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Abstract: Studies on the energy–water–CO2 synergetic relationship is an effective way to help achieve
the peak CO2 emission target and carbon neutral goal in global countries. One of the most valid way
is to adjust through the electric power structure transformation. In this study, a mixed-integer linear
resource planning model is proposed to investigate the energy–water–CO2 synergetic optimization
relationship, concerning the uncertainties in the fuel price and power demand prediction process.
Coupled with multiple CO2 emissions and water policy scenarios, Beijing, the capital city of China,
is chosen as a case study. Results indicate that the demand-side management (DSM) level and the
stricter environmental constraints can effectively push Beijing’s power supply system in a much
cleaner direction. The energy–water–CO2 relationship will reach a better balance under stricter
environmental constraints and higher DSM level. However, the achievement of the energy–water–
CO2 synergetic optimization will be at an expense of high system cost. Decision makers should
adjust their strategies flexibly based on the practical planning situations.

Keywords: energy–water–carbon synergetic optimization; mixed-integer linear programming; un-
certainty; DSM; power structure transformation

1. Introduction

In recent decades, the potential adverse impact of atmospheric CO2 emissions has
drawn more and more attention. The global warming issue is mainly driven by a strong
increase in the carbon dioxide released in the atmosphere by human activities [1]. Potential
threats caused by global warming may include the increase in land surface temperature,
the global climate changes, ocean level rising, and even the food production disruption [2].
Generally, CO2 emissions is closely related to human activities such as the exploitation of
energy resources, energy utilization, energy transportation, and deforestation, as well as
other industrial, residential, and commercial activities. It mainly comes from the combus-
tion of fossil fuels such as coal, natural gas, and oil [3]. Due to their contributions to the
CO2 emissions, most of them come from the energy intensive sectors, such as the electric
power (especially the thermal power), the steel industry, and the construction industry in
each country. In recent years, China has become the largest CO2 emitter in the world and
has tried its best to make a contribution to the global CO2 emissions reduction. Among
all the CO2 emitters, electric power industry accounts for 40% of the total CO2 emissions
in China, and it is still the largest CO2 emitter [4]. The Chinese government has laid out
the detailed CO2 reduction schedule: that is, to reach the CO2 emissions peak before 2030
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and realize the carbon neutral target before 2060 [5]. However, with the development of
the society and the economy, the electric power demand increases as time goes on. The
question of whether China can decarbonize its electric power sector will have important
implications on its contributions to reducing the global warming and achieving the total
CO2 emissions reduction target [6]. However, there will be sharp conflicts between the
increasing power demand and the CO2 reduction target. Finding the balance between
these two problems will become a significant and practical issue.

Simultaneously, the increasing demand for the electric power also aggravates water
consumption, which may bring potential ecological and environmental risks, especially in
the arid and semiarid regions, for the majority of the thermal power plants which are the
main water consumers concentrate in these regions [7]. In China, water consumption of
electricity generation accounted for 39% of total industrial water consumption; therefore, it
is of great significance to improve the utilization efficiency of water resources, especially
in water-deficient areas [8]. Meanwhile, how to ease the conflicts between the increasing
power supply and the water consumption reduction is another important issue besides
conflicts between the power supply and CO2 emissions reduction target; therefore, investi-
gating the synergetic optimization relationship among the electric power supply, the CO2
emissions reduction target, and the water-saving target in regional electric power system
(EPS) is fairly important.

In recent years, the energy–water–emissions nexus study has become a research
hotspot. Some studies try to investigate energy–carbon or energy–water nexus optimization
through the technique perspective, for example, Bahador et al. [9] investigated a more
environment-friendly process for CO2 capture concerning the ionic liquids. Saeed et al. [10]
proposed a hybrid combined system to conduct the energy, exergy, economic, and exergo-
environmental analyses on the performance, viability, and environmental impact when
operating in Tehran. Hu et al. [11] investigated the key factors that affected the carbon
dioxide adsorption and oil recovery factor in tight reservoirs, which could help better
understand the carbon dioxide injectivity performances. Sikdar et al. [12] presented and
highlighted the most important issues of decarbonization from technological viewpoints
in detail, which provided effective guidelines for choosing carbon reduction technologies
with high efficiency. These studies mainly evaluated the impacts of high proportion of
renewable energy techniques on the energy system. Some studies mainly focused on the
potential effectiveness of hydropower on the energy–water or energy–carbon nexus, for
example, Kuriqi et al. [13] investigated the water–energy–ecosystem nexus and provided
strategic recommendations on energy–ecosystem regulation for sustainable hydropower
operation. Kuriqi’s study also found that the diversion weir and the pondage hydropower
schemes were less ecofriendly, while the dam-toe hydropower scheme had the opposite
characteristic [14].

The other studies investigate the energy–water–carbon nexus in the same research
framework from the optimization perspective.

Lee et al. [15] focused on the energy–water–CO2 nexus of the fossil-fuel-based power
generation and mainly provided the policy implications on the optimization path of fossil
fuel power structure adjustment. Wang et al. [16] applied a plant-level nexus approach
to assess the relationship between energy and water consumption, and CO2 emission in
a typical Chinese steel company. Damiana [17] presented a low-temperature waste-heat
recovery in the European electric steelmaking industry and evaluated the impact of feasible
interventions on primary energy and water consumption, as well as on CO2 equivalent
emissions. These studies supplied effective ways to investigate the energy–water–carbon
nexus in the energy system. However, as the energy system includes various branches,
most of the existing studies focused on the steel industry, construction industry, and the
agriculture, while the literature on the energy–water–CO2 synergetic relationship in the
EPS, especially focusing on the urban energy system, is still limited. Ayman [18] proposed
a dynamic material flow-stock model to analyze the resources nexus and CO2 emissions
in China’s power generation system. The results indicated that PV and wind may result
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in the highest water, energy, and CO2 under some situations. Tan et al. [19] figured out
that the application of clean development mechanism could still have positive effects on
the energy–water–CO2 nexus optimization in the energy system in Hebei Province, China.
However, these studies just paid attention to the power supply side without concerning the
disruptions from the demand side, which may bring power supply uncertainty and system
risks during the electric power supply process in the urban energy system. Meanwhile,
it may also have great impacts on the CO2 emissions reduction goals and the water
consumption saving, which may further affect the decision process of the decision makers.

Some studies conduct the energy–water–CO2 nexus through the input–output analy-
sis [20]; although the input–output analysis has the advantages in dealing with macrore-
gional material flows, it has difficulties in tackling the relatively microregional problems.
The optimization model is a common and effective tool to investigate the energy–water–
CO2 nexus. In recent nexus studies, researchers tried to apply the multiobjective/multilevel
models [21] or the game theoretical models [22] in the nexus studies. For example,
Ye et al. [23] propose a combined multiobjective optimization method to examine five
different scenarios of renewable energy systems. Zohrabian et al. [24] used a case study
to highlight the trade-offs and tensions that can occur in balancing priorities related to
reliable water supply, energy demand for water, and greenhouse gas emissions. Besides
the comprehensive analysis ability, these models also face some problems, such as the
complexity of that model will have a significant increase if there are too many parameters
and variables in the model, and sometimes the overall optimization results cannot even be
achieved. Mixed-integer linear programming is an effective tool in dealing with capacity
expansion problems [25]. It is valid for lowering the system complexity, achieving stable
solution, and improving the convergence speed [26]. Meanwhile, it is an effective way to
help achieve the global optimum with minimum error [27].

Therefore, to effectively evaluate the impact of disruption from the demand side on
the urban electric power supply, which may further affect the energy–water–CO2 synergic
relationship in the urban energy system, a mixed-integer linear resource planning (MILRP)
model is proposed to investigate the potentially steady power supply path and assess
the system cost under different demand side management (DSM) levels. Meanwhile, the
globally optimized electric power supply path, concerning the uncertainty from demand
side disruption and the fuel price, which could help to reach the best balance among the
power supply, the water saving, and CO2 emissions mitigation targets, is presented. As
Beijing, the capital city of China, has extensively used the DSM to improve the power
supply efficiency, it is chosen as the case study to demonstrate the validity of the proposed
MILRP model. The main novelty of this study is to evaluate the effects of the demand side
disruption on the energy–water–CO2 nexus collaborative optimization in the urban energy
system. It also helps provide effective policy implications on the electric power supply
path concerning the energy–water–CO2 nexus.

2. Methodology

In this study, the MILRP model is built to explore the optimized energy–water–CO2
emissions nexus in Beijing’s power supply system. The MILRP model is applied to help
obtain the optimized electric power supply schemes to guarantee not only the energy
supply security but also to achieve the carbon emissions mitigation and water-saving
targets under multiple scenarios; the scheme includes the capacity expansion level of each
power technologies, the DSM level, and the imported power from other regions. To ensure
the optimization process close to the reality, the uncertainty during the simulation process
the fuel price and power demand are considered and effectively controlled. The decision
variables and parameters of the MILRP model are presented in Table 1.
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Table 1. The decision variables and parameters of the MILRP model.

A. The abbreviations and acronyms j The DSM program
MILRP
model Mixed-integer linear resource planning model CIit The cost to consumers who interrupt power supplies

DSM Demand side management CTt The cost for the power transmission
ft Total system cost in period t (RMB/¥) CWt The cost of water consumption (m3)

B. Decision variables LSpt
Vit The amount of energy supply (PJ) RM The capacity reserve margin
xit The generation capacity of technology i in period t Volt The maximized visible supply volume of natural gas

γjt
The binary (0 or 1) determining whether the

capacity expansion process happens CMit The CO2 emissions mitigation efficiency

QPt The quantity of power transferred WWIit The water withdrawals intensity

QCit The quantity of CO2 emissions CFit
The fixed cost of power technology i constructed in

year t

QWit The quantity of water withdrawals CVit
The variable cost including the operating and

maintenance fees
Git The amount of power generation (MW) CDjt The cost of implementing the DSM program j

µit
The binary variable (0 or 1) determining whether

the capacity expansion process happens t The planning period

δjt The occurrence probability of different program j
C. Parameters ut The amount of demand (MW) that goes unserved

∼
Ct The cost for purchasing the nature gas CCTt The carbon emission tax (RMB¥/m3)

CFit The fixed cost of generation capacity Eit The capacity expansion ability

Lit The Length of period t for technology i LSpt
The fraction of power lost during the electricity

transmission process (%)
i Different power technologies ∧

DEMt The power demand
CLt The CO2 emissions limitation (ton) RCit CO2 emissions rate

TWRt The total water resource supply (ton) DDejt The decrease in power demand

2.1. The Mixed-Integer Linear Resource Planning Model (MILRP)

Min ft = ∑
i

∼
CtVit+∑

i
CFitxit + ∑

i
CVitLitxit + ∑

j
CDjtγjtδjt

+∑
i

CIitLitut + CTtQPt + ∑
i

CCTtQCit + ∑
i

CWtQWit
(1)

ft is the total system cost in period t (RMB/¥).
∼
Ct is the cost for purchasing the natural

gas concerning the price uncertainty in period t (106 RMB ¥/PJ). Vit denotes the amount of
energy supply from technology i in period t (PJ). CFit is the fixed cost of power technology
i constructed in year t (106 RMB ¥/MW), with i = 1 for the cogeneration power technology,
i = 2 for the solar power technology, i = 3 for the wind power technology, and i = 4 for
the geothermal power generation technology. xit is the generation capacity of technology
i in year t [MW].CVit is the variable cost including the operating and maintenance fees
(106 RMB ¥/MWh). Lit is the length of period t for technology i; it equals 8760 for the gas
thermoelectric power, the number of hours in a year. CDjt is the cost of implementing
the DSM program j starting in year t (106 RMB), γjt is the binary (0 or 1) determining
whether the DSM program j has been implemented. δjt is the occurrence probability of
different program j. CIit is the cost to consumers who interrupt power supplies during
period t (106 RMB ¥/MWh). ut is the amount of demand (MW) that goes unserved in
period t. CTt is the cost for the power transmission in period t (106 RMB ¥/MWh). QPt
is the quantity of power transferred (MWh). CCTt the carbon emission tax, RMB¥/m3.
QCit is the quantity of CO2 emissions from technology i in period t (m3). CWt is the cost
of water consumption (103 yuan/tonne). QWit is the quantity of water withdrawals from
technology i in period t (tonne).

Constraints:
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(1) Energy supply and demand balance:

∑
i

Git + ∑
j

DDejtγjt + ut + ∑
p

QPpt(1− LSpt) =
∧

DEMt (2)

Git = xit + Eitµit (3)

xit+1 =

{
xit, if ηit = 0
xit + Eit if ηit = 1

(4)

Git is the power generation during the period from technology i (MW). DDejt is the
decrease in demand because of the implementing of DSM program j (MW). LSpt is the
fraction of power lost during the electricity transmission process (%). Eit is the capacity
expansion ability of technology i in period t (MW). µit is the binary variable (0 or 1)
determining whether the capacity expansion process happens.

(2) Reserve margin constraint:

∑
i

Git + (1 + RM)∑
j

DDejtγjtδjt ≥ (1 + RM)
∧

DEMt (5)

RM is the capacity reserve margin which means the excess capacity over peak demand

required to meet the reliability need.
∧

DEMt is the power demand in period t forecasted by
the IOWA-AHP method.

(3) Capacity and energy constraints:

∑
i

Vit ≤ Volt (6)

I

∑
i=1

LitGit ≤
∧

DEMt (7)

Volt is the maximized visible supply volume of natural gas in Beijing.
(4) DSM constraints:

RM · DDejt < DDejtδjt ≤
I

∑
i=1

Git (8)

(5) CO2 emissions constraints:

∑
i

Git · RCit · (1− CMit) ≤ CLt (9)

RCit is the CO2 emissions rate by utility i in period t (ton/GWh). CMit is the CO2 emis-
sions mitigation efficiency in period t, CMit ∈ [0, 1]. CLt is the CO2 emissions limitation in
period t (ton).

(6) Water withdrawals constraints:

QWt = ∑
i

WWIit × Git × Lit (10)

0 < QWt ≤ TWRt (11)

WWIit is the water withdrawals intensity for utility i in period t (ton/GWh). TWRt
denotes the total water resource supply during the electricity production process in period
t (ton).
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2.2. Measuring the Fuel Price

The fuel price here is the natural gas. We assume that both of their price pF follow the
geometric Brownian motion [28]:

dpF = αF pFdt + χF pFdz (12)

where pF denotes the fuel prices; αF is the drift parameters; χF is the variance parameter;
and dz denotes the independent increments of the Wiener process.

dz = γt
√

dt (13)

The discrete approximation to Equation (1) is as follows:

pF(t + ∆t) = pF(t) exp(αF∆t + χF(∆t)1/2γt) (14)

where γt is a random variable, and γt ∼ N(0, 1), E(γi, γj) = 0, ∀i, j, i 6= j
In this study, parameters αF and χF are firstly set based on the publish references [29,30],

and on the basis of this value, the relative future values are calculated. If the value set is
too high or too low, the simulated future values will be outside a reasonable scope. Thus,
the parameter value should be adjusted until it reaches a reasonable scope. The reasonable
scope of the natural gas price is between 1 × 104 yuan/PJ~10 × 104 yuan/PJ.

The real option (RO) theory is introduced during the prediction process of the natural
gas price because it is highly efficient to help control the uncertainty factors [31]. The un-
certainty factors in this study include the electric power price and the natural gas price. In
the RO theory, there is some probability that the investor abandons the investment and the
investor compares the net present value between adjacent time t and t + 1. If the former is
larger than the latter, the investor does not execute the abandon option. However, if the
latter is larger than the former, then the investor does implement the abandon option. In
this study, we use the Bayesian Monte Carlo simulation (BMC) to calculate the expected
value of an abandon option.

The detailed procedures are as follows:

(1) Generate 15 paths of changes for each uncertain factor by simulating calculation.
(2) Compute the net present value of a project P(t) at the final observation date of a given

period (period t).

P(t) =
{

0, i f PV(t) ≤ I(t)
PV(t)− I(t), i f PV(t) > I(t)

(15)

where PV(t) is the present value, and I(t) is the investment cost of the CHP power
plants.

(3) Calculate the value of the project P(t− 1) at the stage of period t − 1,

P(t− 1) =
{

0, i f PV(t− 1) ≤ I(t)
PV(t)− I(t), i f PV(t− 1) > I(t)

(16)

(4) The discount rate of P(t) at stage of t − 1 is P(t) × (1 + r)−1, which is set as the
dependent variable, while P(t− 1) is set as the independent variable. Then, compute
the estimated value of P(t) through the stepwise regression method, and compare
the estimated value with P(t− 1), if the estimated value greater than P(t− 1), then
train the abandon optimization in stage t − 1, or it has to wait at stage t.

(5) Repeat the above comparison until the satisfied decision could be achieved.

2.3. The Electricity Demand Forecasting

This study introduces the IOWA-AHP method to predict the electricity demand in
the planning periods. Firstly, three models, including the fuzzy linear regression model,
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stepwise regression model, and grey system model, predict the electricity demand inde-
pendently and get three groups of predicted results; secondly, these results are integrated
with the IOWA-AHP method to predict the fourth group of electricity consumption results.
In this way, the uncertainty factor could be effectively controlled. The detailed algorithm
of the prediction process is from the Reference [21].

3. Case Study and Scenario Setting

In recent years, the government of Beijing tries the best to implement the energy
supply structure adjustment based on the reality of local power sources. The spatial
distribution of Beijing’s energy resource in different regions is shown in Figure 1. Beijing’s
energy supply structure adjustment strategy depends on three aspects: the first aspect is
self-adjustment based on the local power sources. On the one hand, the construction of
four gas thermoelectric centers was completed in recent years to displace the traditional
thermal power facilities for the urgent need of atmospheric environment in Beijing; on the
other hand, more renewable energy resource gradually becomes the effective supplement
of energy supply to further replace the traditional ways mainly depends on the coal-fired
power. The second aspect is that more electric power depends on importing from other
regions to guarantee the abundant energy demand in Beijing [32]. The final aspect is that,
as the intelligent development of the electric power system, the government of Beijing
advocates the application of demand-side management (DSM) to take advantage of the
existing facilities to improve the energy efficiency, such as the load controls, off-peak uses
of electricity, and so on. As Beijing, the capital city of China, is the typical city facing the
energy transition to achieve the carbon peak target by 2030, it was chosen as a case study.
The key economic and technique data are shown in Table 2.
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Table 2. The key economic and technique data.

Parameters Periods

t = 1 t = 2 t = 3 t = 4

The fixed cost of generation capacity (106 RMB ¥/GW) [33]
Cogeneration power 24.53 25.29 27.42 29.54

Solar power 47.36 45.52 42.74 38.53
Wind power 38.34 34.65 32.82 31.76

Geothermal power 32.46 31.71 29.43 25.36
The cost of power transmission (106 RMB ¥/GWh) [22]

0.85 0.94 1.12 1.25
The carbon emission tax (RMB¥/ton) [29]

16.2 20.4 28.6 35.4
The purchasing fee for the water resource (RMB/ton) [32]

17.7 19.7 24.5 28.4

This study mainly takes three key planning periods into consideration, including 2021,
2025, and 2030, under the policy background of the carbon peak target in 2030. Different
technologies coupled with the DSM are taken into account to meet both the electric power
supply target but also the environmental goals in Beijing, including the CO2 emissions
mitigation target and water conservation goals. In this study, the gradient CO2 emissions
mitigation strategies are set based on the official statement in the planning periods, which
can effectively help to achieve the CO2 emissions peak target and is shown in Table 3. The
key parameters of the gas price used in the prediction process is shown in Table 4.

Table 3. The CO2 emissions level in different planning periods [33].

Year The Baseline Carbon Emission Level

2021 2005′s level in Beijing Decrease by 45%
2025 2005′s level in Beijing Decrease by 55%
2030 2005′s level in Beijing Decrease by 65%

Table 4. Parameters and the descriptions during the gas price simulation.

Parameter Symbol Value Data Source

Natural gas drift rate αF 0.05 Zhu et al. [30]
Natural gas deviation rate χF 11.5%/year Zhao et al. [29]

Meanwhile, three different DSM scenarios are designed to cover different electricity
supply likelihoods. The DSM levels and corresponding cost to those who interrupt the
power supplies are shown in Table 3, which is set based on the References [25,34]. Given
that the occurrence probability of different DSM levels is different, according Reference [33],
the occurrence probability of three DSM levels δjt is defined in Table 5.

λ denotes the amount of power participated the DSM scheme; while
−
λ is the nonpar-

ticipated power. TEC denotes the total electricity consumption.
Seeing as Beijing is located in the typical semiarid region with drought-stressed water

resources, two possible water conservation policy scenarios are taken into account. As the
air cooling system is the water cooling technology with the least water consumption, it
has great potential to be widely applied in Beijing’s cogeneration power plants; therefore,
it was chosen as the main technique measures to save water consumption. The detailed
water consumption factor under each water policy scenario is based on the national water
intake standard: Water Quota Part I: Thermal Power (GB/T18916) [35], which is shown in
Table 6. The utilization hours information of the wind and solar power is shown in Table 7.
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Table 5. The DSM scenarios and corresponding cost.

Scenario
(j) DSM Level DSM Amount The Cost to Those Interrupting

Power Supplies
Probability

(δjt)

S1 Low
5% of the total electricity

consumption is interrupted
when peak load appears

10% higher than the price of the
industrial and commercial electricity. 0 ≤

−
λ−λ
TEC ≤ 5%

S2 Medium
10% of the total electricity

consumption is interrupted
when peak load appears

15% higher than the price of the
industrial and commercial electricity. 5% <

−
λ−λ
TEC ≤ 15%

S3 High
20% of the total electricity

consumption is interrupted
when peak load appears

20% higher than the price of the
industrial and commercial electricity. 15% <

−
λ−λ
TEC ≤ 30%

Table 6. The water consumption factor under three water policy scenarios.

Scenario The Proportion The Cooling form of
Different Technologies Unit Capacity ≤ 300 MW Unit Capacity > 300 MW

The baseline
100% The cycling cooling system 1.7 1.49

0% The air cooling system 0.39 0.31

The flexible
water policy

50% The cycling cooling system 1.7 1.49
50% The air cooling system 0.39 0.31

The strict
water policy

0% The cycling cooling system 1.7 1.49
100% The air cooling system 0.39 0.31

Table 7. The utilization hours for the wind and solar power in Beijing (hours) [36].

t = 1 t = 2 t = 3 t = 4

Wind power 1847 2079 2940 3675
Solar power 1059.25 1213.95 1536.27 2023.44

The mix of these scenarios will help to investigate the energy–water–carbon nexus
during the achievement of the 2030 carbon emissions peak path in Beijing.

4. Result and Discussion
4.1. The Uncertainty Simulation in Different Periods

(1) The fuel price simulation
Figure 2 shows the price variation of the natural gas from 2015~2030 in Beijing under

15 simulation scenarios. Through the BMC model, 15 possible paths of uncertainty factor
are simulated. As the life span of the GTC plants is more than 25 years, in this study, we
simulated the investment decision period from 2015 to 2030. It indicates that the natural
gas price shows an increasing trend, although the prediction price fluctuates dramatically
under many scenarios, especially after the year 2024, which means that uncertainty during
the prediction process makes it difficult to avoid the forecasting errors. To make the price
prediction P of natural gas available for the proposed model, the price values in each period

is multiplied by their occurrence probability Pi,
15
∑

i=1
pi = 1.

15
∑

i=1
P · Pi. under 15 scenarios is

the input gas price of the MILRP model.

(2) The power demand prediction
Figure 3 shows the prediction results of the electric power demand through the IOWA-

AHP method. It indicates that the electric power demand increases as time goes on. The
power demand of 2025 in Beijing is 276,254 GWh, which will increase by 57.92% on the
base of 2021, while the power demand of 2030 is 494,547 GWh, which will increase by
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182.71% on the base of 2021. The power demand prediction will be the input data of the
proposed MILRP model.
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Figure 2. The simulation result of the price of the natural gas.
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Figure 3. The prediction of the electric power demand from 2020 to 2030.

4.2. The Capacity Expansion and Imported Power

Figure 4 shows the optimized capacity expansion in Beijing in different periods under
different scenarios. It indicates that the capacity expansion for each technology increases as
time goes on, which may result from the increase in the electric power demand in Beijing.
However, the capacity expansion performances for different technologies under different
scenarios are different. It shows that the capacity expansion of the wind and solar power
increases when the water policy is included compared with the scenario only concerning
the CO2 limit; the strict water policy calls for more capacity expansion than that under
the flexible scenario. Meanwhile, as time goes on, the capacity expansion under the same
scenario increases, which may result from the increase in the electric power demand. For
example, in 2025, the capacity expansion of solar power is 17 MW under the CO2 limit
scenario, while it increases by 11.5% (2 MW) under the CO2 and flexible water policy and
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by 32.4% (8 MW) under the strict water scenario. Although the capacity expansion of
cogeneration power also increases as time goes on, the capacity expansion need under
the CO2 limit scenario is larger than that under the scenarios concerning the water policy,
which means that when the water consumption constraints are taken into consideration,
the capacity expansion will be replaced by the other three power technologies in Beijing.
The capacity expansion of DSM also shows the increasing trend when the time goes on.
Meanwhile, the performance of the DSM is just the same as that of the wind and solar
power: that is, the capacity expansion under the CO2 limit is the least while it is the most
under the CO2 and strict water policy scenario. The reason could be attributed to the
fact that when the water constraints are taken into consideration, more cooling facilities,
which may activate the DSM scheme such as the air-cooling units, are put into utilization,
meaning more interruption loads appear. Meanwhile, more imported power is needed in
Beijing to make up for the power shortage because of the involvement of the water policy;
for example, 58.24% (74.25%) more power is required to import under the CO2 and strict
water scenario than that under the only CO2 limit scenario in 2025 (2030).
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4.3. The Optimized Energy–Water–CO2 Relationship

The optimized electricity supply from each electric power technology in each period
under three DSM levels is presented in Figure 5. The power supply level under different
CO2 emissions and water policy scenario is also compared in Figure 5. It indicates that
the imported power shows an increasing trend as the DSM level increases, while the
co-generation power shows the opposite trend in the same condition. Meanwhile, the in-
volvement of the water policy constraints further promotes the proportion of the imported
power and reduces the proportion of the cogeneration power in the power supply system
in Beijing. The wind power, solar power, and geothermal power remain in a relatively
steady level compared with the cogeneration power and the imported power, although
the quantity of the power from these three technologies has increased when the DSM level
and the environmental constraints become more stringent. However, as the proportion of
these technologies in the power structure of Beijing is still quite limited, the variation of the
proportion of these technologies is not apparent. For example, in t = 2, the proportion of the
cogeneration is 50.62% (243.03 × 102 GWh) in the low DSM level under the CO2 limit sce-
nario, while the imported power is 28.75% (141.24× 102 GWh). However, the proportion of
the cogeneration decreases to 39.63% (286.29 × 102 GWh) in the medium DSM level under
the CO2 limit scenario, while the imported power increases to 41.44% (297.51 × 102 GWh).
When the strict water policy scenario is taken into consideration, the proportion of the
cogeneration power further decreases to 36.20% (27.18%) in the low (medium) DSM level
in t = 2, while the proportion of the imported power increases to 36.55%. The solar power
increases from 45.89 × 102 GWh in the low DSM level to 66.82 × 102 GWh in the high DSM
level in period t = 2 under the CO2 limit scenario. The wind and geothermal power is the
same increasing trend.
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The energy–water–CO2 nexus is presented in Figure 6. The total energy supply, the
water consumption, and the CO2 emissions under the medium DSM level are presented as
column, scatter line, and the pie charts, respectively. The optimized results indicate that
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the total energy demand in Beijing shows an increasing trend not only as the DSM level
increase but also as the environmental constraints become tougher. The reason should
be attributed to that: on the one hand, the power demand increases to meet the social
and the economic development in Beijing, and high DSM level means more disruptions
on the normal power supply; therefore, more power is essential to maintain the steady
operation of the power system; on the other hand, the gradually stricter environmental
constraints may result in more clean electric power schemes, such as the coal-to-electricity
scheme. which is proposed to provide the heat supply in the winter of Beijing instead of the
traditional heat supply by the combustion of the bulk coal in the rural areas. Meanwhile,
both the air and water constraints require less electricity generation in the domestic areas
in Beijing, but more imported power from other regions. As the proportion of the imported
power increase in the power structure in Beijing’s electric power system as time goes on,
the stricter environmental constraints lead to more power demand in Beijing.

The CO2 emissions show the downward trend as the DSM levels increase and the
environmental constraints become stricter. For example, the quantity of CO2 emissions
in t = 4 is 19.46 × 106 (14.08 × 106) tons in the low (high) DSM level under the CO2 limit
scenario, while it is 10.78 × 106 (9.05 × 106) tons in the low (high) DSM level under the
CO2 and strict water policy scenario. The CO2 emissions reduction effect is mainly from
the decrease in the cogeneration power, and the increase in the renewable and the imported
power in the power structure, as the increasing in the DSM levels just further improve
the power supply level, which is higher DSM, may result in higher power demand levels.
However, it does not change the power structure variation trend; therefore, higher DSM
levels also have the effects of helping decrease the CO2 emissions. As stricter environmental
constraints further help to promote the proportion of the renewable power technologies,
the CO2 emissions shows the decreasing trend when the water policy is considered.

The proportion of the water consumption under different DSM levels is relatively
close to each other in each time period, although the gradually stricter environmental
constraints lead to the decrease in the total water consumption when the water constraints
become stricter.
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4.4. The System Cost

The system cost under each period in three scenarios is shown in Table 8. It indi-
cates that the system cost shows an increasing trend as the time goes on, which means
that higher CO2 emissions reduction level results in higher system cost as time goes on.
Meanwhile, when it is under the same period, the gradually stricter water policy also leads
to the increase in the system cost. The reason can be attributed to the fact that stricter
environmental constrains, regardless of the CO2 reduction level or the stricter water policy,
all require the construction and capacity expansion of more renewable and the imported
power, which may need more cost than the traditional cogeneration technology. Meanwhile,
the application of the air cooling technology and DSM units may also be the main factor to
increase the system. The results indicate that the achievement of the energy–water–CO2
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synergetic optimization (electric power adjustment, the CO2 emissions reduction target,
and the water saving goal) will be at the expense of high system cost.

Table 8. The system cost under different environmental scenarios.

Time
Periods

Scenarios (1013 RMB/1012 $)

The CO2 Limit
(The Baseline in the Water Policy) The Flexible Water Policy The Strict Water Policy

t = 1 2.84/4.43 3.97/6.20 4.15/6.48
t = 2 4.92/7.69 5.27/8.23 5.84/9.12
t = 3 7.15/11.17 7.66/11.97 8.24/12.88
t = 4 8.13/12.70 8.25/12.89 9.46/14.78

4.5. Discussion

The MILRP model is proposed to determine the electric power supply path in Beijing,
concerning the energy–water–CO2 nexus collaborative optimization. The disruption from
the demand side and the fuel price is mainly considered as the uncertainty factors, which
may affect the final decision making in Beijing’s energy system. Although the MILRP model
can provide the optimized solution to the problem and help achieve the minimized system
cost under each scenario, the model also has some limitations which should be ignored.
Firstly, compared with the multiobjective or multilevel models, although the MILRP model
has the advantages such as its high efficiency in achieving the optimized solution and
effectively decreasing the calculation complexity, its optimized result may be one-sided
because it is only constrained by the single objective instead of multiple objectives, and
it may have difficulties in assessing the impact from other targets. Secondly, the model
depends heavily on the input data accuracy as its algorithm does not have the capacity
to verify or train the input data just as some intelligence methods. Therefore, the input
data may seriously affect the output results, which may further bring new uncertainty in
the decision making process. In this way, selecting the reasonable model according to the
practical planning needs is fairly important and should also be the significant step during
the optimization process.

5. Conclusions

In this study, a mixed-integer linear resource planning (MILRP) model is proposed for
the optimization of Beijing’s power supply, concerning the synergic promotion of energy–
environmental relationship (the energy–water–CO2 nexus) and multiple uncertainties
during the fuel price and the power demand prediction process. In the MILRP model,
three periods from 2021(t = 2) to 2030(t = 4) are taken into consideration. The situation
in 2020(t = 1) is set as the baseline. The mixed-linear programming model can effectively
help to obtain the capacity expansion scheme of each power technology under multiple
energy–environmental scenarios, it is applied into the Beijing city to help optimize the
electric power supply and investigate the feasible energy–water–CO2 synergic relationship.

The results indicate that the power demand shows an apparent increasing trend as the
time goes on. The increasing of the DSM level and the stricter environmental constraints
further lead to the change of the power structure in Beijing’s power supply system: that is,
the proportion of the cogeneration technology decreases, and it is replaced by the three
renewable power technologies and the imported power from other regions. The average
reduction rate of the cogeneration technology is 28.93%, 26.35%, and 19.14% in each period
under the low, medium, and high DSM level when it is under the CO2 limit scenario,
when the water policy constraints are involved. Although the average reduction rate
of the cogeneration technology almost remains the same, the installed capacity and the
expansion has the similar decreasing trend. Compared with three renewable technology,
the proportion of the imported power has a relatively sharp increase to make up the power
shortage from the decreasing the cogeneration in each period, which means that to achieve
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the coordinated development of the energy–water–emissions relationship, imported power
is an advocated and valid power source.

The optimized energy–water–CO2 relationship under multiple scenarios shows that
the CO2 and water policy constraints further help lead the power structure in Beijing
to a cleaner direction, for it increases the proportion of the renewable power and the
imported power but decreases the cogeneration power. However, the strict environmental
constraints also lead to a high system cost. Given that Beijing is the capital city with
specifically important political and economic status, guaranteeing abundant power supply
should be the primary target. In this way, some suggestions based on the optimized results
are listed: (1) expanding the proportion of the imported power in the future is essential for
Beijing because it is the cleanest way to safeguard Beijing’s power supply. (2) Renewable
power, especially the solar power should have expanding utilization because of its flexibility
and the gradually decreasing fixed cost, coupled with the wind power and DSM facilities,
they are effective ways to help achieve the carbon emissions peak target of Beijing in 2030.
(3) The price of the imported power is suggested to be higher than that produced from the
power units of Beijing so that it could be an effective economic compensation to regions
that export power to Beijing but contaminate their local environment during the process of
producing the exporting power.
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