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Abstract: Solar energy-gas-fired boiler heating systems attract widespread attention due to their
eco-friendly technologies and reasonable prices. In order to promote the application of a solar
energy-gas-fired boiler system for decentralized heating, this study proposed a holistic method to
optimize the combination of equipment specifications and control strategies of the system. A detailed
mathematical model of the hybrid energy system was developed and validated by experiments
to simulate various operating conditions and evaluate the optimal design results. A case study
was conducted in Tianjin, China, and optimal schemes were obtained. The influence of different
factors on the system’s annual comprehensive energy efficiency ratio (AEER) and annual cost (AC)
were studied by sensitivity analysis; the results showed that the solar collector area was extremely
valuable for the optimization of AEER and AC. The results of this study provide a reference for the
optimization design of the solar energy-gas-fired boiler system, which is beneficial to the promotion
of the utilization of solar energy.

Keywords: solar energy; gas-fired boilers; mathematical models; optimization

1. Introduction

Buildings are responsible for 36% of global energy consumption and nearly 40% of
carbon dioxide emissions, and space heating accounts for 53% of building energy use [1,2].
Meanwhile, with the progress of society and the development of the economy, the heating
demand in regions with no central heating is growing and gradually expanding [3,4]. More-
over, most of the current heating and hot water supply systems consume non-renewable
energy, which are not conducive to sustainable development. Therefore, seeking suitable
alternative heating solutions, such as decentralized heating systems with renewable energy,
which can minimize energy consumption and carbon emissions, while improving thermal
comfort for areas where central heating cannot be used, has become a challenge.

Of the many potential renewable heating solutions, solar heating technology has been
widely used in recent decades due to its pollution-free and energy-saving advantages [5,6],
and it acts a pivotal part in the domestic sector in many countries. Numerous studies
concentrate on the development of this technology, including the system operation strat-
egy [7–9], new heat transfer fluid [10–12], system structure optimization [13,14], system
integration [15,16], etc. Among them, the hybrid energy system is regarded as promising,
because it can combine the advantages of different energy sources [17,18]. The integra-
tion system makes rational use of solar energy with other energies, such as geothermal
energy [19,20], fossil energy [21], biomass energy [22], wind energy [23], and electricity
energy [24], which provide flexible supplements to the solar thermal utilization.

On the other hand, gas-fired boilers are widely used for heating, especially in rural
areas, ascribed to their eco-friendly technology and reasonable prices [25,26]. Therefore,
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this technology has become one of the preferred choices for solar integrated heating
systems. For instance, European countries have been vigorously promoting the use of
solar–gas heating systems and improving relevant standards [27,28]. At the same time, the
research community is devoted to the performance evaluation and economic analysis of
the solar-gas hybrid heating system.

Hang et al. [29] evaluated solar water heating systems for typical U.S. residential
buildings; their results showed that the flat-plate solar water heating system using a natural
gas auxiliary heater has the best performance. Karki et al. [30] conducted experiments to
study the thermal performance of a solar-gas hybrid water heating system under three
different modes of heating and optimized the operating mode. It was reported that the
energy consumed by the system, per degree of the temperature rise of the tank water,
increased with an increase in inlet water temperature. Thus, instead of heating water
that was preheated by solar energy, it was recommended that the cold incoming water be
heated separately and mixed with the solar tank water using a thermostatic mixer. Aamir
Mehmood et al. [31] built a TRNSYS based model to evaluate the performance of a solar
water heating system with a natural gas backup. It was found that 23–56% backup fuel
could be saved by replacing the conventional gas water heating system with the hybrid
system. The study also pointed out the effect of the differential temperature controller on
energy saving, but the control strategy was not analyzed.

In China, Cheng et al. [32] established a mathematical model to analyze a hybrid
energy system, which was composed of a heat pump, solar collectors, and a wall-mounted
gas heater. The results show that the system had good economic performance. Guangxiao
K et al. [33] compared the economic and environmental protections of solar heating systems
assisted by electric heating and a wall-mounted gas heater, respectively, and concluded
that the system combined with a gas heater was the better choice for household heating.
Shui Yu et al. [34] analyzed the performance of a solar-gas hybrid heating system in cold
climates and reported that the system could save the investment of the heat storage device
in the solar high temperature power generation system, and the energy comprehensive
utilization rate could be increased by 80% or more than traditional systems. Chen et al. [35]
studied the hybrid system with a solar and gas heater through mathematical models, and
the impact of the minimum temperature rise of the gas water heater was analyzed. It
was reported that the investment payback period of the solar gas system was 6.5 years,
and when the minimum gas temperature rise reduced from 5 ◦C to 1 ◦C, the annual gas
consumption reduced by 4%. Zhou et al. [36] established a mathematical model to study
the economics of the solar-gas heating system, the results showed that the solar-gas heating
system could save more than 50% fuel compared with the boiler running alone, and the
cost-effective area of collectors for the Jinan area was obtained.

It can be concluded that the technical feasibility and economics of the solar-gas hybrid
heating system have been fully confirmed, and scholars have conducted optimization on
the system from different perspectives, such as the solar collector area, the equipment
specification, and operation modes, respectively. However, there is little research on the
comprehensive impacts of these factors (equipment specifications and control strategies),
on the thermal performance and economy of the system.

Therefore, this study proposed a holistic method to optimize the combination of
equipment specifications and control strategies of the solar energy-gas-fired boiler heating
system, for better efficiency and economics. Firstly, a detailed mathematical model of the
solar energy-gas-fired boiler heating system was developed to predict the system operating
performance, and its reliability was validated by the experiment. Secondly, an optimized
solar energy-gas-fired boiler heating system was proposed by using a mathematical model
in Tianjin, China, as a case study. Lastly, the influences of the solar collector area, water
tank volume, and startup/shutdown temperature difference of the solar collector on the
system’s annual comprehensive energy efficiency ratio (AEER) and annual cost (AC) were
studied by a sensitivity analysis. The results of this study provide a reference for the
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optimization design of the solar energy-gas-fired boiler heating system, which is beneficial
to the promotion of the utilization of solar energy.

2. System and Mathematical Models
2.1. System Descriptions
2.1.1. System Development

The solar energy-gas-fired boiler system consists of the heat storage water tank unit,
the solar energy heating unit, and the gas-fired boiler unit. A schematic of the system
is shown in Figure 1. The heat storage water tank for heat storage and transfer is in the
center of the system. The lower coil of the heat storage water tank is connected to the solar
collector, and the upper coil is connected to the user’s terminal. Domestic hot water is
directly taken out from the upper part of the heat storage water tank, while tap water is
replenished from the lower part of the heat storage water tank. The solar heat collector
uses solar radiation to increase the temperature of the heat-collecting working fluid; the
high-temperature working fluid heats the water in the storage tank through the lower coil.
The gas-fired boiler is an auxiliary heat source. When the outlet temperature of heating
and domestic hot water cannot reach the temperature required by the user, the water is
heated by the gas-fired boiler and then enters the user terminal.
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Figure 1. Schematic of the solar energy-gas-fired boiler system.

2.1.2. Operation Modes and Control Strategies

The system has three operating modes: the solar collector operates alone; the solar
collector and the gas-fired boiler operate jointly; the gas-fired boiler operates alone. As
shown in Figure 2, when the heat provided by solar collector can meet the heat demand
of users, the solar collector operates alone, otherwise, the solar collector and the gas-fired
boiler operate jointly. When the solar collector cannot be turned on due to the lack of solar
irradiance outdoors, the gas-fired boiler operates alone.



Energies 2021, 14, 3195 4 of 27

Energies 2021, 14, 3195 4 of 28 
 

 

difference is greater than the startup temperature difference, the solar collector circulating 
pump will start; when the difference is less than the shutdown temperature difference, 
the solar heat collection circulating pump will stop. 

 
Figure 2. Flowchart of the operation modes and control strategies. 

2.2. Mathematical Models of the System 
An integrated mathematical model is developed for simulating the operation of the 

system. This model contains models of the flat-plate solar collector, the gas-fired boiler, 
and the heat storage water tank. The lumped model is adopted for the flat-plate solar col-
lector and the gas-fired boiler, and the stratified model is adopted for the heat storage 
water tank. 

  

The user sets the value of the 
heating water and domestic hot 

water outlet temperature

START

 Is there solar 
irradiance outdoors ?

The solar collector 
heating cycle starts to 

run

NO

The gas-fired boiler 
operates alone

 Heat exchange
 temperature difference > startup 

temperature difference？

The solar collector 
circulating pump 

starts to run

YES

YES

The solar collector 
circulating pump is 

on

Heat exchange 
temperature difference > shutdown 

temperature difference？

YES
The solar collector 
circulating pump is 

off

NO

NO

Outlet temperature 
of the water tank > preset

 temperature？

The solar collector 
operates alone

YES
The solar collector 
and gas-fired boiler 

operate jointly

NO

END

Figure 2. Flowchart of the operation modes and control strategies.
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The control strategy of the system mainly includes the start-stop control of the solar
heat collection cycle. The cycle adopts temperature difference control: set the temperature
difference between the temperature of the working fluid entering the heat storage water
tank and the temperature of the lower tank. As shown in Figure 2, when the heat exchange
difference is greater than the startup temperature difference, the solar collector circulating
pump will start; when the difference is less than the shutdown temperature difference, the
solar heat collection circulating pump will stop.

2.2. Mathematical Models of the System

An integrated mathematical model is developed for simulating the operation of the
system. This model contains models of the flat-plate solar collector, the gas-fired boiler, and
the heat storage water tank. The lumped model is adopted for the flat-plate solar collector
and the gas-fired boiler, and the stratified model is adopted for the heat storage water tank.

2.2.1. Model of the Flat-Plate Solar Collector

Qt is the heat supplied by flat-plate solar collectors and it can be calculated as fol-
lows [37]:

Qt = AIθη (1)

where A is the area of the solar collector, Iθ is the total solar flux incident on the tilted
surface, and η is the thermal efficiency of the flat-plate solar collectors.

The instantaneous efficiency equation is as follows:

η = FR

[
(αξ)− Lp

tavg − ta

Iθ

]
(2)

where FR is the heat removal factor of the solar collectors; αξ is the absorptance-transmittance
product; Lp is the heat loss coefficient of the solar collectors; tavg is the average temperature
of the solar collection plate; ta is the ambient temperature.

The thermal performance of the flat-plate solar collector can be tested, and then use
the least square method to fit the instantaneous efficiency equation of the collector, so the
instantaneous efficiency equation can be obtained as follows:

η = a− b
(tavg − ta)

Iθ
(3)

where a and b are constant values that can be obtained by experimental data.
Thus, Qt can be represented as follows:

Qt = AIθη = aIθA− bA(tavg − ta) (4)

2.2.2. Model of the Gas-Fired Boiler

The heat provided by the gas-fired boiler is determined by the tank temperature Tw,
the preset values of the outlet temperature of domestic hot water Ts and heating supply
water Tc. The calculation formula of the total heat supplied by the gas-fired boiler Qg is
as follows:

Qg = Qgc + Qgs (5)

where Qgc is the heat supplied by the gas-fired boiler to the space heating system and can
be calculated as follows:

Tc > t′g·Qgc = Cp ·mc ·
(

Tc − t′g
)

(6)

Tc ≤ t′g·Qgc = 0 (7)
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where Qgs is the heat supplied by the gas-fired boiler to the domestic hot water system and
can be estimated as follows:

Ts ≥ tw1·Qgs = Cp ·mc ·
(

Ts − t′g
)

(8)

Ts < tw1·Qgs = 0 (9)

The thermal efficiency of the gas-fired boiler refers to the ratio of the effective heat
obtained by the heated water to the calorific value of gas. The thermal efficiency calculation
formula of the gas-fired boiler is as follows:

ηg =
Qf

Vg · Hi
× 100% (10)

where Qf is the heat taken away by heated water; Hi is the calorific value of gas; Vg is the
gas consumption.

Vg =
Qgc

Hi · ηc
+

Qgs

Hi · ηs
(11)

where ηs is the thermal efficiency of the gas-fired boiler when supplying domestic hot
water; ηc is thermal efficiency of the gas-fired boiler when supplying heating water.

2.2.3. Model of the Heat Storage Water Tank

This study established different models of the water tank for different usage conditions
for more accurate and simple calculation. When there is a demand for domestic hot water,
the temperature stratification in the water tank is obvious due to the supplement of
cold water at the bottom, so the model of the tank is developed by the stratified model,
which divides the water tank into two segments along the vertical direction. The thermal
stratification phenomena is not considered when there is no hot water use and the model
of the tank is developed by the lumped model.

For reducing the complexity of the mathematical model, assumptions are made
as follows:

(1) The heat dissipation of the heat storage water tank to the surrounding environment is
ignored.

(2) The heat dissipation of the pipeline to the surrounding environment is ignored.

Finite volume formulation is used to analyze the temperature distribution of the tank
and the energy balance theory is used to establish thermal equations of the water tank.

The Stratified Model of Heat Storage Water Tank

The schematic of the tank is demonstrated in Figure 3. According to the Figure 3a, the
tank is divided into the lower segment (lower node) and the upper segment (upper node),
and each segment includes two control bodies of the lower segment of the tank and the
heat exchange coil, respectively.

Figure 3c shows the lower node schematic of the tank. The lower part of the tank is
heated by solar collectors, and the temperature of the lower tank tw1 rises by obtaining
heat from the lower heat exchange coil. Meanwhile, the running water carries the heat
from the lower tank to the upper part.

The energy balance equation of the lower node is shown below:

1
2

ρVCp ·
dtw1

dτ
= Qx + Cp ·ms · (tz − tw1) (12)

where
Qx = kx · Ax · ∆tmx = Cpm ·mm · (tm1 − tm2) (13)
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Figure 3. The schematic of the tank.

The energy balance equation of the lower coils is shown below:

mm · CPm ·
d tm1+tm2

2
dτ

= Qt −Qx (14)

Figure 3b shows the upper node schematic of the tank. The upper heat exchange
coil performs heat exchange between the storage tank and the heating system, while the
running water from the lower part of tank transports heat to the upper part.

The energy balance equation of the upper node is shown below:

1
2

ρVCp ·
dtw2

dτ
= Cp ·ms · (tw1 − tw2)−Qs (15)

where:
tw2 ≥ th·Qs = ks · As · ∆tms = Cp ·mc · (t′g− th) (16)

tw2 < th·Qs = 0 (17)

The energy balance equation of the upper coils is shown below:

mc · CP ·
d th+t′g

2
dτ

= Qgc −Qc + Qs (18)

The flowchart is illustrated in Figure 4.

The Lumped Model of the Heat Storage Water Tank

According to Figure 3a, the tank can be divided into three control bodies, which are
the water tank, the lower heat exchange coil, and the upper heat exchange coil, respectively.
The energy balance equations for the water tank can be represented as follows:

ρVCP ·
dtw

dτ
= Qx −Qs (19)

where:
tw ≥ th·Qs = ks · As · ∆tms = CP ·mc ·

(
t′g − th

)
(20)

tw < th·Qs = 0 (21)
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The heat supplied by the lower coil Qx can be evaluated as Formula (13). The energy
balance equation of the lower coils is shown below:

mm · CPm ·
d(tm1 + tm2)/2

dτ
= Qt −Qx (22)

The energy balance equation of the upper coils can be represented as Formula (18).
The flow chart is shown in Figure 5.
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2.2.4. Solution Procedure

The solution procedure of the system is demonstrated in Figure 6. The calculation
process can output the results of the heat supply of each unit, the gas consumption of
the gas-fired boiler, and the operating cost of the system. At the beginning, inputting the
area of the solar collector, the volume of the water tank, startup temperature difference,
shutdown temperature difference, and other set values. Then the system calls different
modules to calculate according to the difference in the flow of domestic hot water.
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3. Experimental Verification

In order to verify the mathematical model, an experimental system was built. Experi-
ments were conducted in Tianjin (latitude = 39◦13′ N; longitude = 117◦10′ E), a typical city
in the cold climate zone of China. During the experiment, the domestic hot water usage
was simulated by water release according to the demand in actual situations, and the user’s
heating demand was simulated by the cooling water system. Different heating loads were
simulated by adjusting the amount of cooling water.

3.1. Experimental System

Figure 7 shows the test schematic of the experimental system. Solar collectors faced
the south at an inclination angle of 30◦ in the experiment. During the experiment, the
solar collector and the gas-fired boiler operated jointly. The preset temperature of domestic
hot water and heating water was 47 ◦C, the maximum working pressure of heating water
was 10.3 MPa, and the working pressure range of domestic water was 0.02–0.6 MPa. The
technical parameters of the main system equipment are shown in Table 1.
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Table 1. Technical parameters of system equipment.

Equipment Technical Parameters

Solar collector
Equipment model: F-L/0.8-G/TL-1.8-ZT/K-A2

Area: 3.6 m2

Placement: oriented to the south at a tilt angle of 30◦ outside
Solar cycle working fluid Density: 1.14 kg/L Specific heat capacity: 3.5 kJ/(kg·K)

Gas-fired boiler Equipment model: L1PB20-Y36BL, Rated heating capacity:
20 KW

Heat storage water tank
Equipment model: SQT300 Size: 300 L

Upper coils size: Φ25 × 6100 mm
Lower coils size: Φ25 × 3920 mm

The main parameters that need to be tested in the experiments are: outdoor environ-
mental parameters, temperature, flow, and pressure. The precision of the test instruments
is shown in Table 2.

Table 2. The precision of instruments.

Instrument Name Range Precision

Electromagnetic flow meter 0.14–0.6 m3/h ±0.5%
Turbine flow meter 0.14–0.36 m3/h ±0.5%

Wet gas meter 0.04–6 m3/h ±0.5%
Pt100 thermometer 0–120 ◦C ±0.1 ◦C

Y-100 pressure gauge 0–6 KPa ±2.5%
Solar radiometric
instrumentation 0–2000 W/ m2 ±15%

The heat supplied by the solar collector (Qtt), and gas-fired boiler (Qgt) in this experi-
ment can be calculated as follows [38,39]:

Qtt =
n

∑
i=1

Cpm ·mmi · (tm1 − tm2)∆τ (23)
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Qgt =
n

∑
i=1

mci · CP(t′g − tg) · ∆τ ±
n

∑
i=1

msi · CP(tb1 − tb2) · ∆τ (24)

The experimental uncertainty derived from the experiment procedure is estimated
by the method provided by Moffat [40] and Kline [41]. It is calculated by the following
Equation (25), where y is the derived quantity, x is the measured quantity, and δx is the
uncertainty of x. The maximum relative uncertainty of the heat supplied by the solar
collector is ±3.21%, and the maximum relative uncertainty of the heat supplied by the
gas-fired boiler is ±3.93%.

δy =

√(
∂y
∂x1

δx1

)2
+

(
∂y
∂x2

δx2

)2
+ · · ·+

(
∂y

∂xn
δxn

)2
(25)

3.2. Model Validation

Experiments were conducted on August 11 in 2018. The ambient air temperature
was in the range of 27.1 ◦C–34.0 ◦C. The daily average temperature was 31.2 ◦C. The
solar radiation intensity was in the range of 0–1000 W/m2. The total daily radiation was
15.5 MJ/ m2.

Figure 8a–c shows the comparison between the measured and simulated temperature
of the lower tank, the working fluid at the inlet and outlet. The average deviation of the
solar working fluid temperature at the inlet was 2.08 ◦C (4.9%) while the maximum one
was 6.61 ◦C (14.5%). The average deviation of the solar working fluid temperature at outlet
was 2.15 ◦C (5.1%), while the maximum one was 6.55 ◦C (15.3%). The average deviation
of the lower tank’s temperature was 2.18 ◦C (4.9%) while the maximum one was 4.28 ◦C
(9.7%).
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Figure 8. Comparison of the measured and simulated temperature of the lower tank: (a) temperature
of the lower tank, (b) temperature of solar working fluid inlet, and (c) temperature of solar working
fluid outlet.

Figure 9a–c shows the comparison between the measured and simulated temperature
of the upper tank, the supply heating water from the tank, and the return heating water to
the tank. The average deviation of the supply heating water temperature was 0.85 ◦C (2.0%)
while the maximum one was 5.19 ◦C (12.8%). The average deviation of the return heating
water temperature was 1.25 ◦C (3.1%) while the maximum one was 6.98 ◦C (19.3%). The
average deviation of the upper tank temperature was 1.75 ◦C (4.4%) while the maximum
one was 6.72 ◦C (16.0%).
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The comparison between measured and simulated values of each heating unit are
shown in Table 3. The deviation of the heat provided by the solar collectors was 1.24 MJ
(6.70%), the deviation of the heat supplied by the gas-fired boiler was 7.45 MJ (6.77%), the
deviation of the gas consumed by the gas-fired boiler was 0.31 m3 (5.53%).

Table 3. Measured and simulated values of each unit.

Performance Factor Measured Value Simulated Value Deviation %

The heat supplied by solar
collectors (MJ) 18.28 17.04 1.24 6.70

The heat supplied
by the gas-fired boiler (MJ) 166.68 178.78 7.45 6.77

The gas consumed by the
gas-fired boiler (m3) 5.29 5.60 0.31 5.53

Given the necessary assumptions of the mathematic models and error analysis, it
indicates that the simulated results exhibit good agreement with the test results, and the
model can be used in the following analysis.

4. System Optimization
4.1. Objective Function

Thermal performance and economy are important indicators that determine the
promotion and application of the solar–gas systems, so AEER and AC are taken as the
objective functions to optimize this system, respectively. AEER shows the rationality of
the system for the application of various energy sources. AC shows the economy of the
system’s entire life cycle.

The AEER can be calculated as follows [42]:

AEER =
Qt + Qg

Qy
(26)

The primary energy consumed throughout the year Qy can be calculated as follows:

Qy =
3.6× 106 × (N · τsol + Ng · τgas)

βb
+ Vg · Hi (27)

where βb is the power generation efficiency, the value is 0.345.
The AC can be calculated as follows [43]:

AC = C0
i(1 + i)n

(1 + i)n − 1
+ Cy (28)

where i is the discount rate, the value is 4.35%, n is the service life of the equipment, the
value is 15 years.

Where C0 is the initial investment and the value can be calculated as follows:

C0 = Cs + Cg + Cw (29)

where Cy is the annual operating cost and the value can be calculated as follows:

Cy = pe·N·t + pg·Vg (30)

where pe is the price of electricity, the value is USD 0.078/(kWh), pg is the price of gas, the
value is USD 0.376/m3.
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4.2. Optimization Design
4.2.1. Heating Demand

A house for four persons with the area of 104.98 m2 located in Tianjin is studied to
analyze the performance of the solar energy–gas-fired boiler system. The parameters of the
enclosure structure can be seen in Table 4. The system should simultaneously undertake
the user’s heating load and domestic hot water load.

(1) The domestic hot water load: the domestic hot water load Qw can be calculated as
follows [44]:

Qw = Z ·Vw · ρ · Cp · (Tw − tz) · Kh (31)

where Vw is the water consumption per capita, Z is the user number, the value is 4, Kh
is a proportional parameter, tz is the temperature of tap water. The calculated results
are given in Table 5. The calculation result shows that the maximum hot water load is
11,720.80 kW·h.

(2) The heating load: eQuest [45] software is used to calculate the heating load of the
residential room; it can be seen from Figure 10 that the maximum heating load is
8.56 kW.

Table 4. The parameters of enclosure structure.

Enclosure Structure Heat Transfer Coefficient/(W/m2·K) Size Quantity

Wall 0.44 Height 3.01 m -
Windows 2.4 1.8 m × 1.5 m North: 2; East and West: 1

Door 3.02 1.8 m × 2.5 m South: 1

Table 5. Value of Kh and QW.

Time Kh/% QW/kW·h
7:00 5 2344.16
8:00 5 2344.16
11:00 5 2344.16
13:00 5 2344.16
15:00 15 7032.48
16:00 15 7032.48
17:00 25 11720.80
18:00 25 11720.80
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4.2.2. Equipment Selection

According to the load of the case, the solar energy–gas-fired boiler system is designed.
The maximum area of the flat-plate solar collector Amax can be calculated as follows [46]:

Amax =
84600Q · f

JT(1− ηL) · ηd
(32)

where Q is the maximum value of the user’s heating load and domestic hot water load, f is
the solar fraction, ηd is the average collector efficiency, the value is 0.35, ηL is the heat loss
efficiency of pipeline and storage tank, the value is 0.25, JT is the average daily radiation of
solar collector.

The heat storage tank is the heat storage equipment of the solar heat collection unit
and the domestic hot water supply equipment of the user. The equation of the water tank’s
volume V is shown below:

V ≥ 1.5Vmh (33)

where:
Vmh = Ch ·Vh (34)

where Ch is the hourly variation coefficient; Vh is the average hourly domestic hot water
flow, L.

The maximum heating load in this case is 8.56 kW. According to Equation (31), the
maximum solar collector area is 10.1 m2. The average daily hot water consumption per
capita is 80 L, and the daily water consumption of the room is 320 L. According to Equation
(32), the smallest volume of the heat storage water tank is 120 L. The startup temperature
difference of the cycle is in the range of 3 ◦C–4 ◦C, the shutdown temperature difference is
in the range of 1 ◦C–2 ◦C. The traditional equipment in the market is considered, and the
specifications of different equipment are shown in Table 6.

Table 6. The specifications of different equipment.

Equipment Specifications Unit Price (USD)

Gas-fired boiler

9.4–19.5 kW 862
9.4–20.5 kW 940
9.4–23.5 kW 1019
9.4–24.5 kW 1097
9.4–26.5 kW 1175

Tank
101–200 L 235
201–300 L 313
301–400 L 392

Flat plate solar heat collector 1 m2 63

According to the standard [46], the conventional combination of this case is as follows:
the solar collector area is 10 m2, the heat storage water tank is 200 L, the startup and
shutdown temperature differences are 3 ◦C and 1 ◦C. The scheme was simulated by the
mathematical model to calculate the AC and the AEER of the system. The AC is USD
667.80 and the AEER is 1.223.

4.2.3. Optimization Schemes

The orthogonal experiment design (OED) method is regarded as a modern approach
to characterize and optimize system performance in many research areas. The OED method
can be used to select representative points from the full factorial experiment in such a
way that the points are distributed uniformly within the test range and, thus, can ade-
quately represent the overall situation. The combination of equipment specifications and
control strategies are optimized by orthogonal experiment methods for the optimization of
the system.
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Considering the equipment models (Table 6), the choices of equipment specifications
and control strategies are shown below:

Factor A = solar collector area; four levels: 4, 6, 8, 10 m2.
Factor B = water tank volume; three levels: 200, 300, 400 L.
Factor C = startup temperature difference of the solar collector cycle; three levels: 3 ◦C,

3.5 ◦C, 4 ◦C.
Factor D = shutdown temperature difference of the solar collector cycle; three levels:

1 ◦C, 1.5 ◦C, 2 ◦C.
The orthogonal design table was generated using the Statistical Product and Service

Solutions (SPSS) software, as listed in Table 7.

Table 7. The results of the orthogonal design.

Combination Solar Collector
(m2)

Tank
(L)

Startup
Temperature

Difference(◦C)

Shutdown
Temperature

Difference (◦C)

1 4 200 3.0 1.0
2 4 200 3.0 2.0
3 4 300 3.5 1.0
4 4 400 4.0 1.5
5 6 200 3.5 2.0
6 6 200 4.0 1.0
7 6 300 3.0 1.5
8 6 400 3.0 1.0
9 8 200 3.5 1.5
10 8 200 4.0 1.0
11 8 300 3.0 1.0
12 8 400 3.0 2.0
13 10 200 4.0 1.5
14 10 200 3.0 1.5
15 10 300 4.0 2.0
16 10 400 3.5 1.0

The mathematical model was used to simulate the schemes for calculating the heat
supplied by each heating unit, gas and power consumption, the AC, and the AEER of
the system. The results of each scheme are shown in Table 8. It can be seen that there are
different optimal schemes for the two objective functions.

Table 8. The schemes and results.

Combination
The Thermal Energy

Provided by Solar
(MJ)

The Thermal Energy
Provided by Gas (MJ)

Gas
Consumption

(m3)

Power
Consumption

(kW·h)

AC
(USD) AEER

1 6608.29 49,062.42 1290.00 162.70 651.0 1.160
2 6571.53 49,097.09 1290.92 132.97 649.0 1.167
3 6769.51 49,620.37 1304.67 167.71 664.1 1.161
4 6803.02 50,069.56 1316.48 150.94 674.5 1.165
5 8454.30 47,119.63 1238.90 135.29 641.2 1.212
6 8501.33 47,076.71 1237.79 162.19 642.9 1.205
7 8882.79 47,508.09 1249.13 160.40 647.0 1.213
8 9106.38 47,895.27 1259.32 177.43 659.4 1.212
9 9688.54 45,847.83 1205.48 148.67 634.0 1.240
10 9714.74 45,817.82 1204.69 162.35 642.0 1.236
11 10,341.14 46,050.66 1210.81 177.80 645.5 1.245
12 10,645.34 46,428.72 1220.76 157.45 654.9 1.256
13 10,557.13 44,947.30 1181.80 163.56 637.8 1.258
14 10,524.17 44,978.00 1182.61 149.63 637.1 1.262
15 10,601.27 45,194.89 1181.80 149.50 646.4 1.276
16 11,729.92 45,372.19 1192.98 180.50 657.8 1.278
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Optimum scheme 1: the optimized result is combination 16 when the AEER is taken as
the objective function. The area of solar collectors is 10 m2, the rated power of the gas-fired
boiler is 9.4–24.5 kW, the heat storage water tank is 400 L, the startup and shutdown
temperature difference are 3.5 ◦C and 1.0 ◦C, the AC is USD 657.80 and the AEER is 1.278.
Compared with the conventional scheme, the AEER is increased by 4.5%.

Optimum scheme 2: the optimized result is combination 9 when taking the minimum
AC of the system is taken as the objective function. The area of solar collectors is 8 m2,
the rated power of gas-fired boiler is 9.4–24.5 kW, the heat storage water tank is 200 L, the
startup and shutdown temperature difference are 3.5 ◦C and 1.5 ◦C, the AC is USD 634.00
and the AEER is 1.240. Compared with the conventional scheme, the AC is reduced by
5.1%.

4.3. Sensitivity Analysis

In order to analyze the influence of different design variables on AEER and AC within
the scope of system optimization, the sensitivity coefficient E is introduced for sensitivity
analysis [47]. The sensitivity coefficient E is used to measure the relative change of the
dependent variable Y caused by the change of the independent variable X, which can be
calculated as follows:

E =
∆Y
Y

/
∆X
X

(35)

4.3.1. Sensitivity of the AEER

When taking the AEER as the objective function, the solar collector area is 10 m2, the
volume of heat storage water tank is 400 L, the rated power of the gas-fired boiler is 26 kW,
and the startup and shutdown temperature differences are 3.5 ◦C and 1.0 ◦C, respectively.

The AEER is calculated when the area of the solar collector is around 10 m2. The
simulation results (in Figure 11) show that the AEER increases with the increase of the solar
collector area. When the area of the solar collector increases by 50%, the AEER increases by
3.6%. The elasticity coefficient E is 0.074.
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The AEER is calculated when the volume of the heat storage water tank is around
400 L. The simulation results (in Figure 12) show that the AEER increases with the increase
of the volume of the heat storage water tank. When the volume of the heat storage water
tank increases by 66.7%, the AEER increases by 1.1%. The sensitivity coefficient E is 0.017.
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The EER is calculated when the startup temperature difference is around 3.5 ◦C. The
simulation results (in Figure 13) show that the EER slowly grows with the increase of the
startup temperature difference. When the startup temperature difference increases by 85%,
the EER increases by 0.75%. The sensitivity coefficient E is 0.002.
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The AEER is calculated when the shutdown temperature difference is around 1.0 ◦C.
The simulation results (in Figure 14) show that the AEER increases with the increase of the
shutdown temperature difference. When the shutdown temperature difference increases
by 257%, the AEER increases by 2.8%. The sensitivity coefficient E is 0.003.
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The results indicate that the AEER of each design variable to the system is positive
feedback. The order of sensitivity is: solar collector area > heat storage water tank vol-
ume > shutdown temperature difference > startup temperature difference. Therefore,
when building the system, the area of the collector ought to be first considered to the
optimal value.

4.3.2. Sensitivity of the Average Annual Cost

When taking the AC of the system as the objective function, the solar collector area is
8 m2, the volume of the heat storage water tank is 200 L, the rated power of the gas-fired
boiler is 26 kW, and the startup and shutdown temperature differences are 3.5 ◦C and
1.5 ◦C, respectively.

The AC was calculated when the area of the solar collector was around 8 m2. The
simulation results (in Figure 15) show that the operating cost of the system is reduced and
the initial investment is increased with the increase of the area of solar collectors. The
annual cost of the system decreases first and then increases. The results indicate that the
optimized area of the solar collector is 7.5 m2, and the minimum AC is USD 633.62.

The AC is calculated when the heat storage water tank volume is around 200 L. The
simulation results (in Figure 16) show that the initial investment is increased; the operating
cost of the system decreases first and then increases with the increase of the volume of
the heat storage water tank. The AC of the system decreases first and then increases. The
results indicate that the optimized volume of the heat storage water tank is 160 L, and the
minimum AC is USD 632.52.
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The AC is calculated when the startup temperature difference is around 3.5 ◦C and
the results are shown in Figure 17. The simulation results show that the cost of the
system changes little with the increase of the startup temperature difference. The AC is
approximately USD 634.00.
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The AC is calculated when the shutdown temperature difference is around 1.5 ◦C;
it can be seen from Figure 18 that the AC decreases with the increase of the shutdown
temperature difference. The AC of the system decreases by 0.3% in dollars when the
shutdown temperature difference increases by 90%. The sensitivity coefficient E is −0.038.
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to the AC of the system. The sensitivity of the shutdown temperature difference is greater
than the startup temperature difference.

5. Conclusions

As there are limited studies focusing on the optimization design of the hybrid energy
system, this study proposed a holistic method to comprehensively study the different
combinations of equipment specifications and control strategies of the system for better
efficiency and economics. In this study, a detailed mathematical model of the hybrid energy
system was developed and validated by experiments, and it was used to simulate the
different operating conditions of the system and to evaluate the optimal design of the
cost-effective system. A case study was conducted in Tianjin, China, and the influence of
different variables was evaluated by the sensitivity analysis.

The system was optimized by the orthogonal design method. When the AEER is used
as the objective function, the optimum scheme is the following: the solar collector area is
10 m2, the volume of the heat storage water tank is 400 L, the rated power of the gas-fired
boiler is 24.5 kW, the startup and shutdown temperature differences are 3.5 ◦C and 1.0 ◦C,
the AEER is 1.278. Moreover, when taking the minimum AC of the system as the objective
function, the optimum scheme is that the solar collector area is 8 m2, the rated power of the
gas-fired boiler is 24.5 kW, the volume of the heat storage water tank is 200 L, the startup
and shutdown temperature differences are 3.5 ◦C and 1.5 ◦C, the AC is USD 634.00.

The sensitive ranking of the AEER of each design variable to the system is: solar
collector area > heat storage water tank volume > shutdown temperature difference >
startup temperature difference. The area of the solar collector and the volume of the heat
storage water tank hold extreme value for the AC of the system. The closer they are to the
extreme values, the less sensitive they are to the AC of the system.
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Nomenclature

a, b constant value
f solar fraction
I discount rate, %
kx/ks heat transfer coefficient of lower/upper heat exchange coil, W/(m2·K)
mm/mmi mass flow rate of solar working fluid, kg/s
ms/msi mass flow rate of domestic hot water, kg/s
mc/mci mass flow rate of heating system, kg/s
N service life of the equipment
pe price of electricity, USD
pg price of gas, USD
ta ambient temperature, ◦C
tavg average temperature of the solar collection plate, ◦C
tb1/tb2 domestic hot water at the inlet/outlet of the gas-fired boiler
t1/t2 startup/shutdown temperature difference of the solar thermal cycle, ◦C
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th heating water temperature at the inlet of the heat storage water tank, ◦C
t′g heating water temperature at the outlet of the heat storage water tank, ◦C
tg heating water temperature at the outlet of the gas-fired boiler, ◦C
tm1, tm2 solar working fluid temperature at the outlet/inlet of the solar collector, ◦C
tw temperature of the heat storage water tank, ◦C
tw1, tw2 temperature of the lower/upper heat storage water tank, ◦C
tz tap water temperature at the inlet of the heat storage water tank, ◦C
A area of solar collectors, m2

Ax/As area of the lower/upper heat exchange coil, m2

C0 initial investment, USD
Cs initial investment of solar collectors, USD
Cg initial investment of gas-fired boiler, USD
Cw initial investment of heat storage water tank, USD
Cy annual operating cost, USD
Ch hourly variation coefficient
CP specific heat capacity of water, J/kg·◦C
CPm specific heat capacity of the solar working fluid, J/kg·◦C
FR heat removal factor of solar collectors
Iθ total solar flux incident on tilted surface, W/m2

JT average daily solar radiation of solar collectors, kJ/m2

Hi calorific value of gas, kJ/m3

Kh proportional parameter
Lp heat loss coefficient of solar collectors
N power of the solar energy water pump, W
Ng power of the gas-fired boiler, W
Qc heating load, W
Qw domestic hot water load, W
Qf heat taken away by heated water, W
Qg total heat supplied by the gas-fired boiler, W
Qgc heat supplied by the gas-fired boiler to the heating system, W
Qgs heat supplied by the gas-fired boiler to the domestic hot water system, W
Qgt heat supplied by the gas-fired boiler in this experiment, W
Qt heat supplied by solar collectors, W
Qtt heat supplied by solar collectors in this experiment, W
Qx heat supplied by the lower heat exchange coil, W
Qs heat supplied by the upper heat exchange coil, W
Qy primary energy consumed by the system throughout the year, W
Tc preset heating supply water temperature, ◦C
Tw preset domestic hot water temperature, ◦C
V volume of tank, m3

Vg gas consumption, m3

Vmh maximum hourly domestic hot water flow, kg/s
Vh average hourly domestic hot water flow, kg/s
Vw water consumption per capita, L
Z user number of domestic hot water
α absorptance
ξ transmittance
βb power generation efficiency
η efficiency of the flat-plate solar collectors
ηd average efficiency of solar collectors
ηL heat loss rate of pipeline and storage tank
ηg thermal efficiency of the gas-fired boiler
ηs thermal efficiency of the gas-fired boiler when supplying domestic hot water
ηc thermal efficiency of the gas-fired boiler when supplying heating water
P density of water, kg/m3

T time variable, s
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∆τ time of experiment record interval, s
τsol running time of the solar collector circulating pump, s
τgas running time of the gas-fired boiler, s
τ0 system operating time, s
∆tms logarithmic mean temperature difference between heating circulating water and the

water tank, ◦C
∆tmx logarithmic mean temperature difference between the solar working fluid and the water

tank, ◦C
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