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Abstract: This paper examines a microconstruction consisting of nickel (Ni)/chromium (Cr) alloy
thin-film. The total length of the microconstruction was 28 mm, the width was 0.2 mm, and the
height was designed to be 1 µm. A thin-film of Ni/Cr alloy was co-sputtered on a silicon dioxide
wafer patterned with photoresist via a RF magnetron sputtering system. The RF power ratios applied
to the 4 inch target of Ni and Cr were 300 W:100 W (3:1), 300 W:150 W (2:1), and 150 W:150 W
(1:1). The electrical resistance of the manufactured microconstruction was calculated and measured
through Hall measurements. The temperature generated by applying 1–10 V to the microconstruction
electrode was observed by using an infrared camera, and was summarized using a linear equation
according to the power applied to each sample.

Keywords: co-sputtering; microconstruction; RF power; nickel/chromium alloy

1. Introduction

Device miniaturization through microfabrication leads to the development of new
functions and performance [1–3]. Microconstruction, which is the aggregate of microfabri-
cation, is frequently used in applications such as gas sensors, biosensors, micro explosive
boiling, and flow rate sensors [4–8]. Acquiring the target temperature generated by a
Joule heating-based microconstruction requires materials that have low resistivity, a low
coefficient of thermal expansion, and homogenous temperature distribution [9–11]. Mi-
croconstructions of platinum (Pt) or gold (Au) are robust, stable and can provide a wide
temperature range because they have a low coefficient of thermal expansion (Pt: 8.8 ppm/K,
Au: 16.5 ppm/K) and resistivity (Pt: 10.9 µΩcm, Au: 2.40 µΩcm) [12–15]. However, these
materials are too expensive to be used as targets for sputtering systems, which is an
important part of the microfabrication process [16]. Nickel (Ni) and chromium (Cr) are
relatively low-cost targets that could replace these metals. The Ni thin-film has lower
resistivity (6.84 µΩcm) than Pt and a lower coefficient of thermal expansion than Au (Ni:
13 ppm/K) [15]. The Cr thin-film has higher resistivity (12.9 µΩcm) but a lower coefficient
of thermal expansion (6 ppm/K) than Pt and Au [15]. A composite of these two materials,
which both have good properties, Ni/Cr alloy thin-film, could have several useful resis-
tivity and mechanical properties. A microconstruction based on Ni/Cr alloy thin-film by
co-sputtering could be an excellent alternative to expensive Pt or Au.

In this paper, a microconstruction consisting of Ni/Cr alloy thin-film was fabricated.
First, photoresist (PR) was applied as a meander-shaped pattern on a cleaned silicon
dioxide (SiO2) wafer. After that, Ni and Cr were co-sputtered on the PR-patterned SiO2
wafer by applying different RF power. Ni/Cr alloy thin-films deposited on the PR were
lifted-off in acetone solution. The surface properties of the fabricated Ni/Cr alloy thin-
films were observed. The resistivity of the prepared samples was confirmed through Hall
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measurements, and the calculated resistance was compared with the actual resistance.
The heating characteristics were confirmed by applying 1–10 V to the microconstruction
electrode and these were expressed as a linear regression equation.

2. Experiment
2.1. Microconstruction Design

Ni/Cr alloy, which is low-cost, stable, and robust, was selected as the electrode material
for microconstruction. The microconstruction by Joule heating follows Equation (1).

P = V · I (1)

where V is the voltage applied to the microconstruction electrode, I is the current according
to the voltage, and P is the heating power. The I changes according to the resistance (R) of
the thin-film microconstruction and the V applied thereto. Therefore, by employing Ohm’s
Law, Equation (1) can be reorganized into Equation (2).

P = V · I = V2/R (2)

From Equation (2), it can be inferred that the lower R, the higher P. Since R depends
on the design of the microconstruction, the power consumption can be induced through
the intentional R. The R of the thin-film microconstruction is as follows:

R = ρL/wt (3)

where ρ is the resistivity of the materials, and L, w and t are the total length, width,
and thickness of the thin-film microconstruction, respectively. Several R-values can be
obtained by adjusting these parameters. Figure 1 shows the structure of the patterned
microconstruction used in this paper, and the designed L, w and t were 28 mm, 0.2 mm,
and 1 µm, respectively.

Figure 1. Schematic of meander-type Ni/Cr alloy-based microconstruction.

As shown in Figure 2, the ρ of the samples was observed through Hall measurements.
When the RF power ratio applied to the 4 inch Ni and Cr targets was 3:1, 2:1, and 1:1, the
ρ values were 247, 150, and 91 µΩcm, respectively. It was observed that ρ decreased as
the RF power applied to the Cr target increased [17]. The R of the samples was obtained
by substituting the designed L, t, and w in Figure 1 and the ρ values of each material in
Figure 2 into Equation (3). The calculated R values are summarized in Table 1.
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Figure 2. Resistivity of the samples via Hall measurement.

Table 1. Characteristics of the designed microconstruction.

RF Power Ratio
(Ni:Cr) L (mm) w (mm) t (µm) ρ (µΩcm) R (Ω)

3:1 28 0.2 1 247 346
2:1 28 0.2 1 150 210
1:1 28 0.2 1 91 127

2.2. Microconstruction Fabrication

The starting material, a 4 inch SiO2 wafer (100, wet-3000 Å) was sonicated in the
following order: trichloroethylene (purity of ≥99.5%), acetone (purity of ≥99.5%), methanol
(purity of ≥99.8%), and deionized water (≥18.2 MΩ·cm @25 ◦C) for 10 min each. PR (AZ
GXR-601 46cp) was patterned on the cleaned SiO2 wafer through a photolithography
process. The Ni/Cr alloy thin-film was deposited on the PR patterned wafer through a
RF magnetron sputtering system. Table 2 shows the specific deposition conditions for the
Ni/Cr alloy thin-film samples. All samples were deposited at room temperature with
a working vacuum of 1.5 × 10−2 Torr by injecting 60 sccm of argon gas. The reason for
the different deposition times is to obtain t of 1 µm. After the deposition of the Ni/Cr
alloy thin-film was completed, the designed microconstruction was obtained through the
lift-off process. Finally, polydimethylsiloxane (PDMS), which is used as a protective film,
was spin-coated. Figure 3 shows the fabrication process of a Ni/Cr alloy thin-film based
microconstruction.

Table 2. RF magnetron sputtering system conditions for co-sputtered Ni/Cr alloy thin-film.

Parameter 3:1 Sample 2:1 Sample 1:1 Sample

RF power (W) 300 W:100 W 300 W:150 W 150 W:150 W
Deposition time 38 min 20 s 22 min 30 s 50 min
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Figure 3. Process of Ni/Cr alloy thin-film-based microconstruction fabrication.

2.3. Characterization and Measurement

The prepared samples were cut into samples measuring 2 × 2 cm2. The surface char-
acteristics of the manufactured microconstruction were observed through field emission
scanning electron microscope (FESEM, HITACHI, S-4800) with a 10 kV accelerating voltage.
The heating characteristics of the microconstruction were confirmed by applying 1–10 V as
shown in Figure 4. The temperature according to the applied power was obtained through
the infrared camera. The relationship between the heating temperature (y) and the applied
power (x) was summarized. The ambient temperature was about 15 ◦C and the humidity
was 70% during the measuring process.

Figure 4. Schematic of microconstruction heating measurement.

3. Results and Discussion
3.1. Surface Characterization of Microconstruction

The FE-SEM cross-sectional image and EDS analysis were used to investigate the
surface characteristics of the fabricated microconstruction with various components of
Ni/Cr. Figure 5a shows the surface characteristics of the 3:1 sample. It was observed
that the height of the 3:1 sample coincides with the thickness (1 µm) required. The result
of EDS analysis, independent of the determination of the RF power as 3:1, showed that
the composition ratio of Ni and Cr atoms was close to 2:1 (Ni/Cr: 70.18 wt%/29.82 wt%;
Ni/Cr: 67.58 at%/32.42 at%). Figure 5b displays the surface properties of the 2:1 sample.
The height of the Ni/Cr thin-film in the 2:1 sample (0.992 µm) differs from our desired
height by about 8 nm, so, the measured actual resistance is 211.69 Ω with an error rate
(Err) of 0.8%. According to the results of EDS analysis, its composition ratio was 57.4 wt%
(54.4 at%) for Ni atoms and 42.6 wt% (45.6 at%) for Cr atoms. The 1:1 sample exhibits
the largest Err (5%) because the measured thickness (tmea) was about 950 nm and through
the surface characteristics, as shown in Figure 5c. The composition ratio of Ni and Cr
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atoms in the 1:1 sample was 1:2 (Ni/Cr: 33.36 wt%/66.64 wt%; Ni/Cr: 30.72 at%/69.28
at%). Overall, the thickness of the SiO2 layer, which is under the Ni/Cr thin-film, was
300 nm. In addition, as the RF power applied to the Cr target increases compared to Ni,
the composition ratio of Cr atoms in the sample increases. When the same RF power is
applied to both targets (1:1 sample), the composition ratio of Cr atoms was higher. Table 3
summarizes the Err from the height difference between the designed microconstruction
and the measured samples.

Figure 5. FE-SEM image (left) and EDS component analysis of the samples (right): (a) 3:1, (b) 2:1, and (c) 1:1.
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Table 3. Characteristics of measured Ni/Cr alloy thin-film microconstruction.

RF Power Ratio
(Ni:Cr) tmea (µm) Rreq (Ω) Rmea (Ω) Err (%)

3:1 1 346 346 0
2:1 0.992 210 211.69 0.8
1:1 0.95 127 133.68 5

3.2. Heating Characteristics of Microconstruction

The heating temperature in Joule heat-based microconstructions can be inferred ac-
cording to the resistance of the material and the applied voltage. Figure 6 shows the heating
characteristics of the samples. The heating characteristics of the 3:1 sample (Figure 6a)
appear to have the highest heating temperature even though it has the lowest conductivity
among the samples, as summarized by the following equation:

y (◦C) = 0.1533x (mW) + 23.39 (4)

where y is the generated temperature (◦C) and x is the applied power (mW). When 10 V
(289 mW) was applied to the microconstruction electrode, the obtained temperature was
67.4 ◦C. Figure 6b displays the heating characteristics of the 2:1 sample. The infrared
camera inset image shows that it is 50.3 ◦C at an applied voltage of 10 V (472.4 mW). The
exothermic characteristics of the 2:1 sample is as follows:

y (◦C) = 0.0544x (mW) + 25.185 (5)

Figure 6c shows the heating characteristics of a 1:1 sample, which was 53.4 ◦C when
the applied voltage was 10 V. The heating characteristics of a 1:1 sample can be summarized
in the following equation:

y (◦C) = 0.0444x (mW) + 18.781 (6)

All samples had a linear temperature according to the applied power, and the accuracy
of linear regression lines (Equations (4)–(6)) was high because the coefficient of determina-
tion (R2) was distributed in the range of 0.993 to 0.999. In addition, the slope of the linear
regression was reduced as the ratio of Cr in the Ni/Cr alloy thin-film microconstruction
increased.

We redesigned the 3:1 sample to fabricate a microconstruction with a resistance of
100 Ω. Figure 7 shows the actual image of the manufactured microconstruction and
the infrared camera image of the temperature (171.3 ◦C) when 10 V was applied. The
manufactured microconstruction was designed with total length of l, thickness of t, and
width of W. The actual resistance of the microconstruction measured with a multimeter
was 103.63 Ω. When the measured resistance was substituted in Equations (2) and (4),
the temperature was 171.2 ◦C. Therefore, there was no significant difference between the
measured and calculated temperature. It is expected that the desired target temperature can
be obtained by designing the RF and applied power because of the high R2 of the samples.
Kang et al. reported that the electrical resistances of a Pt-based microconstruction were 127
and 171 Ω at 25 ◦C and 150 ◦C in the temperature oven, respectively [13]. Compared to
Pt-based microconstruction, nickel–chromium alloy-based microconstruction have lower
resistance and higher temperatures were confirmed. Therefore, it is more advantageous
to use a cheaper nickel–chromium alloy-based microconstruction to achieve a higher
temperature.
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Figure 6. Temperature of microconstruction according to the applied power and infrared camera inset image when applying
10 V to the samples: (a) 3:1, (b) 2:1, and (c) 1:1.

Figure 7. The image (left) and infrared camera image (right) of applying 10 V to a microconstruction
redesigned for generating high temperatures.
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4. Conclusions

Pt and Au are high-cost materials that are used as targets for sputtering systems,
which are important in microfabrication processes. We studied whether Ni and Cr could
be used as alternative targets to lower the costs. In order to fabricate the Joule heat-based
microconstruction, thin-film composed of Ni/Cr alloy was co-sputtered on a SiO2 wafer
via a RF magnetron sputtering system. The ratio (Ni:Cr) of RF power applied to both
targets was 3:1, 2:1, and 1:1. As a result of co-sputtering, it was observed through EDS
analysis that when the same RF power was applied, more Cr atoms were deposited than
Ni atoms. In addition, electrical conductivity improved as the RF power applied to the Cr
target increased, compared to the Ni target. However, the 3:1 sample, which had the lowest
electrical conductivity, had the best heat generation characteristics. The 3:1 sample was
redesigned to generate high temperatures (171.3 ◦C) when 10 V was applied. Surprisingly,
the desired temperature was achieved with the designed resistance due to the high accuracy
the linear regression equation. The co-sputtered Ni/Cr alloy thin-film microconstruction
fabricated through a RF magnetron sputtering system can be designed to achieve target
temperatures. Ni/Cr alloy thin-film manufactured through co-sputtering could be an
excellent replacement for expensive Pt or Au.
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