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Abstract: From the perspective of stable operation of the power transmission system, the transmis-
sion system operators (TSO) needs to procure reserve adjustment power at the stage of the previous
day based on solar power forecast information from global horizontal irradiance (GHI). Because the
reserve adjustment power is determined based on information on major outliers in past forecasts,
reducing the maximum forecast error in addition to improving the average forecast accuracy is
extremely important from the perspective of grid operation. In the past, researchers have proposed
various methods combining the numerical weather prediction (NWP) and machine learning tech-
niques for the one day-ahead solar power forecasting, but the accuracy of NWP has been a bottleneck
issue. In recent years, the development of the ensemble prediction system (EPS) forecasts based on
probabilistic approaches has been promoted to improve the accuracy of NWP, and in Japan, EPS
forecasts in the mesoscale domain, called mesoscale ensemble prediction system (MEPS), have been
distributed by the Japan Meteorological Agency (JMA). The use of EPS as a machine learning model
is expected to improve the maximum forecast error, as well as the accuracy, since the predictor can
utilize various weather scenarios as information. The purpose of this study is to examine the effect of
EPS on the GHI prediction and the structure of the machine learning model that can effectively use
EPS. In this study, we constructed the support vector regression (SVR)-based predictors with multiple
network configurations using MEPS as input and evaluated the forecast error of the Kanto region
GHI by each model. Through the comparison of the prediction results, it was shown that the machine
learning model can achieve average accuracy improvement while reducing the maximum prediction
error by MEPS, and knowledge was obtained on how to effectively provide EPS information to the
predictor. In addition, machine learning was found to be useful in improving the systematic error
of MEPS.

Keywords: meso-ensemble prediction system; support vector regression; solar irradiance forecast;
ensemble learning

1. Introduction

In the basic structure of the electricity market where the power generation sector
and the transmission sector are separated, the transmission system operator (TSO) bears
responsibility for coordinating the gap from the balancing group’s (BG’s) plan of the supply
and demand in real time. Therefore, TSO is bound to compensate for the imbalance in
real time due to the error of the day-ahead forecast of the photovoltaic (PV) power supply
by the power resource. Hence, the cost of securing a power source that is not used in
the actual supply and demand is always incurred as a countermeasure against the case
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of excessive solar radiation, and this cost will ultimately be borne by the consumer. For
this reason, in addition to improving the average accuracy of solar radiation forecasts, it
is important to reduce excessive forecasts or the huge error in forecasting as of the day
before the actual power supply and demand for efficient operation of the electric power
system; that is, minimizing reserve power on standby and maintaining optimal operating
conditions of the plant [1].

Weather forecast based on the Numerical Weather Prediction (NWP) is advantageous
in the 1–3 day-ahead forecast task, which is related to the transmission schedule and/or
day-ahead electricity market [2]: in Japan, Grid Point Value (GPV) of the Mesoscale
Model’s (MSM’s) prediction presented by Japan Meteorological Agency (JMA) is widely
used. However, NWP has the limitation derived from its insufficient spatial resolution to
resolve the detail of the cloud, which causes the error of the local effect, and systematic
error is contained from the pre-process operation for the stable acquisition of the numerical
solution. To refine the NWP, post-processing methods are frequently used: machine
learning methods are applied to NWP. Such as artificial neural-network (ANN) [3], hybrid
model of auto-regressive moving average model (ARMA) and ANN [4], and support-vector
machine (SVM) [5].

By constructing a predictor based on the NWP, more accurate global horizontal irradi-
ance (GHI) forecast becomes possible, while there is the limitation on the accuracy of NWP.
Although NWP is calculated from a deterministic approach, its forecast errors may occur
due to the boundary condition and/or initial values, and the error can rapidly grow by the
chaotic behavior of the atmosphere [6]. For the above intrinsic unpredictability, machine
learning approach based on NWP has adopted various ensemble techniques: multiple out-
puts of different machine learning modes [7], shifting the forecast horizon of the NWP [8],
picking up a historical data similar to patterns of predictions by analog ensemble [9] or
k-nearest neighbor (k-NN) [10]. Furthermore, recent researchers applied probabilistic fore-
casting approach to solar power forecasting from NWP. As the non-parametric approach,
the quantile regression (QR) is combined with machine learning technique. The QR makes
possible to estimate τ-th quantile without assuming the probability distribution [11], and
this approach is useful for the probabilistic solar power forecasting because of the hetero-
geneous dispersion of solar radiation. M. P. Almeida et al. applies NWP data to the QR
based on the random forests and estimate the quantiles for predicting the distribution of PV
generation [12]. R. Judan et al. applied the multiple QR with mapping to the radial basis
function (RBF) kernel for the solar power forecasting in the 2014 Global Energy Forecasting
Competition (GEFCom2014) [13]. Y. He et al. utilize the support vector machine for the
QR with the fuzzy information granulation [14]. On the other hand, as the parametric
approach, J. Fonseca Jr. et al. estimated the confidence interval with assuming probability
distribution function by comparing the input data with the historical data of the previous
60 days [15]. However, the accuracy of the NWP presumably become the bottleneck of the
deterministic solar power forecasting and the probabilistic one.

To take measures for the problem of the NWP based on the deterministic approach,
alternatively, Ensemble Prediction System (EPS) has been studied: stochastic approach
combined with the deterministic NWP model [16,17]. Ensemble mean of the multiple
forecasts, which generated by adding the appropriate perturbation to the base NWP model,
gives better performance. Besides, in 2018, F. Uno et al. reported the correlation between
the huge GHI forecast errors and the variances of the EPS members through the analysis
of the four leading NWP centers’ EPSs [18]. From the above, it is possible to improve the
accuracy of weather forecasting and analyze the reliability information by using EPS.

Operational forecasting of EPS was first introduced to the global scale model by
National Meteorological Center (NMC) in 1992 [19]. With the development of the EPS for
the global scale model, operational centers have expanded the EPS to the regional scale
model [20]. Today, forecasting systems that apply ensemble prediction to the mesoscale
region model have been put into the operational forecast in various countries: The United
States National Centers for Environmental Prediction (NCEP) started operating short
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range ensemble forecasts (SREF) in 2001 [21]; United Kingdom Met Office (UKMO) started
Met Office Global and Regional Ensemble Prediction System (MOGREPS) in 2005 [22];
Meteorological Service of Canada (MSC) started Regional Ensemble Prediction System
(REPS) in 2011 [23]; Deutscher Wetterdienst (DWD) started ensemble prediction system
based on the Consortium for Small-scale Modeling for German region (COSMO-DE-EPS)
in 2012 [24].

For the regional scale forecast in Japan region, JMA started operational forecast of
the Meso-Ensemble Prediction System (MEPS): regional EPS based on the MSM. MEPS
generates 21 member forecasts by singular vector (SV) method, and it provides the up to 39
hour-ahead forecast. MEPS is adept at representing a variety of meteorological scenarios.
Hence, by combining MEPS data with machine learning technique, more accurate and
versatile day-ahead solar irradiance forecast system for Japan region can be expected. In
other words, by the machine learning model referring to MEPS data, the one day-ahead
solar power forecasts’ precision can assumedly be improved by correcting the bias in MEPS
with suppressing the huge forecasting error of concern to TSO and BGs.

There are several works applying EPS data to the machine learning models for the
short term prediction of the renewable resource or the weather data by using EPS data from
European Centre for Medium-Range Weather Forecasts (ECMWF). C. Junk et al. applied
ensemble model output statistics (EMOS) and analog-based EMOS to ECMWF’s EPS data
for wind power forecasting [25], S. Sperati et al. applied neural-network (NN) to ECMWF’s
EPS data for solar power forecasting [26], and S. Rasp and S. Lerch used NN with ECMWF’s
EPS data for estimating air temperature at 2 m [27]. L. Massidda and M. Marrocu applied
QR to each ECMWF’s EPS member and combined Integrated Forecasting System (IFS) data
with their QR outputs [28]. However, to our best knowledge, there are few research on the
GHI forecast based on the machine learning approach using EPS data despite the works in
References [26,28].

Note that, in previous research, ECMWF’s EPS forecasts are only used for the machine
learning-based solar power forecasting, and few studies have focused on the maximum
prediction error, regardless of its practical importance for the power transmission systems.
In addition, the affection of the difference of the machine learning models’ network which
process the EPS’s multiple members is not sufficiently investigated. It is necessary to study
the configuration that enables machine learning models to utilize EPS forecasts effectively.

In order to improve the average accuracy and reduce the maximum prediction error
by the machine learning model using EPS forecasts, and to verify the effective way of
constructing the machine learning model using EPS predictions, this study constructed
several network configurations of SVR-based predictors for regional GHI prediction in the
Kanto region using MEPS forecasts as input, and verified the accuracy of each predictor by
the ground observation data at meteorological stations.

By comparing the results of regional GHI prediction of each predictor, we discussed
how to effectively construct a machine learning model using EPS. Besides, by comparing
the prediction results with those of MSM and MEPS, we confirmed that the machine
learning model is effective in improving the systematic error of GHI prediction by MEPS.
Note that the MEPS forecast used in this paper incorporates a new model from the JMA
for the calculation of physical processes, and mentions its bias error in the discussion.
Furthermore, in addition to improving the average accuracy of the predictor, we showed
that the maximum prediction error, which is of practical importance, can be reduced by the
machine learning model using EPS.

The paper is organized as follows. In Section 2, we denote the data description.
Section 3 explains the fundamentals of our study. Support vector regression and evaluation
methods. Section 4 shows our prediction models, and their precision are discussed in
Section 5. In Section 6, conclusions are denoted.
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2. Data Descrption
2.1. Meso-Scale Ensemble Prediction System

Forecasts that are calculated from accurately estimated initial and boundary values
are called deterministic forecasts, and higher accuracy has been promoted by improving
observation systems and data assimilation technology, improving NWP models, and
introduction of high-performance computers. As such deterministic forecasts, in Japan
region, MSM data is distributed from the JMA.

JMA works diligently for disaster prevention, such as an intensive rain storm, through
the improvement of the MSM. However, because the error of deterministic forecasts
may increase depending on the initial variables and boundary condition by the chaotic
behavior of the atmosphere, its intrinsic predictability is limited. Even though the practical
predictability can be extended through the improvement of the NWP models, it is necessary
to objectively grasp their reliability through the probabilistic approach.

Ensemble prediction enables to obtain the stochastic characteristics of the weather
forecasts through the multiple predictions of the members created by perturbating the
numerical conditions. By utilizing the information from ensemble members’ behavior,
efficient risk management becomes possible. Besides, their expected value can improve the
precision of the forecast.

For the examination of the regional EPS, JMA started the development of mesoscale SV
in 2005. After a number of comparative tests, MEPS had developed for the implementation
from 2012. Along with the operation of the 10th Generation Numerical Analysis Prediction
System (NAPS10), the operational forecast of MEPS started in 2019 [29].

MEPS is the system generating 21 ensemble members by perturbating the initial and
lateral boundary conditions of the control member, which is equal to MSM-GPV: their
perturbations are given by the meso SV and the global SV with ensuring their consistency.
Forecasts of MEPS are operated at 00, 06, 12, 18 UTC, and their forecasts can be made up
to 39 h in advance. The spatial resolution of MEPS is 5 km. GHI forecasts from MEPS are
averaged over the previous hour, and the ground measurements used for comparison are
converted to average value of the previous hour according to the MEPS’s GHI. Note that
MEPS forecasts used in our work adopt the asuca model, which is the improved model of
dynamical processes from conventional JMA Non-Hydrostatic Model (JMA-NHM) (see
more details in Reference [30]).

GHI forecasts provided from MEPS can be useful for solar power forecasts; however,
MEPS is coordinated for windstorm disaster prevention, and the control-run of the MEPS
has systematic errors due to inconsistencies in cloud cover calculations between cloud
microphysical processes and radiative and boundary layer processes.

For such biases caused by sub-grid scale physics, it is expected that correction by
machine learning technique is useful. By combining machine learning techniques with
MEPS, it is expected that it will be possible to build an one day-ahead solar power fore-
casting model that can respond to various situations while correcting for systematic errors
in MEPS.

2.2. Input Data

In our work, we aim to verify the improvement of the global horizontal irradiation
(GHI) forecast from MSM or MEPS through the prediction for the regional GHI averaged
at five points in the Kanto region (Maebashi, Tsukuba, Utsunomiya, Tokyo, Choshi) at 1-h
intervals from 6 June 2018 to 6 October 2018.

Our prediction models’ explanatory variables consist of the weather forecasts and the
theoretical total solar irradiation intensity: MSM-GPV’s forecast data (temperature and
relative humidity on a surface, high/middle/low level cloud covers), MEPS’s GHI forecast
obtained from 21 ensemble members, the calculated values of the solar insolation at the
top of atmosphere on a horizontal surface [31]. For one day-ahead forecast, we adopt the
forecast data delivered at JST 15:00 of the previous day of the machine learning prediction
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target date. We describe the MSM datasets excluded GHI forecast data and GHI from
MEPS of each site as MSMs(h), ĜH Is(h), and we denote them as follows.

MSMs(h) =
[

T̂s(h) R̂Hs(h) ĤCs(h) M̂Cs(h) L̂Cs(h)
]
, (1)

ĜH Is(h) =
[

ĜHI
0
s (h) ĜHI

1
s (h) · · · ĜHI

m
s (h) · · · ĜHI

Nm
s (h)

]
, (2)

where s = 1, 2, . . . , Ns and m = 0, 1, . . . , Nm indicate the index number of the sites and the
members of MEPS, h is the hour of the forecast date, T̂s(h) and R̂Hs(h) are the forecast
values of the temperature and the relative humidity on a surface, and ĤCs(h), M̂Cs(h) and
L̂Cs(h) are the forecasts of the high / middle / low level cloud covers. In particular, MSM’s
GHI forecast data correspond to the control member of the MEPS members, that is tagged
by the 0-th number (m = 0). Each site’s extra-atmospheric solar radiation on a horizontal
surface is denoted by Es(h).

For the training and evaluation of the predictor, we use the ground-based solar radia-
tion data observed by the JMA station at the target site in Figure 1 as the objective variable.

Figure 1. Location of the JMA Stations. JMA records ground-based observation data for GHI at 5
station in Kanto region. Maebashi, Tsukuba, Utsunomiya, Tokyo, Choshi.
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3. Fundamentals
3.1. Support Vector Regression

SVR is the machine learning technique that applies the support vector networks [32] to
the regression problem. K. R. Müller et al. and H. Drucker et al. showed the SVR obtained
the excellent performance in the time series forecast [33,34]. In case time series data is given
by (xi, yi), i = 1, 2, . . . , n, where xi is the explanatory variable, and yi the objective variable,
the basic idea of SVR is the optimization technique for estimating the regression formula
denoted by

f̂ (x) =
n

∑
i=1

αiK(xi, x) + β, (3)

where K
(

xp, xq
)

is the kernel function, αi is the weight parameter, and β is the bias. SVR
firstly projects the datasets into the feature space given by the non-linear map function
linking to the kernel function, and secondly estimates the line minimizing the loss function’s
penalty in the feature space through the optimization of the dual problem. Standard SVR
formula adopts the RBF kernel and the ε-insensitive loss function:

KRBF
(

xp, xq
)
= e−

‖xp−xq‖2
2σ2 , (4)

lε(y, f (x)) = max(|y− f (x)| − ε, 0). (5)

ε corresponds to the size of insensitive tube, and its optimal value depends on the noise
level in the datasets. σ2 is the variance of the Gaussian function for the data fitting.
For constructing support vector machine tuning ε-insensitive tube size automatically,
Scholköpf et al. developed the ν-SVR [35]. Through using ν-SVR, ε parameter can be
automatically adjusted without assuming the noise level. The implementation method and
kernel functions of SVR are detailed in Reference [36].

In our study, we applied ν-SVR method to the machine learners of the system operating
regional solar irradiance forecast task. The LibSVM wrapper for R (“e1071” package) is
used for the implementation [37,38].

3.2. Index of Error

There are several ways to evaluate prediction results. Mean bias error (MBE), mean
absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2)
are frequently used for the comparisons of the multiple forecasts’ precision:

MBE =
1
n

n

∑
j=1

(
ŷj − yj

)
, (6)

MAE =
1
n

n

∑
j=1

∣∣ŷj − yj
∣∣, (7)

RMSE =

√√√√ 1
n

n

∑
j=1

(
ŷj − yj

)2, (8)

R2 = 1−
∑n

j=1
(
ŷj − yj

)2

∑n
j=1
(
ȳ− yj

)2 , (9)

ȳ =
1
n

n

∑
j=1

yj, (10)

where n is the number of the samples, yj is the real value, and ŷj is the prediction value.
MAE evaluates the prediction error by the Manhattan distance, while RMSE evaluates
the prediction error by the Euclidean distance: In case prediction values are given by
the constant, median minimizes MAE, and mean minimizes the RMSE. R2 gives the
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performance index compared with the case that mean is given as the prediction value. The
characteristics of these indices are detailed in Reference [39].

3.3. Cross-Validation

In addition to measuring the performance score of the prediction result, it is needed
to adequately train and predict the machine learning models for the evaluation. Ideally,
it is desirable that the training dataset and the test dataset should be strictly divided for
verifying the performance of time-series forecast of the machine learning models. However,
if enough long dataset is not available, k-fold cross-validation (CV) is adopted for the
verification process: firstly, the dataset is split into k subgroups; secondly, the machine
learner trains the dataset excepting k-th subgroups’ data; thirdly, k-th data is used for
the test of the machine learning model’s prediction; those process is repeated until all
subgroups’ test results are acquired. In particular, if the number of folds k is equal to the
number of samples n, that is called leave-one-out CV.

In our work, 4-fold CV is adopted for the evaluation of the prediction result, and in
order to eliminate the influence of the time trend, random shuffle is performed for each
date before the 4-fold CV. Besides, we evaluate the error data obtained from CV collectively;
k-fold CV generally aggregates the score by groups and obtains the mean of their score,
but we totally treat the prediction results of each sample without separating groups. The
configuration of our evaluation process is shown in Figure 2.

Shuffle by the date

2018-06-06 2018-06-07 2018-10-06

… …

… ……… …

Split into subgroupsTest dataset

Store the test results

Aggregate Collec�vely
MAE, RMSE, …

k-fold cross-valida�on

Figure 2. Configuration of the evaluation process. Dataset is shuffled by the date before the k-fold
CV, and prediction results are aggregated collectively.

4. Prediction Model

Accuracy of the regional solar power forecast based on machine learning models may
depend on the strategies for obtaining its prediction value: configuration of the prediction
model. In Reference [40], J. Fonseca, Jr., et al. shows the strategy obtaining the regional
PV power forecast from local SVR forecasts (Strategy1) gives better performance than the
strategy that SVR directly obtains the regional PV power forecast (Strategy2). For this
reason, it is important to check the prediction results of the prediction model using MEPS
in multiple configurations.

MEPS has 21 forecast members, that are calculated individually for each ensemble
member. Hence, the constitution of the predictor could be designed variously: one ma-
chine learner could treat all 21 forecast data for the prediction collectively; multiple weak
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learners could treat each MEPS member’s forecast for make estimation, and their output
are integrated at ensemble node (Integrator: INT) for the final decision of the prediction
value. In addition, there are two strategies to integrate regional solar radiation at target
sites: machine learner directly trains and predicts only the averaged GHI value. Each site’s
GHI is individually predicted by machine learners, and then they are averaged.

In case adopting the weak learner for generating the ensemble prediction of the GHI
for each site, disregarding the combination, (Nm + 1)× Ns prediction are obtained, and
they have the two axes: index of the MEPS members m, index of the sites s. To project them
on the s axis, there are two patterns for the locus of the ensemble nodes. One arranges
the ensemble nodes at each site while another arranges the ensemble node at last, that is,
integrators output the local GHI estimation or regional GHI estimation. Besides, there are
options for how to join in the ensemble node.

In this study, we consider the prediction models based on the SVR machine learners,
which are composed as Figures 3–6 and Table 1. Each SVR model (with the exception of the
integrator) uses weather forecast data, extra-atmospheric solar radiation on a horizontal
surface, and their value of the time of one hour delay. Besides, standardization is applied to
the pre-processing of the training. Each case has a different approach to predicting regional
GHI. Case1 is an approach to obtain the regional GHI directly without splitting the data,
while Case2 is a method to accumulate the predicted GHI for each region. Cases3–4 use
the EPS forecast of each location to construct a weak learner for each member, and the
integration method of the weak learner is changed in each case. Case3 takes an approach
to forecast the regional GHI by passing the results of the weak learner to the integrator
and accumulating the local GHI forecasts for each location. In contrast, Case4 takes the
approach of calculating regional GHI forecasts for each ensemble member from the results
of the weak learner, and finally integrating and forecasting them in the integrator. The
mathematical representation of each case and the different labels within the cases are
described below.

Table 1. Classification of prediction models.

Label Use of GHI Output of SVRs Locus of INT INT Function

Case1a MSM Only Regional GHI - -

Case1b MEPS All
Members Regional GHI - -

Case2a MSM Only Local GHI - -

Case2b MEPS All
Members Local GHI - -

Case3a MEPS All
Members Local GHI At Each Site Mean

Case3b MEPS All
Members Local GHI At Each Site SVR

Case4 MEPS All
Members Local GHI At Last Layer SVR

In Case1 shown in Figure 3, only one machine learner is used for the prediction; all
sites’ data are collectively inputted into it, and regional average GHI is predicted directly.
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In Case1a, the predictor uses MSM for GHI forecast input; in Case1b, the predictor uses
MEPS 21 member data collectively. Their predictions are given by:

ŷavg(h)|Case1a = SVR0
(

r0(h); u(h)
)

, (11)

ŷavg(h)|Case1b = SVR(r(h); u(h)), (12)

rm
s (h) =

[
ĜHI

m
s (h) ĜHI

m
s (h− 1)

]
, (13)

rs(h) =
[

ĜH Is(h) ĜH Is(h− 1)
]
, (14)

rm(h) =
[
rm

1 (h) rm
2 (h) · · · rm

Ns
(h)
]
, (15)

r(h) =
[
r1(h) r2(h) · · · rNs(h)

]
, (16)

us(h) =
[
MSMs(h) MSMs(h− 1) Es(h) Es(h− 1)

]
, (17)

u(h) =
[
u1(h) u2(h) · · · uNs(h)

]
. (18)

In Case2 shown in Figure 4, multiple machine learners predict GHI of each site, and
their outputs are summed up to get the regional average GHI forecast. In Case2a, predictors
use only the control member data (m = 0). In Case2b, each site’s MEPS 21 members’ GHI
are put together into the machine learners, which predict each site’s local GHI, respectively,
and their outputs are averaged to obtain the regional GHI prediction.

ŷavg(h)|Case2a =
1

Ns

Ns

∑
s=1

ŷ0
s (h), (19)

ŷavg(h)|Case2b =
1

Ns

Ns

∑
s=1

ŷs(h), (20)

ŷm
s (h) = SVRm

s (r
m
s (h); us(h)), (21)

ŷs(h) = SVRs(rs(h); us(h)), (22)

where ŷm
s (h) is the local GHI prediction based on the m-th member’s GHI forecast data

from MEPS.
In Case3 shown in Figure 5, the prediction model consists of weak learners and

integrators in each subsystem; weak learners try to improve GHI prediction from each
MEPS member’s GHI forecast individually; integrators are, respectively, output each site’s
GHI prediction, and regional average GHI is obtained from them:

ŷavg(h)|Case3 =
1

Ns

Ns

∑
s=1

INTs

(
ŷ0

s (h), ŷ1
s (h), . . . , ŷNm

s (h)
)

, (23)

where INTs(·) is the function corresponding to the integrator of each site. They predict the
local GHI for each site. They use only the weak learners’ output if SVR models are used in
the ensemble nodes.

In Case4 shown in Figure 6, this model consists of weak learners and an integrator as
with the Case3; weak learners predict each site’s GHI from each MEPS member data, and
their outputs are summed up for estimating regional average GHI, respectively, for each
member’s group; the integrator finally produces the regional average GHI prediction:

ŷavg(h)|Case4 = INT
(

ŷ0(h), ŷ1(h), . . . , ŷNm(h)
)

, (24)

ŷm(h) =
1

Ns

Ns

∑
s=1

ŷm
s (h), (25)

where INT(•) is the integrator placed in the last layer of the prediction model. It uses each
MEPS member’s regional GHI prediction values as the explanatory variables.



Energies 2021, 14, 3245 10 of 18

In Case3, we adopt mean operation and SVR as integration process. However, in
Case4, we only use SVR for the function of the integrator because the mean operation’s
result is equal to the result of Case3’s mean operation case.

For the comparison with the persistence model, which is often treated as the bench-
mark, we give the prediction value denoted by:

ŷavg(h)|Persistence =
1

Ns

Ns

∑
s=1

ys(h− 24). (26)

The persistence model simply outputs the one day-ahead observed GHI as the forecast.
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Figure 3. Schematic of the access of the MEPS’s GHI forecasts in Case1. Case1a uses the MSM’s GHI
(m = 0) only, and Case1b uses MEPS all member (m = 0, 1, . . . , 20). They directly predict regional
GHI with one SVR model.
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prediction, and then they are gathered into the integrators at ensemble nodes. Each ensemble node
forecasts the local GHI. Then, regional GHI is obtained from the mean function. Integrators use mean
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Figure 6. Schematic of the access of the MEPS’s GHI forecasts in Case4. This prediction model places
the integrator (INT(•)) at the last layer. Weak learners (SVRm

s (•, us)) output are gathered into the
mean function for each MEPS ensemble member to obtain the regional GHI ensemble prediction,
and then their forecasts enter the ensemble node.

5. Results and Discussion

Evaluation scores for Case1–4, Persistence Model, MSM’s forecast (MSM-GPV), and
MEPS ensemble mean are in Table 2 and Figure 7. In comparison with the Persistence,
MSM and MEPS forecasts, all Cases refine the accuracy of the regional GHI forecast for
the application of the machine learning model. In particular, Case2b presents the best
performance, and the prediction values including MEPS have higher performance than the
Case1a, MSM-GPV, and MEPS ensemble mean. The results of Case1b and Case2b show
that the forecast model using MEPS forecast data scores better than the other model within
the same approach (Case1a, Case2a).

Table 2. Evaluation score of the prediction models. MBE, MAE, and RMSE are in W·m−2. R2 is
in percentage.

Prediction Model MBE MAE RMSE R2

Persistence −1.1 128.0 192.8 47.8
MSM −37.6 72.1 110.7 80.1
MEPS −37.6 69.6 105.0 80.7
Case1a −1.0 70.0 100.3 84.4
Case1b −2.2 63.3 91.4 86.9
Case2a 4.3 62.3 90.6 87.4
Case2b 1.2 60.2 87.2 88.4
Case3a 4.5 61.9 89.6 87.6
Case3b 5.4 61.5 89.5 88.0
Case4 2.1 62.4 91.2 87.3
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Figure 7. Index of the precision of the forecasts.

In addition, it is confirmed that the strategy averaging multiple local forecasts gives
better performance by comparison Case1 with Case2. Among the prediction models using
MEPS forecasts, the approach of Case3 is the best after Case2b. Case3 is also based on the
accumulation of regional GHI forecasts. As with regional PV forecast in Reference [40],
regional GHI forecast that adopts MEPS ensemble members shows the similar trends.
The systematic error of the NWP is not uniform among points, and it is thought that the
systematic error caused by the topography of each point can be corrected by machine
learning models. Therefore, it is inferred that it is effective to divide the model by sub-
region in the forecasting model using EPS forecasts.

However, in contrast to the improvement of the precision by the strategy of the
local GHI forecast integration, the score of Case3–4, which renovated the MEPS ensemble
members through weak learners, gives worse performance than Case2b, while MEPS
ensemble members improve the forecast in Case1–2 and MSM without weak learners.
Score of the Case3–4 are almost equal to the score of the Case2a. Each weak learner in
Case3–4 uses each MEPS member’s GHI forecast individually, and their configuration is
equal to the predictor in Case2a. By constructing multiple SVR by changing the choice
of the MEPS member simply, multi-model ensemble approach does not contribute to the
accuracy improvement. The ensemble mean approach assumes that the ensemble members
contain the appropriate perturbation. By applying MEPS GHI forecast to the SVR directly,
weak learners output loses the effectiveness, that is, the spread of probability distribution is
lost. To refine the precision of the models in Case3–4, it is needed to maintain the ensemble
members’ diversity through the post-process in Reference [26], such as EMOS and valiance
deficit (VD). Hence, in case no post-processing is used, it is better to input the EPS forecasts
together in one model to construct an effective predictor.

Focusing on the MBE, MSM, and MEPS has the negative bias (about −37.5 [W/m2]),
while the other predictors configured by the machine learning technique correct the MBE
and median properly (from −2.2 [W/m2] to 5.4 [W/m2]). Through the training process,
certainly, the predictors compensate the effect of the micro-scale physic unexpressed
correctly in the MSM and MEPS.

MSM, which is the base model of the MEPS, has the tendency to underestimate the
regional GHI. In previous research, Ohtake et al. (2015) analyzed the seasonal variations
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in the GHI forecast errors of the MSM-GPV during the year from 2008 to 2012, and MSM
had the tendency to underestimate GHI from −29.5 to 50.6 in summer (from June to
November), regardless of the initialization times [41]. In 2008, JMA also reported MSM
underestimated GHI in summer during 2004 to 2007 [42]. Over only the Kanto region,
Ohtake et al. (2013) investigated the relationship between the relatively large GHI forecast
error and the frequency of the cloud type observed at JMA station, and they conjectured
cirrus appeared in the underestimation case [43]. Referring to the Köppen-Geiger climate
classification [44], the Kanto region of Japan is classified as a humid subtropical climate
(Cfa). In East Asia, the monsoon tends to carry humid air from low latitudes to high
latitudes during the summer, resulting in high humidity in the Kanto region. In relation
to upper clouds (e.g., cirrus) produced by humid air, the MSM does not consider ice
supersaturation in the calculation of cloud cover diagnostics in radiative processes. This
suggests that overestimation of upper clouds is one of the causes of underestimation in
summer. MEPS ensemble members are generated from the control run which corresponds
to the MSM. Hence, it can be inferred the ensemble members of the MEPS similarly has
the tendency to underestimate the GHI, while the control-run of the members replaced
the model of dynamical process from JMA-NHM to asuca. Because the machine learning
model includes relative humidity and temperature as explanatory variables, the effect of
overestimation of upper cloud cover is considered to be corrected by learning in Case1–4
regardless of the differences in networks.

From the above, the following can be inferred about the average accuracy of each
predictor in this study.

• If the predictors have the same network structure, the average accuracy of the predic-
tors can be improved by adding EPS predictions to the explanatory variables.

• An approach that divides the predictor by sub-region and combines local GHI is
effective for predicting regional GHI.

• When post-processing is not used for weak learners, it is more effective to use a single
predictor to handle EPS forecasts rather than to construct a multistage predictor for
each ensemble member.

• Regardless of the network structure, each predictor compensates for the systematic
errors of the EPS.

In addition to the average accuracy of the forecast, confirmation of the maximum
forecast error and error distribution is particularly important from the practical standpoint
of day-ahead solar power forecasting. To confirm the distribution of the forecast errors
(ŷk − yk), quantile of the error is in Table 3, and their box plot are shown in Figures 8 and 9.
Focusing on the maximum error (100% quantile), persistence model, Case1a, Case2a,
and Case3–4 give larger maximum error than the MSM, that is, their prediction models
hardly decrease the amount of the regulating power that TSO purvey on the day before
the operation. MEPS without machine learning models, Case1b and Case2b, however,
show smaller maximum error (100% quantile) in whole period, and they suppress the
overestimation of the regional GHI on JST10:00–JST15:00. This means that it is possible to
reduce the overestimation of PV power generation based on the GHI forecast during the
sunny hours when the power demand is high in the summer. Notably, when compared
with the predictors only using MSM, the maximum error decreases significantly by the
utilization of MEPS: Case1b reduces 100% quantile error by 41.6% from the result of Case1a;
Case2b reduces 100% quantile error by 36.8% from the result of Case2a. Case1b and
Case2b coordinate MEPS ensemble member forecasts collectively; thus, machine learning
models assumably obtain the performance in the various situation by referring to the
MEPS ensemble members’ multiple behaviors. From above, by collectively introducing
EPS forecasts into the machine learning model’s explanatory variables, the prediction
model can improve the maximum forecast error, and the bias in the NWP models can also
be corrected.
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Table 3. Quantile of the forecast error. Quantile values are in W·m−2.

Prediction Model Q0% Q25% Q50% Q75% Q100%

Persistence −788.89 −71.67 1.11 77.36 774.44
MSM −528.42 −78.53 −15.61 11.55 466.15
MEPS −472.56 −80.26 −14.69 9.64 332.98
Case1a −399.11 −49.13 0.75 46.27 610.60
Case1b −359.35 −41.94 −0.37 39.44 356.49
Case2a −382.21 −39.38 6.02 42.85 561.54
Case2b −358.36 −38.68 5.43 39.77 354.77
Case3a −393.03 −39.00 5.48 42.62 531.29
Case3b −395.88 −37.81 7.23 41.29 513.43
Case4 −400.72 −40.52 3.25 38.21 496.86
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Figure 8. Box plot of the forecast error in total. Note that red point and black line indicate MBE and
median of the error.
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6. Conclusions

In this study, we applied several configurations of the machine learning model to the
MEPS data, which is a regional EPS data of Japan, and evaluated the prediction errors in
order to verify the improvement effect of the GHI forecast and the effective configuration
method of the predictor using EPS. The main contributions of our paper are the following:

• We investigated how to construct a regional GHI predictor using regional EPS and
how to give an effective network configuration.

• It was confirmed that systematic errors in MEPS forecasts can be improved by machine
learning.

• By applying machine learning methods to the prediction of MEPS, we showed that it
is possible to construct a predictor that reduces the maximum prediction error while
correcting for systematic errors in MEPS.

Multiple configurations were considered for design the predictors, and machine
learning-based predictors utilizing MEPS ensemble members forecasts improve the MBE,
MAE, RMSE, R2 in almost all cases when compared with the predictor using only MSM.
Furthermore, maximum error of the machine learning model decreased in case MEPS
forecasts are collectively input into the predictor; in other words, machine learning-based
predictors’ overestimation can be suppressed by the MEPS data utilization. However,
duration of our available MEPS data is limited, and they can have the seasonal deviation
(e.g., Ohtake et al., 2013, 2015). For the more accurate verification, it is needed to confirm
their effect in longer term: in spring, in autumn, in winter, in annual. In addition, while the
comparison of the prediction results has provided us with knowledge on how to construct
an effective network for machine learning models using EPS, it is necessary to conduct
future comparisons of predictors with multi-stage configurations using weak learners with
appropriate post-processing for predicting weak learners. Besides, machine learners used
only GHI from the MEPS forecasts as the first analysis. Hence, it is desirable that various
parameters of MEPS forecasts are utilized in the machine learning models. In order to
investigate even deeper, we will extend the period of the available data and utilize the
multiple parameters of the MEPS ensemble members’ forecasts.
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Nomenclature

MBE mean bias error
MAE mean absolute error
RMSE root mean square error
R2 coefficient of determination
SVR function constructed by support vector regression
INT function that means integrator
GHI global horizontal irradiation
T temperature
RH relative humidity
HC high level cloud cover
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MC middle level cloud cover
LC low level cloud cover
Ns number of sites
Nm number of ensemble members
s index of site number
m index of ensemble member number
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