features.
Theoretical reasoning was demonstrated for several issues generically, exceeding the two
test cases: (1) the scatter current was shown to be potentially sensitive to change detec-
tion due to being spectrally variable ∂iactive/∂ω = ∂iscattered/∂ω 6= 0. (2) Enhancement
of CPC (E-CPC) following its original construction reasoning was performed to finally
include 6 scatter subcurrents rather than one in classical CPC and 22 subcurrent physical
components overall compared to 5 currents in classical CPC. This was shown to be used
efficiently (a) for sensitive anomaly detection of initially weak phenomena and (b) for
the grid/machinery deciphering method. While classical CPC sensed 4 out of 6 screw
openings, the enhanced CPC robustly sensed even a single screw vibration. (3) Fourteen
new CPC-based and other electric rules that are expressed by Equations (7)-(29) were
developed for disassembly of admittance and current types, enabling visualization only
of components of a certain type such as only reactive or only active. (4) Regarding the
new rules: (a) for parallel branches including only a mixture of resistors and inductors,
it was shown using CPC that the total→ reactive→ scattered current reflects a spectral
mixture of resistive and reactive components. (b) The total→ active, customer→ active
current reflects both a spectral and a fixed component. It might have been ‘mistakenly’
assumed that if admittances of the same type are summed from parallel branches following
CPC, then the total active admittance is ∑m 1/Rm and total reactive admittance would
mistakenly look like this: ∑m j(ωCm − 1/ωLm). Branch active/ reactive admittances are a
mixture expression of resistors and capacitors and inductors. The uniqueness of CPC and
enhanced CPC admittance physical components was shown. (5) Disassembly was shown
to be effective for identifying changes that the original CPC did not notice. It was shown,
for example, that customer→ reactive→ scattered current admittance is sensitive to me-
chanical vibration, in accordance with the theorems. There is a reasonable basis to assume
that these results are generic and reproducible for many other cases. This theory has the
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potential to decipher the grid and electric machinery, as observed at a single measurement
point. Future research should be conducted as follows. (1) Anomaly detection should be
tested comparatively to determine whether deep learning combined with enhanced CPC
generates features or multidimensional space, as presented in case study 2—the tradeoffs:
computational cost + consumption time versus accuracy. The lower the cost is, the more
local anomaly software modules may be installed. Finally, with regards to the experiments
in the current paper, a comparative study was performed demonstrating that E-CPC as a
preprocessor is pushing the limits of (1) multichannel, (2) more accurate, (3) fewer data,
(4) remote, and (5) real-time anomaly detection up to enabling grid/industrial premise
IDS and preventive maintenance. A deep learning anomaly detection core was developed
using a CNN and inspired by the content world of “speech recognition” [46–49]. A study
of (1) raw data processed with E-CPC, (2) raw data processed with FFT, and (3) raw data
processed with raw data was conducted. The study showed the same superiority over
existing academic technologies, FFT and raw data, for 100% of the systems.

Finally, the future horizons of E-CPC are as follows: (i) larger fan-in, multichannel
anomaly detection, (ii) fusion of E-CPC and the grid deciphering demonstrated by this
paper enables anomaly detection at the electrical device and electrical component levels.
(iii) Finally, it has been implied that E-CPC will work on any signal x(t) and not necessarily
electrical current. This puts E-CPC in the position of being the natural ultimate anomaly
detection system.

6. Patents
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