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Abstract: Recent studies suggest that decomposing a series of electricity spot prices into a trend-
seasonal and a stochastic component, modeling them independently, and then combining their
forecasts can yield more accurate predictions than an approach in which the same parsimonious
regression or neural network-based model is calibrated to the prices themselves. Here, we show that
significant accuracy gains can also be achieved in the case of parameter-rich models estimated via the
least absolute shrinkage and selection operator (LASSO). Moreover, we provide insights as to the order of
applying seasonal decomposition and variance stabilizing transformations before model calibration,
and propose two well-performing forecast averaging schemes that are based on different approaches
for modeling the long-term seasonal component.

Keywords: electricity price forecasting; day-ahead market; LASSO; long-term seasonal component;
variance stabilizing transformation; forecast averaging

1. Introduction

The trend-seasonal pattern of electricity spot prices, which is also known as the long-
term seasonal component (LTSC), has always attracted the attention of energy analysts [1–7].
This is especially so when modeling the average daily prices in the medium- or the long-
term. On the other hand, the short-term electricity price forecasting (EPF) literature has
generally ignored it and considered models with only intra-day and intra-week periodici-
ties, as the LTSC was believed to add unnecessary complexity. Nowotarski and Weron [8]
only recently introduced the seasonal component (SC) approach and the seasonal component
autoregressive (SCAR) models that decompose the electricity spot price series into a trend-
seasonal and stochastic component, predict them independently, and then combine their
day-ahead forecasts. The seasonal component approach works well for autoregressive
(AR) [7,9] as well as non-linear autoregressive (NARX) neural network-type models [10],
in the context of point and probabilistic predictions [11]. However, the studies that have
been published to date may be criticized for only utilizing parsimonious structures with a
relatively small number of explanatory variables or features. Additionally, these are known
to underperform when compared to parameter-rich models with hundreds of regressors
that are estimated via the least absolute shrinkage and selection operator (LASSO) [12–16]. To
the best of our knowledge, only two studies have treated the LTSC in the context of LASSO-
estimated models [17,18]. However, no comparisons have been made between different
variants of the LTSC or with analogous models that do not utilize seasonal decomposition.
An open question remains as to whether the SC approach is also beneficial in the case of
parameter-rich LASSO-estimated models and to what extent.

To this end, we perform an extensive empirical study that involves:
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• Six-year-long electricity price and fundamental variables time series from two distinct
power markets—Nord Pool and PJM Interconnection, providing two three-year-long
test periods of hourly-resolution.

• Two commonly used approaches for modeling the LTSC of electricity price series—
one based on wavelet smoothing [2–5,7] and one on the Hodrick-Prescott (HP)
filter [4,10,19,20].

• A parameter-rich, LASSO-estimated autoregressive model with nearly 130 regressors,
after [21] called the LEAR model.

• The area hyperbolic sine (asinh) variance stabilizing transformation (VST) [22,23], which has
been found to perform well when negative or close to zero electricity prices are ana-
lyzed [15,24–26].

• Two methods of combining point forecasts—one that selects the best combination of
a pool of models (dubbed the Best Combination, BC) and one inspired by Bayesian
Model Averaging (BMA) [27]. The latter weighs combinations by the inverse (of the) root
mean squared error (iRMSE; similarly as in [28–30]), instead of the posterior probabilities
that were originally proposed in [27]. We refer to it as BMA for notational convenience.

• Model validation in terms of the robust relative mean absolute errors (rMAE) and relative
root mean squared errors (rRMSE) [21,31], and the Giacomini and White [32] test for
significant differences in conditional predictive ability (CPA).

Because we utilize both seasonal decomposition (via the HP or the wavelet filter)
and variance stabilization, a question arises regarding the order in which they should
be applied. In some studies, the VST comes first [2,4,8–11], whereas in others—seasonal
decomposition [18]. Not having found clear recommendations in the literature, we compare
both approaches.

Our contribution is threefold. Firstly, we show that significant—as measured by
the CPA test [32]—accuracy gains can be achieved by applying the seasonal component
approach [8] not only to parsimonious autoregressive [7,9] or neural network [10] structures,
but also to LASSO-estimated AR (LEAR) models. Provided that the performance of
the latter is nearly on par with that of Deep Neural Networks (DNN) [21], this finding
provides valuable insights in constructing state-of-the-art models, which do not require
hyperparameter optimization and offer orders of magnitude faster execution than DNNs.
Secondly, we provide insights as to the order of applying seasonal decomposition and
variance stabilizing transformations before model calibration. Thirdly, we propose two
well-performing forecast averaging schemes that are based on different approaches to
modeling the LTSC.

The remainder of the paper is structured, as follows. In Section 2, we briefly present
the datasets. Subsequently, in Section 3, we describe the methodology: the forecasting
framework, the asinh transformation, seasonal decomposition, a parsimonious autoregres-
sive model used as a benchmark, the LEAR model, and the two combination schemes.
In Section 4, we measure the forecast accuracy in terms of rMAE and rRMSE, evaluate
the conditional predictive ability, and comment on the computational complexity of the
proposed methods. Finally, in Section 5, we wrap up the results and provide conclusions.

2. Datasets

We evaluate the considered models using datasets from two major power markets.
Nord Pool is the first one, a renewable energy source dominated market in the Northern
Europe, exhibiting long-term, weather-dependent fluctuations in the price levels. The
second is PJM Interconnection, the world’s largest competitive wholesale electricity market
covering Northeastern United States, with a coal–gas–nuclear generation mix.

The Nord Pool (NP) dataset, as depicted in Figure 1, comprises three time series
at hourly resolution: day-ahead market system prices in EUR/MWh, day-ahead sys-
tem load forecasts (called consumption prognosis) for four Nordic countries (Denmark,
Finland, Norway, and Sweden), and day-ahead wind power generation forecasts for Den-
mark. The data are freely available on the Nord Pool website www.nordpoolspot.com

www.nordpoolspot.com


Energies 2021, 14, 3249 3 of 17

(accessed on 15 January 2021) The PJM dataset, as depicted in Figure 2, also comprises
three time series at an hourly resolution: day-ahead market prices in the Commonwealth
Edison (COMED; located in the state of Illinois) zone in USD/MWh, and two day-ahead
load forecasts series—the system load and the COMED zonal load. The data are freely
available on the PJM website www.pjm.com (accessed on 18 January 2021). Both of the
datasets span the same six-year-long time period—from 1 January 2013 to 24 December
2018 (exactly 2184 = 6× 364 days or 52,416 = 6× 364× 24 h). It is noteworthy that, while
the NP price is more volatile in the three-year-long evaluation window than in the model
selection window, the PJM price exhibits the opposite behavior, see Table 1 with summary
statistics for the analyzed time series. This will allow us to compare the models under
different market conditions. Additionally, it is noteworthy that the same datasets were
used in [21].
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Figure 1. Day-ahead system prices in the Nord Pool electricity market (NP; top) and two forward looking series: day-ahead
system load forecasts (middle) and day-ahead wind power generation forecasts for Denmark (bottom). The vertical dashed
lines indicate the beginnings of the model selection (31 December 2013) and model evaluation (29 December 2015) windows.

www.pjm.com
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Table 1. The summary statistics for the considered time series: the minimum value, the 1st quartile (Q1), the 2nd quartile
(Q2; i.e., the median), the mean, the 3rd quartile (Q3), the maximum value, and the standard deviation. For each series,
three rows report values in the initial calibration window (top), the model selection window (middle), and the model
evaluation window (bottom).

Time Series Window Min. Q1 Q2 Mean Q3 Max. Std.

Nord Pool market

Day-ahead price
initial 1.38 34.30 37.45 38.13 40.90 109.55 6.94
selection 1.14 21.38 26.27 25.34 30.61 69.94 8.01
evaluation 2.17 25.96 30.28 33.27 39.92 199.97 11.17

System load forecast
initial 26.22 36.55 42.63 43.64 50.22 69.11 9.00
selection 26.37 36.95 42.23 43.13 49.02 67.18 8.07
evaluation 26.87 37.38 43.19 44.40 50.98 70.58 8.94

Wind power forecast
initial 0.03 0.43 0.92 1.24 1.87 4.20 1.00
selection 0.02 0.55 1.25 1.53 2.38 4.45 1.14
evaluation 0.00 0.59 1.26 1.55 2.31 5.05 1.17

PJM market

Day-ahead price
initial −3.24 25.89 30.64 32.38 36.39 302.14 13.91
selection −6.98 23.80 29.42 34.13 37.56 839.30 28.80
evaluation −3.62 20.80 25.51 27.38 32.29 184.48 10.79

System load forecast
initial 57.88 80.10 89.85 91.00 100.30 157.16 15.88
selection 58.24 79.55 89.41 91.44 102.56 149.93 16.26
evaluation 58.35 79.42 88.39 90.72 99.98 153.31 16.29

Zonal load forecast
initial 7.46 10.00 11.37 11.57 12.67 22.24 2.26
selection 7.25 9.80 11.17 11.33 12.52 20.30 2.08
evaluation 7.35 9.73 11.03 11.33 12.34 21.27 2.25
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Figure 2. Day-ahead market prices in the Commonwealth Edison zone (COMED; top) and two forward looking series: the
day-ahead system (middle) and COMED zone (bottom) load forecasts. The vertical dashed lines indicate the beginnings of
the model selection (31 December 2013) and model evaluation (29 December 2015) windows.
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3. Methodology

We implement the multivariate modeling framework, as defined in [15], in which
the predictions are separately performed for each hour. To represent our variables, we
use ‘day × hour’ matrix-like structures. The day-ahead forecasts p̂d,h|d−1 ≡ p̂d,h of the
electricity price pd,h for day d and hour h are computed on day d − 1 using all of the
information known up to that point in time. We utilize a rolling window scheme, i.e., our
models are calibrated to data in a 364-day-long window and, once the 24 forecasts for all
hours of the next day are made, the window is rolled forward 24 h. Subsequently, the
models are calibrated again, and forecasts are computed for the next 24 h. This procedure
continues until the predictions for the last day in the sample are made.

Our models involve day-ahead electricity prices and two exogenous variables, i.e., the
system load and wind power forecasts for NP and system and zonal load forecasts for PJM,
see Section 2 and Figures 1 and 2. All three time series undergo a variance stabilizing trans-
formation (VST; see Section 3.1, below) and seasonal decomposition (see Section 3.2, below)
prior to model calibration; we consider two orders of applying these transformations—VST
first, then seasonal decomposition, and vice versa. The only exceptions are the benchmark
models for which seasonal decomposition is not performed. Although we use a multivari-
ate modelling framework, both of the transformations are carried out in the calibration
window for the original time series at an hourly resolution, just like in [8]. Moreover,
because the forecasts of the exogenous variables are known one day in advance, in their
case seasonal decomposition and variance stabilization are applied to a window that is one
day longer, i.e., which covers 365 days and includes the day for which the price forecasts
are made.

When it comes to forecasting, like in [8,10], the LTSC of the price time series is as-
sumed to persist into the future (see Section 3.2, below), whereas the stochastic component
is predicted based on two models with an autoregressive structure. The first one is a
parsimonious ordinary least squares (OLS) estimated model, which wsa built on some prior
knowledge of experts (see Section 3.3 below), whereas the second one is a parameter-rich
LASSO-estimated model (see Section 3.4, below).

Finally, in Section 3.5, we propose two methods of averaging/selecting forecasts.
We construct our combined predictions that are based on performance in a two-year-
long model selection (or validation) window and compare them—like all the considered
models—in the three-year-long evaluation (or test) window, see Figures 1 and 2.

3.1. Data Transformation

A number of transformations can be used to reduce the variation in data and allow
handling close to zero or negative electricity prices. Here, following [15,18,22], we resort to
the area hyperbolic sine (asinh), which is a simple, but well performing, variance stabilizing
transformation (VST). Before applying it, we normalize each series xd,h, i.e., prices or
load/wind forecasts, using its median Medτ and median absolute deviation MADτ in the
calibration window τ:

yd,h =
1

z0.75

xd,h −Medτ

MADτ
, (1)

where z0.75 is the 75th percentile of the standard normal distribution and it ensures asymp-
totically normal consistency to the standard deviation. Such a normalization is more robust
to outliers than the one based on the mean and standard deviation and, thus, it is preferred
for spiky data [23]. Having normalized our variables, we apply the VST:

zd,h = asinh(yd,h) = log
(

yd,h +
√

y2
d,h + 1

)
. (2)

The forecasts are obtained for models that were calibrated to the VST-transformed
series, after applying the inverse transformation:
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xd,h =
MADτ

z0.75
sinh(zd,h) + Medτ , (3)

where sinh is the hyperbolic sine. Because the latter is a nonlinear function, given random
variable X, Esinh(X) does not have to equal sinh(EX). Hence, from the probabilistic point
of view, Equation (3) is not the correct inverse transformation. Although this problem
is generally ignored in the literature, Narajewski and Ziel [33] argue that using the cor-
rect transformation yields better forecasts. On the other hand, when the forecasts are
averaged, the differences between the two approaches seem to vanish [34]. Because we
eventually consider forecast combinations, to keep it simple, we use Equation (3) as the
inverse transformation.

3.2. Seasonal Decomposition

Seasonal decomposition is a term that generally refers to representing a signal as a
sum or product of a periodic component and the remaining variability (also known as
the stochastic component). Recent studies have shown that the seasonal decomposition
of day-ahead prices and separate treatment of the seasonal and stochastic components
can result in more accurate forecasts being generated by OLS-estimated [10,11], as well
as LASSO-estimated [18], models. The approach that was proposed by Nowotarski and
Weron [8] relies on an additive decomposition that splits the original time series, Yt, into
the long-term trend-seasonal component (LTSC), Tt, and the remaining stochastic component
with short-term periodicity, Xt:

Yt = Tt + Xt. (4)

In our study, depending on the order of applying seasonal decomposition and the vari-
ance stabilizing transformation, Yt may denote asinh-transformed or raw data. In the latter
case, the VST is only applied to Xt. Both of the components are modeled independently
and their predictions are combined to yield price forecasts. Like in [8–11], we consider
persistent forecasts, i.e., assume that the last 24 hourly observations of the LTSC will repeat
the next day:

T̂d∗+1,h = Td∗ ,h, (5)

where d∗ is the last day in the calibration window and the single and double time indexes
satisfy t = 24d + h.

We consider two well-performing methods of extracting and modeling the LTSC—
one that is based on wavelet smoothing [2–5,7] and one on the Hodrick–Prescott (HP)
filter [4,10,19,20]. In wavelet smoothing [1,35], the original time series is decomposed using
the discrete wavelet transform into a sum of an approximation series capturing the general
trend, Sk, and a number of detail series, Dk, representing higher-frequency components:
Sk + Dk + Dk−1 + . . . + D1, where k is the smoothing level. The LTSC is then approximated
by Sk. We consider the Daubechies family of wavelets, which is frequently used in EPF
studies [8–11,36–39]. More precisely, we utilize Daubechies wavelets of order 4 (that are
denoted by ‘db4’), and the smoothing level k ranges from 6 to 14. Readers are directed to
the left panels in Figure 3 for an illustration.

While wavelet smoothing removes layers of details, D1, D2, etc., the Hodrick–Prescott [40]
filter simply returns Tt, which minimizes squared deviations from Yt (first term) and
squared fluctuations of the smoothed series itself (the second term):

min
Tt

{
τ

∑
t=t0

(Yt − Tt)
2 + λ

τ−1

∑
t=t0+1

[
(Tt+1 − Tt)− (Tt − Tt−1)

]2
}

, (6)

where t0 and τ are, respectively, the beginning and end of the calibration window in the
single time index notation, and λ is the smoothing parameter. Here, we consider nine
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values of the latter: λ = 10k with k = 5, 6, . . . , 13. The larger the λ, the smoother the
resulting series, see the right panels shown in Figure 3.
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Figure 3. Illustration of the long-term trend-seasonal component (LTSC) based on wavelets S6, S9, and S14 (left column)
and HP filters with λ = 105, 109, and 1013 (right column) fitted to Nord Pool prices in the initial calibration window,
see Figure 1. Only the last eight weeks are displayed.

3.3. The OLS-Estimated Benchmark

As a benchmark, we consider the well-performing expertDoW,nl model that was pro-
posed in [15], which was extended to include two exogenous variables. We denote it by
ARX to reflect its autoregressive structure with exogenous variables. Within this model,
the transformed price on day d and hour h is given by:

Xd,h = βh,1Xd−1,h + βh,2Xd−2,h + βh,3Xd−7,h︸ ︷︷ ︸
autoregressive effects

+ βh,4Xd−1,min + βh,5Xd−1,max︸ ︷︷ ︸
non-linear effects

+ βh,6Xd−1,24︸ ︷︷ ︸
midnight value

+ βh,7C1,d,h + βh,8C2,d,h︸ ︷︷ ︸
exogenous variables

+
7

∑
i=1

βh,8+iDi,d︸ ︷︷ ︸
weekday dummies

+εd,h,
(7)

where Xd−1,min and Xd−1,max are the previous day’s minimum and maximum observations,
Xd−1,24 is the previous day’s midnight value, i.e., the last known observation in the day-
ahead market, C1,d,h and C2,d,h are two exogenous variables (here, day-ahead forecasts of
price drivers that are relevant for a given dataset, see Section 2), D1,d, . . . , D7,d are weekday
dummies, and εd,h is the noise term. The parameters of the model are estimated using OLS,
independently for each hour.



Energies 2021, 14, 3249 8 of 17

3.4. The LEAR Model

The structure of the main predictive model that is considered in this study is a natural
extension of Equation (7), which includes all 24 hourly observations for the considered
three days, i.e., yesterday, two days ago, and a week ago, and predictions of the exogenous
variables for all 24 h of the day:

Xd,h =
24

∑
i=1

(βh,iXd−1,i + βh,24+iXd−2,i + βh,48+iXd−7,i) + βh,73Xd−1,min + βh,74Xd−1,max

+
24

∑
i=1

(βh,74+iC1,d,i + βh,98+iC2,d,i) +
7

∑
i=1

βh,122+iDi,d + εd,h.

(8)

We estimate the 129 regressors via the least absolute shrinkage and selection operator
(LASSO) [41]:

β̂h = arg min
β

(
RSS + α

129

∑
i=1

βh,i

)
, (9)

where RSS is the residual sum of squares and α ≥ 0 is a tuning parameter. For α = 0, we get
the standard OLS estimator, for large values of α, all coefficients become zeros, while, for
intermediate α’s, the LASSO shrinks some of them to zero and, thus, performs variable
selection. There are several techniques for optimizing the tuning parameter [42]. Here, we
use cross-validation with seven folds since the number of observations in the calibration
window is divisible by 7. Following [21], we refer to this LASSO-estimated autoregressive
model as the LEAR model, although the LEAR model that is defined in [21] is a richer
structure (it includes nearly 250 regressors, most notably lagged fundamental variables).

3.5. Forecast Averaging Schemes

The best-performing seasonal decomposition is not known in advance. We utilize
forecast averaging to address this problem [28–30]. We generate a pool of forecasts from
a single model (here, ARX or LEAR) calibrated to data decomposed with different filters
(either wavelet- or HP-based) and then combine them into a single value, as suggested
in [8]. We consider two methods of combining point forecasts—one that selects the best
combination of a pool of models and one that is inspired by Bayesian Model Averaging [27].

Moreover, because our results (see Section 4) do not provide a clear indication for the
optimal order of applying transformations—seasonal decomposition first and variance
stabilization second, i.e., VST[SD(×)], or variance stabilization first and seasonal decompo-
sition second, i.e., and SD[VST(×)]—we also consider combining the forecasts from both
approaches. Overall, the combined predictions are constructed from individual forecasts:
either 18 wavelet-based (nine smoothing levels and two orders of applying transformations)
or 18 HP filter-based (nine values of λ and two orders of applying transformations).

3.5.1. Best Combination

The simpler averaging scheme selects the best performing combination of a pool
of models. Hence, we refer to it as the Best Combination and denote it by BC. Overall,
given 18 individual forecasts (→ columns in the left rectangle in Figure 4), there are 218 − 1
possible combinations (→ rows in the same rectangle). The first combination is just the
forecast for the first LTSC, the second is the forecast for the second LTSC, . . . , the 19th is
the combination of forecasts for the first and second LTSCs, the 20th is the combination of
forecasts for the first and third LTSCs, . . . , and the last is the combination of forecasts for
all of the LTSCs.

In each row, the predictions are averaged using the arithmetic mean. Subsequently, in
order to choose the best-performing combination, we calculate the root mean squared error
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(RMSE) for all considered combinations of forecasts in the model selection window (i.e.,
the two-year period directly preceding the three-year test period, see Figures 1 and 2):

RMSE =

√√√√ 1
728× 24

1092

∑
d=365

24

∑
h=1

(pd,h − p̂c
d,h)

2, (10)

where p̂c
d,h is one of the 218 − 1 combined forecasts and pd,h is the actual price for day

d and hour h. We choose the combination that returns the lowest RMSE, as seen in the
green square in Figure 4. This combination is eventually evaluated in the model evaluation
window (i.e., the three-year test period) and compared to other combined and individual
models.

In Table 2, we present the five best-preforming combinations in the model selection
window that was obtained for both datasets and the LEAR model with wavelet-based
filtering. Squares indicate individual predictions that are averaged in a given combination.
For instance, for the NP dataset, the best combination is composed of forecasts for three
LTSCs that were obtained by first applying seasonal decomposition, and then the VST:
S8, S10, and S13, and one LTSC being obtained by first applying the VST, then seasonal
decomposition: S10. The RMSE of this combination in the model selection window is
2.2984, being nearly the same as that of the second best combination. The last row in each
part of the table represents averaging over all individual forecasts; for NP, the RMSE of
2.3485 is ca. 2% higher than the best-performing combination.

Forecasts
18

. . .

. . .

218-1
mean

best BC forecast

BMA forecast

iR
M

SE
-w

ei
gh

te
d

Figure 4. An illustration of the BC and BMA-type averaging schemes. For both approaches, all possible combinations
(218 − 1 rows in the left rectangle) of individual forecasts for the different variants of the LTSC (2× 9 = 18 columns
representing two orders of applying transformations, VST[SD(×)] and SD[VST(×)], and nine wavelet levels or nine HP
filter’s λs; see also Table 2) are generated. Subsequently, the predictions of all models for a given combination are averaged
using the arithmetic mean and either the best-performing combination in terms of RMSE in the model selection window is
selected (→ BC) or all combined forecasts are iRMSE-weighted (→ BMA).
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Table 2. Root mean squared errors (RMSE) and their inverse values (iRMSE) calculated in the two-year model selection
window (see Figures 1 and 2) for the five best-performing combined forecasts obtained from the LEAR models with
wavelet-based filtering. Squares indicate individual forecasts that are averaged in a given combination. For comparison, the
last row represents averaging over all individual forecasts. Individual models where seasonal decomposition is executed
first, and then the VST is applied, are labeled by VST[SD(×)], whereas models with the opposite order are labeled by
SD[VST(×)].

Nord Pool market

VST[SD(×)] SD[VST(×)]

S6 S7 S8 S9 S10 S11 S12 S13 S14 S6 S7 S8 S9 S10 S11 S12 S13 S14 RMSE iRMSE
1 � � � � 2.2984 0.4351
2 � � � 2.2984 0.4351
3 � � � 2.2985 0.4351
4 � � � � 2.2991 0.4350
5 � � � � 2.3002 0.4347

� � � � � � � � � � � � � � � � � � 2.3485 0.4258

PJM market

VST[SD(×)] SD[VST(×)]

S6 S7 S8 S9 S10 S11 S12 S13 S14 S6 S7 S8 S9 S10 S11 S12 S13 S14 RMSE iRMSE
1 � � � 19.0596 0.0525
2 � � � 19.1281 0.0523
3 � � � 19.1423 0.0522
4 � � � 19.1633 0.0522
5 � � � � � 19.2004 0.0521

� � � � � � � � � � � � � � � � � � 20.4995 0.0488

3.5.2. BMA-Type Averaging

The more complex averaging scheme, instead of selecting one forecast combination
out of 218 − 1 possibilities, weighs all of the combinations:

p̂BMA
d,h =

218−1

∑
i=1

wi p̂
c,i
d,h, (11)

where p̂c,i
d,h is the ith of the 218 − 1 combined forecasts. The weights are computed based on

past performance:

wi =
iRMSEi

∑218−1
i=1 iRMSEi

, (12)

where iRMSEi is the inverse of the root mean squared error of the ith combination in
Equation (10), see Figure 4. In the last column of Table 2, we report iRMSE values for the
five best-preforming combinations that were obtained for both datasets and the LEAR
model with wavelet-based filtering. As can be seen, because of the small differences in
RMSE values, the weights are nearly identical for the top performing combinations and
very similar to the weight for the average across all individual forecasts.

This idea is similar in spirit to Bayesian Model Averaging [27], which weighs combi-
nations by posterior probabilities. The latter has not performed very well in an extensive
EPF study [30], thus inspiring our idea to replace posterior probabilities by iRMSE weights,
similarly to what was done in [28,29]. Although our approach is only inspired by Bayesian
Model Averaging, for simplicity of notation, we denote it by BMA.

4. Results
4.1. Forecast Evaluation

Forecast accuracy is assessed in the three-year or 3× 364 = 1092-day model evaluation
window, using two error measures. Following the recommendations put forward in [21],
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both are relative metrics. This allows us to compare the model performance across different
datasets. The relative mean absolute error (rMAE) and the relative root mean squared error
(rRMSE) are defined as:

rMAE =
∑2184

d=1093 ∑24
h=1
∣∣pd,h − p̂d,h

∣∣
∑2184

d=1093 ∑24
h=1

∣∣∣pd,h − p̂naive
d,h

∣∣∣ , rRMSE =

√
∑2184

d=1093 ∑24
h=1(pd,h − p̂d,h)

2√
∑2184

d=1093 ∑24
h=1

(
pd,h − p̂naive

d,h

)2
, (13)

where pd,h denotes the actual (observed) price for day d and hour h, p̂d,h is the corre-
sponding prediction that is obtained using the model under the evaluation, and p̂naive

d,h is a
similar-day prediction [43]:

p̂naive
d,h =

{
pd−7,h for Monday, Saturday, and Sunday,
pd−1,h otherwise.

(14)

Figures 5 and 6 present the results for the individual and combined ARX and LEAR
models for both datasets. They all lead to similar conclusions.
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Figure 5. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE; bottom row) for
individual and combined forecasts obtained for the ARX (left panels) and LEAR (right panels) models and the NP dataset.
Circles represent the performance of individual models where seasonal decomposition is executed first, then the VST is
applied, while triangles are in the opposite order. Models without seasonal decomposition are indicated by the black solid
line (labeled noLTSC), whereas the combined models by colored solid lines with markers at the ends.

Firstly, we can see that seasonal decomposition can improve the accuracy of forecasts
that are generated not only by simple autoregressive models, but also by parameter-rich
models with automated variable selection via the LASSO. More considerable improve-
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ments can be achieved in the NP market, see Figure 5. Moreover, in this case, most of the
individual models with seasonal decomposition return lower error scores than the bench-
mark model without it (as denoted by noLTSC). For the PJM dataset, the improvements
are smaller, and they occur more frequently for ARX models, as seen in Figure 6. The only
problem with such individual models is that not all of them beat the benchmark model
without seasonal decomposition. Thus, it is difficult to choose the optimal LTSC ex-ante.

Secondly, there is no general answer to the question of which order of applying data
transformations performs better. It seems to depend on the considered model, market, type
of the LTSC, or error measure. For instance, in the top row of Figure 6, where the rMAE is
presented for the PJM dataset, the best performing approach changes depending on the
filtering type considered. For wavelet-based filters, it is generally more effective to apply
the seasonal decomposition first, whereas, for HP-based filters, the is best applied VST
first. On the contrary, for the NP dataset and rRMSE (see the bottom row of Figure 5), the
performance strongly depends on the chosen parameters that are used to extract the LTSC,
i.e., the smoothing level k or the smoothing parameter λ.
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Figure 6. Relative mean absolute errors (rMAE; top row) and relative root mean squared errors (rRMSE; bottom row) for
individual and combined forecasts obtained for the ARX (left panels) and LEAR (right panels) models and the PJM dataset.
Markers and line styles used are the same as in Figure 5.

We consider two averaging schemes to overcome these difficulties, see Section 3.5.
In Table 3, we collect all of the error scores for the combined and benchmark models.
It turns out that, for both datasets, the BC and BMA averaging schemes always return
lower rMAE and rRMSE scores than the benchmark model without seasonal decomposition
(denoted by noLTSC). Moreover, there are generally only a few individual models that can
outperform the combined models. Hence, we can conclude that forecast averaging solves
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the problem with the ex-ante selection of the best performing LTSC and the order of data
transformations. Furthermore, all of the combined LEAR models outperform their ARX
counterparts, so the use of LASSO-estimated models additionally increases the accuracy of
the combined forecasts.

Finally, let us compare the averaging schemes and the methods of modeling the LTSC.
It turns out that the BMA approach returns lower errors than BC in nine out of 16 cases.
When it comes to the best-performing approach for extracting the LTSC, we can observe
that the one that is based on HP filters yields lower error scores in all of the cases except
one (i.e., LEAR, BC averaging, NP market; see Table 3).

Table 3. The relative mean absolute errors (rMAE) and relative root mean squared errors (rRMSE)
calculated in the model evaluation window for the combined and the baseline ARX and LEAR
models. The lowest score in a row is emphasized in bold, independently for the ARX and LEAR
models, whereas the lowest score in a row across all of the models has a green background.

Error ARX LEAR
noLTSC LTSC BC BMA noLTSC LTSC BC BMA

Nord Pool market
HP 0.6615 0.6607 HP 0.6016 0.6063rMAE 0.7817 db4 0.6626 0.6658 0.7062 db4 0.5944 0.6074
HP 0.7154 0.7190 HP 0.6424 0.6503rRMSE 0.7541 db4 0.7321 0.7312 0.7153 db4 0.6563 0.6744

PJM market
HP 0.6761 0.6814 HP 0.6603 0.6520rMAE 0.7273 db4 0.7263 0.7076 0.6713 db4 0.6634 0.6596
HP 0.7026 0.6988 HP 0.6879 0.6765rRMSE 0.7343 db4 0.7236 0.7157 0.6959 db4 0.6923 0.6792

4.2. Testing for Conditional Predictive Ability

The obtained forecasts are also compared using the conditional predictive ability (CPA)
test of Giacomini and White [32]. Here, following [15], we only focus on the results of the
multivariate version of the test, which, for each pair of models, returns a single p-value for
all 24 h. The tests were separately conducted for the absolute and squared losses.

Following [10,15,21], we present the CPA test results as chessboards with a color-
coded p-value, where the color ranges from dark red (higher p-values) to dark green
(lower p-values). A colored square in the chessboards indicates that the predictions of
the model on the x-axis are significantly better than the predictions of the model on the
y-axis. The greener this field (the lower the p-value is), the more statistically significant the
difference. A black square means that there is no statistically significant difference in the
predictive accuracy at the 10% level.

In Figures 7 and 8, we illustrate the results for the absolute and squared losses, re-
spectively. As can be seen, the combined forecasts significantly outperform the predictions
of the benchmark models without seasonal decomposition in 22 out of 32 cases (at the
10% level). When we only consider the LEAR models, the improvement is statistically
significant in 11 out of 16 cases. Only for the PJM market (both averaging schemes for
the squared losses, see Figure 8, and LEAR BMA db4 for linear losses, see Figure 7), the
improvements over the benchmark are not statistically significant. Moreover, the outper-
formance of the forecasts of the combined LEAR models over their ARX counterparts is
significant in 14 out of 16 cases. Thus, the CPA tests confirm that seasonal decomposition
improves the accuracy of combined forecasts that are generated by the LASSO-estimated
models.

Regarding the method of combining forecasts, although the BMA approach returns
lower errors than the BC approach in nine out of 16 cases (see Table 3), the CPA tests
indicate that outperformance is only significant in two cases. On the other hand, the
BC approach significantly outperforms the BMA approach in six cases. Given that the
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differences in the error scores between both of the averaging schemes are small, we can
recommend the simpler approach—BC averaging.
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Figure 7. Results of the CPA test [32] for absolute losses. A colored square (other than black) indicates that the predictions of
the model on the x-axis are significantly better than the predictions of the model on the y-axis, at a given significance level.
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Figure 8. Results of the CPA test [32] for squared losses. A colored square (other than black) indicates that the predictions of
the model on the x-axis are significantly better than the predictions of the model on the y-axis, at a given significance level.

Finally, although the combined models based on HP filters return lower error scores in
almost all cases, the advantages of using one LTSC function over the other are not so clear
from the perspective of the CPA test. The combined forecasts that are based on HP filters
are only significantly better than those based on wavelet filters in six cases, at the 10% level,
whereas the remaining 10 cases show no significant differences. When considering the
5% level and only the combined LEAR models, all of the differences become statistically
insignificant.
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4.3. Computational Complexity

The models that are considered in this study are computationally feasible, even in
time-constrained scenarios. It is notable that all of the times reported in this subsection
reflect a single-threaded task run on an AMD Threadripper 1950X processor.

The average computation time per forecast day amounts to 8–9 s for the LEAR models
and 0.03–0.05 s for the ARX models. The listed times reflect the whole process, including
data preprocessing, such as the application of the LTSC or the VST. Nevertheless, model
estimation is the most time-consuming task. To be more precise, the ARX model without
the LTSC is, on average, computed in 0.027 s, whereas the computation of the same model
with the LTSC takes 0.03 s for db4 wavelets and 0.05 s for HP filters. For the LEAR model,
the input data impact the convergence rate. The smallest time in this case was measured for
the model with the LTSC based on db4 wavelets—8 s per day. On the other hand, for the
model with the LTSC that was based on HP filters or without the LTSC, the computations
took closer to 9 s.

The averaging schemes require additional computational time. One has to consider the
generation of forecasts to determine the best averaging scheme. The sequential computation
of the set of forecasts for one LTSC variant and a 728-day selection window takes around
33 h. Computing the errors of all 218 − 1 possible combinations of the forecasts takes 101 s.
However, the above operations are only done once.

5. Conclusions

To address the question of whether the seasonal component approach is beneficial
in the case of parameter-rich models, we have performed an extensive empirical study
that involved a well-performing, LASSO-estimated autoregressive (LEAR) model with
129 regressors, two approaches to modeling the LTSC (wavelet smoothing and the Hodrick-
Prescott filter), and the area hyperbolic sine transformation. Given that our initial results
did not provide a clear indication for the optimal choice of the LTSC or the optimal order
of applying transformations—seasonal decomposition first and then variance stabilization
second, or vice versa—we have introduced two averaging schemes. The first one, dubbed
Best Combination (BC), selects the best combination of a pool of models. The second is
inspired by Bayesian Model Averaging, but it weighs combinations by the inverse (of the)
root mean squared error (iRMSE), instead of the originally proposed posterior probabilities;
for notational convenience, we refer to it as BMA.

Our results indicate that seasonal decomposition can significantly—as measured by
the conditional predictive ability (CPA) test—improve the accuracy of the forecasts that
are generated not only by simple autoregressive, but also by parameter-rich models with
automated variable selection via the LASSO. Moreover, for both datasets, the averaging
schemes always return lower error scores than the benchmark model without seasonal
decomposition. At the same time, there are only a few individual models that can out-
perform the combined models. Hence, we can conclude that forecast averaging solves
the problem with the ex-ante selection of the best performing LTSC and order of data
transformations. Furthermore, all of the combined LEAR models outperform their parsi-
monious ARX counterparts, so the use of LASSO-estimated models additionally increases
the accuracy of the combined forecasts. Although the BMA approach generally returns
slightly lower errors than BC, the CPA tests indicate that outperformance is, in most cases,
insignificant. Hence, we recommend the simpler approach—BC averaging. Interestingly,
this is consistent with the recommendations put forward in the forecasting literature, i.e.,
that instead of combining the full set of forecasts, it may be advantageous to discard the
models with the worst performance [29,44].

Finally, let us note that forecasts, no matter how accurate, are of limited use if they
cannot be utilized to yield profits [16]. However, measuring the economic value of reduc-
ing electricity price forecasting errors—although desirable—is a difficult task, as argued
in [45,46]. A model that yields lower errors may not always lead to better trading decisions.
Because there are no golden standards in this respect, instead of devising an artificial strat-
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egy, we encourage practitioners to evaluate our models in an actual trading environment.
Our codes are available upon request.
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