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Abstract: Sufficient and convenient fast-charging facilities are crucial for the effective integration
of electric vehicles. To construct enough fast electric vehicle-charging stations, station owners need
to earn a reasonable profit. This paper proposed an optimization framework for profit maximiza-
tion, which determined the combined planning and operation of the charging station considering
the vehicle arrival pattern, intermittent solar photovoltaic generation, and energy storage system
management. In a planning horizon, the proposed optimization framework finds an optimal config-
uration of a grid-connected charging station. Besides, during the operation horizon, it determines
an optimal power scheduling in the charging station. We formulated an optimization framework to
maximize the expected profit of the station. Four types of costs were considered during the planning
period: the investment cost, operational cost, maintenance cost, and penalties. The penalties arose
from vehicle customers’ dissatisfaction associated with waiting time in queues and rejection by
the station. The simulation results showed the optimal investment configuration and daily power
scheduling in the charging station in various environments such as the downtown, highway, and
public stations. Furthermore, it was shown that the optimal configuration was different according to
the environments. In addition, the effectiveness of solar photovoltaic, energy storage system, and
queue management was demonstrated in terms of the optimal solution through a sensitivity analysis.

Keywords: electric vehicle (EV); energy storage system (ESS); EV-charging station; optimization;
power scheduling; queueing system; solar photovoltaic (PV)

1. Introduction

The electrification of the transport sector is expected to play a vital role in mitigating
the environmental damages caused by the broad usage of fossil fuels, especially in the
power-generation and transportation sectors. It has also stimulated increasing attention
towards electric vehicles (EVs) [1]. For instance, the U.K.’s Committee on Climate Change
stated that all new cars and vans in the U.K. should be EVs by 2035 [2]. Moreover, about 30%
of car passengers’ vehicle kilometers will be provided by electricity in 2040 [3]. Generally,
replacing conventional gas-based vehicles with EVs can reduce the emission of harmful
gases, increase the penetration of renewable energy resources, and alleviate the issues
of the accessibility and affordability of fossil fuels [4–8]. Consequently, with the modern
development of battery technologies, countries and industries around the world are looking
to elevate their policies and incentives to expedite the large-scale market share of EVs [9,10].

However, the utmost concern over the high penetration of EVs correlates with the lim-
ited availability of EVs’ fast-charging facilities and EV owners’ range anxiety resulting from
both the EVs’ short driving distance and the long waiting time at charging stations [11–13].
To overcome these challenges, ensuring that EVs operate solely on electric power, it is
indispensable to establish sufficient fast-charging stations conveniently accessible to sat-
isfy the charging demand [14–17]. Therefore, optimal planning is required to ensure the
cost-effective operation of the fast-charging station and accelerate the ubiquitous usage
of EVs.
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In recent years, issues with EV-charging infrastructure deployment have received
extensive attention from researchers. The existing literature focused on optimal placement
and planning problems, specifically from the sides of the siting and sizing of charging
stations [18–24]. The authors in [18] proposed optimal planning for plug-in EV fast-
charging stations based on the characterization of charging demand using a Markov chain
and queueing theory. Additionally, an optimization approach was presented for optimal
placement and sizing of the EV-charging stations to minimize the total cost, including
station development, electrification costs, and both the EV and electric grid energy loss
cost [19]. Another optimization model for optimal sizing and placement of plug-in electric
vehicle fast-charging stations was proposed to minimize the social cost related to both the
transportation and distribution network [20]. Further, a profit optimization problem was
proposed in [21] for charging service providers wanting to build or expand their charging
networks based on the time-varying and location-dependent demands from vehicles and
the constraints of the power grid. Using the capacitated flow refueling location model
to describe the EV charging demand in [22], the authors proposed an approach for the
optimal planning of EV fast-charging stations considering the interaction between the
transportation and electrical networks. A multi-objective model to maximize the traffic
flow and to minimize the power loss was presented in [23] for the optimal location and
sizing of the charging station. In [24], the authors proposed an optimization framework to
minimize the cost for the charging station by sizing infrastructure and by scheduling the
charging session for the EVs while maintaining the quality of service.

For the profitable operation of fast-charging infrastructures, the usage of an energy
storage system (ESS) to coordinate the impact of the station and the main grid was stud-
ied [25–28]. An approach to determine the optimal size of the ESS to minimize the energy
and the ESS cost of a fast-charging station was proposed [25]. In [26], a method was
presented that determines the size of the ESS considering the average waiting time of EVs
arriving at a fast-charging station. Moreover, an optimization approach was presented
in [27] for the sizing of the ESS in a fast-charging station considering cost minimization,
peak shaving, and resilience enhancement. To analyze the economic scenario, in [28], the
authors studied a network of charging stations equipped with an ESS and an allocation
scheme concerning power and customer routes.

Fast-charging station operators look to maximize their profits while meeting EV charg-
ing demand. To this end, the optimal operation of external main grid power and internal
power from solar photovoltaic (PV) systems and ESSs is essential. A study proposed a
mixed-integer programming method to minimize the cost of PV-powered EV-charging
stations [29]. Additionally, a design criterion for fast-charging facilities was studied to
supplement the residential and public slow-charging infrastructure for covering Flemish
mobility needs in [30]. The concept of a virtual energy hub for the integration of an electric
transportation system combined with solar PV generation and an ESS from a power elec-
tronics point of view was proposed in [31]. In our previous work [32], we developed an
optimization technique using solar PV and an ESS for the fast EV-charging station (FECS)
operation based on the commute and errand distributed trips.

In this study, we extended our previous research by considering an FECS- planning
problem. We developed an optimization framework for profit maximization considering
both the optimal configuration of the FECS with solar PV and an ESS and the daily power
scheduling in the FECS. During the long-term planning horizon, the FECS owner decides
the number of fast chargers and waiting spaces, as well as the capacities of the solar PV
system and the ESS. In the short-term operational horizon, the FECS schedules its power
(solar PV, ESS, and main grid power) to maximize its operational profit while supplying
EV charging demand. Further, we formulated an optimization model that combines the
planning and daily operation in their respective horizons and maximizes the profit of the
FECS over the entire planning horizon. The revenue of the FECS comes from the EVs’
charging fees. The overall cost includes four types of costs: (i) the FECS construction
cost, (ii) the daily operational cost, (iii) the maintenance cost of the FECS, and (iv) the
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penalty from EV customers’ inconvenience. We also considered two penalty terms from
EV owner’s inconvenience: waiting time in FECS queue and rejection by FECS. To model
the EV mobility and calculate these penalties numerically, we used an approximation
M/G/N/K queueing system [33–35]. We showed the effectiveness of solar PV, ESS, and
queue management and the impact of various parameters on the optimal solution by
sensitivity analysis through case studies.

The remainder of this paper is organized as follows. Section 2 describes the integrated
FECS model. In Section 3, we formulate the planning and operation optimization model
and demonstrate the solution methodology. Section 4 presents the case study results
to verify the effectiveness of the proposed model. Finally, we present the conclusion in
Section 5.

2. FECS System Model

An integrated FECS is shown in Figure 1. The FECS is equipped with a set of fast
chargers {1, ..., N} that use electric power from the solar PV, the ESS, and the main grid
and operates at a fixed charging power rate. Further, the number of waiting spaces R is
preserved in the FECS for EVs when all chargers are occupied. Based on the capacity of
the FECS, at most N EVs can be charged simultaneously. In this study, we considered that
during long-term planning, the FECS decides an investment on its charging capacity, which
includes the numbers of chargers N and waiting space R, and the power capacity, which
includes the sizes of the PV γPV and ESS γESS.

Figure 1. An example of a grid-connected FECS integrated with the solar PV and ESS.

Each fast charger n ∈ N can serve at most one EV during a time slot. The EV charging
process starts at the beginning of a time slot and finishes at the end of the time slot. The
FECS purchases power from the main grid or uses solar PV and ESS power to supply the
EV charging demand. Considering that one day consists of {1, ..., T} time slots, we set the
duration of one time slot as 10 min, which resulted in T = 144.

2.1. Power Supply

The FECS receives power supply from both the solar PV generator and the main grid.
Since the solar PV power output is unknown during the planning, we assumed that the
FECS can estimate its solar PV output for the next day with reasonable accuracy (recent
research on day-ahead solar power forecasting showed that its mean absolute percentage
error (MAPE) varied from 6% to 13% [36,37]). We used a set of scenarios of solar PV
output Ω to represent different days in a year. After the FECS invests in the capacity of the
solar PV generator γPV , the power supplied by the solar PV generator in scenario ω ∈ Ω
at time t is obtained by:

0 ≤ Pω,t
PV ≤ γPV , ∀t ∈ T (1)

To meet the charging demand, the FECS utilizes power from the main grid when the
solar PV power generator and ESS provide an insufficient power supply. The amount
of power purchased from the main grid in scenario ω at time slot t is limited and is
modeled as:

Pmin
mg ≤ Pω,t

mg ≤ Pmax
mg , ∀t ∈ T (2)
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where the upper limit is associated with the capacity of the distribution network, such as
the power line to which the FECS is connected. In this study, we assumed that the FECS
cannot feed the power back to the main grid, that is Pmin

mg = 0.

2.2. Energy Storage System

The FECS controls the ESS charging/discharging power and exploits its flexibility to
smooth out the intermittent nature of solar PV generation; thus, it balances the EV charging
demand and power supply. In the planning stage, the FECS decides the ESS capacity γESS
with a C-rate of 1. Therefore, in scenario ω, the upper bounds of the ESS charging and
discharging power are limited to γESS. that is:

0 ≤ Pω,t
ch ≤

γESS
∆t

, ∀t ∈ T (3)

0 ≤ Pω,t
d ≤ γESS

∆t
, ∀t ∈ T (4)

Upon including the power loss during the charging and discharging of the ESS, the
state of charge (SoC) at time t is defined as follows:

Sω,t = Sω,t−1 + (ηchPω,t
ch −

Pω,t
d
ηd

)∆t, ∀t ∈ T (5)

where Sω,t denotes the SoC of the ESS. The SoC is bounded as:

SminγESS ≤ Sω,t ≤ SmaxγESS, ∀t ∈ T (6)

We added one more constraint on the SoC whose level should be equal at the beginning
and the end of the operation period, that is,

Sω,1 = Sω,T . (7)

2.3. EV Arrival at the FECS and Charging Demand

The arrival of the EV at the FECS was modeled by a Poisson random process with an
expected arrival rate λt [21]. We assumed that the EV charging demand was fulfilled in
one time slot ∆t. A Gaussian distribution function N (µ, σ2) was used to approximate the
probability density function (PDF) of the charging demand for each arriving EV, where µ
and σ are the mean and standard deviation of the distribution, respectively.

Let D be a random variable that represents the charging demand of an EV; hence, the
expected charging demand for the FECS during (t, t + ∆t) is obtained by:

E[D]λt∆t, ∀t ∈ T (8)

Unfortunately, the FECS may not fulfill all the EVs’ charging demands due to the
limited capacity of its chargers and waiting spaces. If the number of EVs arriving simul-
taneously at the FECS is greater than the number of chargers, some EVs are queued in
the waiting spaces and are served when chargers are available. Moreover, EVs that arrive
when the waiting spaces are fully occupied usually have to leave the FECS and are referred
to as rejected with blocking probability pt

b. Therefore, the actual expected energy to be
supplied by the FECS at t is lower than that in Equation (8), and it is denoted as:

E[D]λt(1− pt
b)∆t, ∀t ∈ T (9)

Accordingly, given the invested number of chargers N, we can obtain the total ex-
pected power utilization by the FECS to meet the expected energy demand during the
charging time, that is:

NPt
n = E[D]λt(1− pt

b), ∀t ∈ T (10)
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Let µ = 1
∆t and Prate be the fast charger average charging service rate and the rate

at which power is delivered by a fast charger, respectively. We obtained an analogous
expression for the energy delivered by the FECS to supply the average energy demand
of an EV during the charging process as E[D] = Prate

µ . Thus, we can obtain the expected
amount of power necessary for a fast charger n to supply the EV demand in time t as:

Pt
n =

λt

Nµ
Prate(1− pt

b). ∀t ∈ T (11)

Note that the FECS utilization factor is defined by ρ = λt

Nµ .
To obtain the expected power utilization for a fast charger Pt

n, the blocking probability
pt

b is required. We used the first-come, first-served M/G/N/K model in queueing theory to
explore the charging process of the FECS and analytically describe its performance metrics.

Furthermore, for a safe operation, the charging power of each fast charger is con-
strained by the upper-bound as shown below:

0 ≤ Pt
n ≤ Pmax

n , ∀t ∈ T (12)

2.4. M/G/N/K Queueing System Performance Evaluation

To validate the accuracy of the M/G/N/K queueing system, we compared the results of
the analytical approximation and queue simulation of the FECS. We obtained the blocking
probability in Equation (13), the average queue length in Equation (14), and the average
waiting time in Equation (15) for the analytical approximation using the queueing analysis
from existing research [35]. They are mathematically defined as:

pb =
(Nρ)N

N!
ζK−N p0, i = K, (13)

E(Lq) ≈
K

∑
i=N

(i− N)pi
∼=

(Nρ)N

N!
ζ

(1− ρ)(1− ζ)
{1− ζR − R(1− ζ)ρζR−1}p0, (14)

E(W) ≈
E(Lq)

λ
, (15)

respectively. The detailed procedure of this approximation solution is presented in Appendix A.
Further, we performed simulations using SimEvent in Simulink/MATLAB. Param-

eters were set as N = 6, R = 3, and µ = 6. Figure 2 shows the analytical (lines) and
simulation (dots) results of the blocking probability, average queue length, and average
waiting time for ρ < 1.

(a) Blocking probability (b) Average queue length (c) Average waiting time

Figure 2. FECS queueing system evaluation.

The results appeared very similar; moreover, their mean absolute percentage errors
(MAPEs) were 55.3%, 11.4%, and 12.2% for the blocking probability, queue length, and
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waiting time, respectively. These values were non-negligible because minor errors usually
gave rise to high percentage errors due to very small values; for example, the blocking
probability of λ = 1 was 0.0000012. Therefore, the mean absolute error (MAE) was an
adequate metric for confirming the closeness between the analytical and simulation results.
The MAEs for the blocking probability, average queue length, and average waiting time
were 0.0035, 0.035, and 0.087. Therefore, it was sufficient to use the queueing analysis to
model the EVs’ behavior in the FECS.

3. Combined Planning and Operation Problem

In this paper, we proposed a framework to maximize the average profit of an inte-
grated FECS. The FECS connected to the main grid consisted of fast chargers, waiting
spaces, solar PV generators, and an ESS. The FECS tried to maximize its expected profit
while providing adequate charging services, where profit refers to the difference between
revenue and cost. The revenue was generated from the EV charging fee. In contrast, the
total cost included the investment cost (fast chargers, waiting spaces, solar PV, and ESS),
daily operation cost during the planning period, maintenance cost, and penalties associated
with EV users’ inconvenience.

3.1. FECS Investment

First, for a long-term planning horizon, the FECS had to decide its configuration,
wherein the numbers of fast chargers, waiting space, and both the solar PV generator and
ESS capacities were the decision variables of this stage: χinv = {N, R, γPV , γESS}. The
long-term investment cost of the FECS is:

Cinv(χinv) = CFC N + CLR + CPVγPV + CESSγESS, (16)

where CFC N, CLR, CPVγPV , andCESSγESS are the investment costs of fast chargers, waiting
spaces, solar PV, and ESS, respectively.

Ideally, the investment cost of the FECS should be less than the total budget, and the
decision variables should be non-negative, as:

CFC N + CLR + CPVγPV + CESSγESS ≤ B, (17)

0 < N ≤ Nmax, 0 < R ≤ Rmax, γPV ≥ 0, γESS ≥ 0. (18)

3.2. Daily Operation

After deciding the configuration of the FECS, the FECS operates daily for EV charg-
ing. The FECS prepares its power scheduling at one day ahead of an operational day to
maximize its revenue. The FECS earns revenue and pays operational costs daily. The
revenue implies the income from the EV charging fee, defined as Rt

op = CevNPt
n, whereas

the operational cost involves the expenses of purchasing the power from the main grid and
the cost from ESS degradation, which is defined as Ct

op = CtPω,t
mg + Cω,s(Pω,t

ch + Pω,t
d ). The

FECS highly prioritizes the use of output power from the solar PV generator because it
does not incur an operational cost. However, when more power supply is required, the
FECS uses the ESS and/or main grid power. If the solar PV output is higher than the
charging demand, the surplus power goes to the ESS provided that it has sufficient space to
store it; otherwise, it is dumped. Therefore, the FECS should schedule its power carefully
to maximize its profit.

The decision variables of daily power scheduling are χop = {Pω,t
mg , Pω,t

PV , Pω,t
ch , andPω,t

d },
and the expected daily operational profit over all possible scenarios ω ∈ Ω is expressed as:

Pop(χop) = ∑
ω∈Ω

∑
t∈T

πω(Rt
op − Cω,t

op ) (19)

An important constraint for daily operation is the power balance equation. The FECS
manages its power to balance the supply and demand, which is given by:
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Pω,t
ch +

N

∑
n=1

Pt
n = Pω,t

mg + Pω,t
PV + Pω,t

d , ∀t ∈ T (20)

where the left and right sides of Equation (20) represent demand and supply, respectively.

3.3. Penalties from Discomfort

Because of the limited number of fast chargers and waiting space, some EVs wait
in the queue while others may be rejected, causing user inconvenience. Therefore, the
objective function captures this discomfort as a penalty function, regarded as a cost term
and defined as:

Cpen(χinv) = ∑
t∈T

(
CWE[Wt] + CrejE[Rt

ej]
)

(21)

where the first and second terms represent the penalties associated with the waiting time
and rejection at the FECS, respectively. These penalties correlate with the investment deci-
sion χinv. Further details on the calculation of E[Wt] and E[Rt

ej] are shown in Appendix A.

3.4. Maintenance Costs

Regular maintenance is required to safely operate the FECS (fast charger, waiting
spaces, solar PVs, and ESS) during the planning period. The maintenance costs are de-
fined as:

Cmain(χinv) = CM
FC N + CM

L R + CM
PVγPV + CM

ESSγESS, (22)

The maintenance cost depends on the investment decision, χinv. It is important to note that
the maintenance cost for the waiting space is related to the cost of leasing the land.

3.5. Combined Planning and Operation Problem

With all the above analyses, the formulation of an optimization problem to maximize
the profit of the integrated FECS considering planning and daily operation is now possible.
Revenue comes from the charging fee of EVs. The total cost consists of the sum of the
long-term investment cost, expected daily operational cost, penalties, and maintenance
cost. A set of decision variables is represented by χ = χinv ∪ χop. The profit maximization
problem for the FECS over all possible scenarios ω ∈ Ω is formulated as:

max
χ

[
δ
(

Pop(χop)− Cpen(χinv)− Cmain(χinv)
)
− Cinv(χinv)

]
,

s.t. (1)− (7), (11), (12), (17), (18), (20)
(23)

The objective Equation (23) obtains the optimal configuration to maximize the FECS profit
under all scenarios in the entire planning horizon. The other costs are normalized by the
net present value at the investment decision stage while excluding the investment cost.
The time discount δ is defined as:

δ =
M

∑
m=1

1
(1 + rm)m , (24)

where M and rm denote the FECS’s planning horizon and the interest rate in period
m, respectively.

4. Case Study and Simulation Results

This section evaluates the proposed profit maximization scheme for the FECS, where
the optimization problem was solved using AMPL with a Gurobi solver [38].

4.1. Case Study Parameters

We considered a decade-long planning period for a grid-connected FECS with a solar
PV generator and an ESS. However, there was limited data on fast EV charging as the
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use of EVs is still low. Therefore, we assumed that the EV charging demand followed the
distribution of general vehicle travel profiles from the summary of travel trends of the
2009 National Household Travel Survey [39]. We used two prominent scenarios: commute
distribution and errand distribution, to discuss the validity of our proposed optimization
scheme. We added some randomness to the distributions ensuring that the EVs’ arrival was
modeled per the Poisson process with a rate of λ[number of EV arrivals/∆t]. The average
energy consumption of EVs per kilometer is 0.15 kWh/km[18]. Hence, we assumed that
the maximum one-time charging demand was up to 20 kWh within one charging process.
The power generation of the solar PV was derived from real data [40].

We used a time-of-use (ToU) pricing scheme of San Diego Gas & Electric (SDGE)
during summer as the purchasing price of the main grid power (SDG&E EV time-of-use
summer pricing plan, available online: https://www.sdge.com/residential/pricing-plans/
about-our-pricing-plans/electric-vehicle-plans, accessed on 20 May 2021). Table 1 shows
the detail of the TOU tariff. The price of power Cev for EV charging at the FECS was set as
0.33 USD/kWh [41], and the land cost was 407 USD/m2 [22]. We assumed that one waiting
space required 30 m2 of space. The maintenance costs of the fast chargers, the solar PV,
the ESS, and the waiting spaces were obtained by normalizing their respective annualized
capital costs with a discount factor of rm equal to 0.1. Further, the approximation of the
costs related to the waiting time and rejection for EVs at the FECS were set based on the
travel time cost analysis [42]. The hourly cost associated with EV waiting time in the queue
was set to 30% of the average hourly wages. Alternatively, the EV rejection cost was set to
45% of the average hourly wages. The basic minimum wage of California in 2020 [43] was
considered for reference. Table 2 encapsulates the parameters of the FECS.

Table 1. SDGE time-of-use pricing rate in summer.

Period Time Price (USD/kWh)

Super Off-Peak 00:00–06:00 0.21364
Off-Peak 06:00–16:00 0.29171

21:00–00:00
On-Peak 16:00–21:00 0.37774

Table 2. Parameters for the simulations.

Parameter Value and Unit

Pmax
mg 1200 kW

Prate 120 kW
ηch = ηd 0.95

Nmax 10
Rmax 20

Cs 0.01 USD/kW
CPV 1830 USD/kW [44]
CESS 271 USD/kWh [45]
CFC 35,000 USD/Fast-charger [46]

CL 12,210 USD/Waiting-Space
[22]

CW 0.6 USD/h
Crej 0.9 USD/h

4.2. Daily Operation of FECS

We first demonstrated the results of daily operation with a budget of USD 1.3 M.
Then, the optimal planning of the FECS was conducted according to the budget in the
following section.

The daily operation of the FECS per the proposed optimization framework using the
distribution of a commute trip is shown in Figure 3. With a commute distribution and a
budget of USD 1.3 M, the optimal configuration of the FECS, i.e., the number of chargers,

https://www.sdge.com/residential/pricing-plans/about-our-pricing-plans/electric-vehicle-plans,
https://www.sdge.com/residential/pricing-plans/about-our-pricing-plans/electric-vehicle-plans,
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waiting spaces, solar PV capacity, and ESS capacity, was 4, 2, 533 kW, and 592 kWh,
respectively. The commute trip distributions were indirectly depicted as “FECS Power
Utilization”, i.e., load, because the FECS solely supplied charging power to the EVs.

Figure 3. Daily power scheduling for an integrated FECS with commute demand, solar PV (533 kW),
and ESS (592 kWh).

The daily operation results showed that the FECS power utilization with the commute
distribution had two peaks: morning and evening. At night, the FECS charged the ESS
using the main grid power considering the low price (considering there was no price
difference for the main grid during nighttime, any usage pattern can be followed at night.
However, flat power usage during the night had the smallest peak. Therefore, in our
simulations, we added a quadratic form of the main grid power having a very small
weight, that is: β(Pt

mg)
2 to Ct

op, and set β to less than 0.000001. Thus, the optimization result
did not change.) until 6:00, after which the ESS discharged its power to supply the charging
demand because the purchasing price of the main grid power increased. When the solar PV
output was higher than charging demand (between 9:50 and 16:20), the surplus energy was
stored in the ESS and was released in the evening, that is during the highest-priced period.

Figure 4 illustrates the power scheduling of the FECS with the errand distribution
having a budget of USD 1.3 M. The number of chargers, waiting spaces, solar PV capacity,
and ESS capacity for errand distribution were 6, 1, 589 kW, and 0 kWh, respectively. Herein,
the EVs arrived at the FECS in a relatively uniform manner during the daytime, and ESS
utilization was limited because of almost no surplus. Therefore, there was no ESS involved
in the optimal configuration with a USD 1.3 M budget. Alternatively, investment in solar
PV was very important because a significant portion (66%) of the total EVs’ charging
demand was supplied solely by the solar PV power, thereby cutting off the expenses of
purchasing the main grid power.

Figure 4. Daily power scheduling for an integrated FECS with errand demand, solar PV (589 kW),
and ESS (0 kWh).
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4.3. FECS Planning Result

The optimal planning of the FECS was analyzed under different budgets. Figure 5
shows the optimal capacity of the solar PV, ESS, number of fast chargers, and waiting
spaces according to the budgets. Under the budget of USD 0.3 M, the FECS had two fast
chargers and one waiting space installed, with 119 kW from the solar PV and no ESS, in
both the commute and errand distribution scenarios. The fast charger and solar PV were
more likely to increase the profit than the waiting space and ESS, respectively. Investments
in the ESS for the FECS with the commute distribution started with a budget of USD 1 M,
while the FECS with the errand distribution did so later because of the load pattern, as
shown in Figures 3 and 4. However, there was a sufficient surplus of solar PV generation
during the daytime in the commute scenario. As a result, the FECS prioritized investing in
the ESS to absorb the surplus.

(a) FECS sizing (number of fast chargers and wait-
ing spaces).

(b) Power capacity sizing (solar PV and ESS)

Figure 5. Optimal configuration of the FECS for the commute and errand distributions according to
the budget.

By contrast, in the errand scenario, the ESS was sensitive to the price by charging and
discharging during the lowest-priced and highest-priced periods, respectively. However, it
did not significantly contribute to the daytime profit as the load consumed all the solar PV
power. Therefore, the ESS investment was not predominant in the FECS with the errand
distributed load under a limited budget. Without budget constraints, all four capacities of
the FECS increased to their maximum value, and the commute and errand configurations
were the same.

Figure 6 shows the total maintenance cost and penalties according to the budgets for
the commute and errand scenarios during the planning period. As the budget increased,
the value of every FECS element increased, thereby increasing the maintenance cost. On
the other hand, the penalty associated with EV rejection decreased with the number of fast
chargers. Additionally, a finite queue length cannot change the EV blocking probability
stochastically, as the waiting time increased with the waiting space. Accordingly, the
penalty for EVs’ waiting time in the queue increased with the number of waiting spaces.

(a) FECS with commute distributed. (b) FECS with errand distributed load

Figure 6. FECS maintenance cost and penalties according to the budget.
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At a small budget of USD 0.3 M, the penalty for rejection was higher than the mainte-
nance costs because the FECS can invest in a small capacity, causing many EV rejections.
However, as the budget increased, the penalty of rejection decreased more in the errand
scenario than the commute scenario considering that the FECS invested in many chargers.
Further, the maintenance cost of the solar PV and ESS was higher in the commute scenario
than in the errand scenario because the FECS invested considerably in the ESS capacity.
The penalty associated with the waiting time did not have a tremendous impact consider-
ing that the investment in the waiting spaces was not a priority for the FECS to increase
the profit.

4.4. Sensitivity Analysis

To analyze the effectiveness of the solar PV and ESS within the FECS, we set four cases
with both the commute and errand distributed loads: (i) baseline case, i.e., FECS without
solar PV and ESS; (ii) FECS with ESS; (iii) FECS with solar PV; and (iv) FECS with solar PV
and ESS.

The numerical results shown in Table 3 represent the optimal FECS planning, that is
the solution of (23) at a budget of USD 1.3 M, for the commute scenario. The corresponding
optimal profit is presented in Table 4.

Table 3. Optimal FECS planning result, commute distribution.

# of chr. # of w. sp. PV cap. (kW) ESS cap. (kWh)

Baseline 6 1 - -
FECS with ESS 6 1 - 1800
FECS with PV 5 2 600 -

FECS with PV and ESS 4 2 533 592

Table 4. The total cost of the FECS with the commute distribution during the planning period for the
four cases, which includes the operational cost, penalties, maintenance cost, and investment cost.
The total profit is revenue minus total cost. All values are in USD.

Rev. Opr. Cost Pen. Mnt. Cost Inv. Cost Total Profit

Baseline 44,009,500 42,208,200 379,897 228,856 222,210 970,259
FECS with ESS 44,009,500 39,392,000 379,897 460,923 710,010 3,066,633
FECS with PV 40,532,200 18,338,800 467,978 485,781 1,297,420 19,942,287

FECS with PV and ESS 35,377,500 12,390,400 592,773 499,561 1,300,000 20,594,768

FECS gained some profit in all four cases, meaning that the revenue was more signifi-
cant than the cost. Because the revenue of the FECS came from the charging fee paid by the
EVs, it increased with the number of fast chargers and waiting spaces. Table 3 shows that
both the FECS without the PV and ESS and the FECS with only the ESS had the highest
number of fast chargers. As a result, they had high expected revenue, as shown in Table 4.
Moreover, they had slight performance penalties. There were two effects of waiting spaces:
they decreased the penalty of EV rejection and increased the waiting penalty. Although the
penalty of EV rejection was higher than that of waiting, the impact of the waiting space on
the penalty was positive, thereby increasing revenue.

However, the FECS with the ESS did not achieve the highest profit owing to its high
operational cost. That is, the FECS used the main grid power at a higher price. Considering
the generated power by the solar PV, the solar PV was more advantageous than the ESS in
terms of profit. Nevertheless, the FECS with only the PV led to the wastage of the surplus
solar PV energy. Therefore, the FECS with the PV and ESS delivered the lowest operating
cost because of the flexibility of the ESS. Although the FECS led to the lowest revenue, it
obtained the highest total profit. Note that we omitted the result of the errand scenario
because it showed a similar result. The FECS with the solar PV and ESS was the most
profitable for an errand distribution scenario.
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We extended our analysis to discuss the impact of the budget on the total profit. The
optimization results for the FECS under the public FECS cases are depicted in Figure 7. In
the baseline case, the FECS invested only in the charger and waiting space, and its profit
did not change with the budget. In the case of the FECS with the ESS, after an ESS of
1800 kWh capacity at the budget of USD 0.8 M, no further investment would be possible
even t a higher budget. However, in the FECS with PV, the FECS would require a budget
of USD 1.4 M to install an optimal 600 kW solar PV capacity. Finally, the FECS with PV and
the ESS required the highest budget of USD 2 M to install the optimal amount of capacity,
which also resulted in the highest profit. At the highest budget of USD 2 M, the optimal
configurations for the commute and errand distributions were almost the same regardless
of the EV charging demand. When the FECS with the solar PV installed the ESS, the profit
improvement under the errand distribution was more remarkable than that under the
commute distribution at a budget of USD 2 M. This was because the charging demand in
the errand distribution absorbed all the available solar PV power, and the ESS covered the
high-priced period. While although the EV arrival pattern of the commute distribution
was more diverse than that of the errand distribution, the ESS could flatten this diversity,
but the unused solar PV power could appear when all the demand was satisfied and the
ESS was fully charged.

Figure 7. Sensitivity of the solar PV and ESS on the FECS all-inclusive cost optimization.

4.5. FECS in Different Location

Not only EV arrival patterns, but also local characteristics were important factors
for an optimal configuration of the FECS. To see the impact of location, we applied our
framework to three locations: public, highway, and downtown. The FECS installed in
a public space was an ordinary charging station, for which the parameters are given in
Table 2. The FECS on the highway was a station built along the highway, which means
the land price was minimal, i.e., CPV=1830 USD/kW and CL = 0 USD/waiting space. On
the other hand, the land price was high in the downtown, i.e., CPV =5490 USD/kW and
CL =20,000 USD/waiting space.

Figure 8 shows the optimal configuration of the FECS according to the locations and
EV arriving pattern. The number of fast chargers remained the same for the three locations
because it depended more on the arrival pattern. On the other hand, the number of waiting
spaces was very different. Because of the high price, the FECS installed in the downtown
only prepared the minimum waiting space. In contrast, the FECS installed on the highway
had more waiting spaces, i.e., eight and seven waiting spaces with the commute and errand
distributions, respectively. Furthermore, the capacities of the solar PV and ESS had a similar
trend according to the locations, as shown in Figure 8b. With the errand distribution, no
FECS installed the ESS because of its load pattern.
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(a) Numbers of fast chargers and waiting spaces (b) Capacities of the solar PV and ESS

Figure 8. Optimal configuration of the FECS according to the locations for the commute (Com.) and
errand (Err.) distribution.

As a result, the profit of the FECS in each location was different. Figure 9 shows the
optimal profit for each location. The profit of the FECS on the highway was 2.6 times
and 3.3 times higher than that of the FECS in the downtown for the commute and errand
distribution, respectively. The high profit of the highway case was relative to the low
cost for the solar PV and waiting spaces. On the other hand, the FECS in the downtown
invested less in the solar PV, and it had no ESS as there was no surplus.

Figure 9. FECS optimal profit by location.

4.6. Optimal Profit with Uncertainty

So far, the simulation results were based on fixed solar PV output, and the FECS
operator knows the output exactly. To simulate this realistically, we added uncertainty,
i.e., Gaussian noise, on the solar PV output in this section. The severity of the errors was
controlled using the standard deviation of the added Gaussian noise. The FECS used the
main grid power to cover the difference between the actual PV production and the expected
one because of the variability of solar PV power, which caused an increase in its operational
cost. The profits under the uncertainty of solar PV are shown in Figure 10. When the errors
were 5%, 10%, 15%, and 20%, the optimal profit decreased 5.59%, 11.15%, 16.67%, and
22.26%, respectively. The optimal profit of the proposed framework still showed a good
result assuming that the practical error range was 6% to 13%.
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Figure 10. Influence of the variability of solar PV power on the optimal profit.

5. Conclusions

Fast EV-charging stations (FECSs) are a critical component for the widespread adop-
tion of electric vehicles (EVs). A well-planned effective configuration and optimization of
the operation of the FECS are required to meet the charging demand for profit maximiza-
tion. Accordingly, an optimization framework was formulated for the combined planning
and operation of an FECS integrated with a solar PV generator and an ESS. In the proposed
framework, the total cost of the FECS accounted for its installation cost, daily operational
cost, maintenance cost, and penalties from the customers’ inconvenience. We used the
average waiting time in the FECS and the blocking probability to obtain the customer
inconvenience through an M/G/N/K queueing model. Because the numerical result of
the queueing analysis was very similar to the simulation result, we used the queueing
analysis to model the EV arrival. The simulation result of the FECS showed the optimal
configuration for the FECS having a given budget and daily power scheduling to support
the EV-charging demand. According to the EV arrival pattern and the FECS’s location, the
optimal configuration and scheduling were different. For example, when the EV arrival
pattern was similar to the solar PV output, i.e., errand demand, the FECS without the ESS
was optimal. On the other hand, the FECS installed the ESS for the commute demand.
Our proposed optimization framework gave an intuition about the choice of the parame-
ters for real-world cases resulting in a profitable decision on the investment of the FECS.
The FECS in a distribution network and its impact on power quality will be essential for
future research.
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Nomenclature

n Index of fast chargers
t Index of time on an operational day
T Time during the operation period
∆t Duration of each time index
Pmin

mg The lower limit of the main grid power in kW
Pmax

mg The upper limit of the main grid power in kW
Prate

n Fast charger power rate in kW
Smin Minimum SoC of the ESS in kWh
Smax Maximum SoC of the ESS in kWh
ηch The conversion efficiency of ESS charging
ηd The conversion efficiency of ESS discharging
λt The average arrival rate of EVs at the FECS during time t
Ct The price of purchasing power from the main grid in USD/kWh
β Price sensitivity coefficient of purchasing power from the main grid, in USD/kWh
Cs ESS degradation cost, in USD
CPV Solar PV investment cost in USD/kW
CESS ESS investment cost per kWh in USD/kWh
CFC Investment cost per fast charger in USD
CL Per waiting space cost in USD
CW Time cost per hour for an EV waiting in the queue to become charged in USD/h
Crej Time cost per hour for an EV to leave the FECS without being charged in USD/h
CM

PV Maintenance cost of invested solar PV in USD
CM

ESS Maintenance cost of invested ESS in USD
CM

C Maintenance cost of fast chargers in USD
CM

L Maintenance cost of waiting spaces in USD
ρ Traffic intensity of the FECS
B Budget in USD
πω Occurrence probability of scenario ω
N Number of fast chargers
R Number of waiting spaces
γPV Solar PV system capacity in kW
γESS ESS capacity in kWh
Pω,t

PV Power supplied by solar PV to the FECS in scenario ω at time t in kW
Pω,t

mg Power supplied by the main grid to the FECS in scenario ω at time t in kW
Pt

n Expected power supply to an EV connected to fast charger n at time t in kW
Pω,t

d Power discharged from the ESS in scenario ω at time t in kW
Pω,t

ch Power charged from the ESS in scenario ω at time t in kW
Sω,t ESS state of charge in scenario ω at time t in kWh
pt

b Blocking probability at time t
D Random variable for the charging demand of an EV
Wt Random variable for the waiting time in the queue at time t
Lq Random variable for the length of the queue at time t
Rt

ej Random variable for the number of rejected EVs at time t

Appendix A. M/G/N/K Queueing System Analysis

In this study, we modeled and characterized the FECS as a multi-server N using
the M/G/N/K queueing model, where K is the finite capacity of the queue length, with
Poisson arrival M and general service time distribution G. According to the existing
literature, a closed-form solution for the performance metric in the M/G/N/K queueing
model was not obtained. Therefore, in this Appendix, we derive the blocking probability
approximation, average waiting time, and average number of blocked EVs in the FECS.
We adopted the approximation method proposed in [33–35]; however, in particular, we
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used a queueing model proposed in [35], which is briefly summarized in this section.
Let N, R, µ, and λ denote the number of chargers, the number of waiting spaces, the
average service rate of one fast charger, and the average arrival rate of the EVs at the FECS,
respectively. K = N + R denotes the total capacity of the FECS. We obtained the FECS
utilization factor by ρ = λ

Nµ . The approximation for the probability that there is i EVs in
the FECS is obtained by:

pi =


(Nρ)i

i! p0, i ∈ {0, ..., N − 1},
(Nρ)N

N!
1−ζ
1−ρ ζ i−N p0, i ∈ {N, ..., K− 1}

(Nρ)N

N! ζK−N p0, i = K,

(A1)

where p0 represents the probability that there is no EV at the FECS (A2). The blocking
probability pb is approximated as pi for i = K.

p0 =

[
N−1

∑
i=0

(Nρ)i

i!
+

(Nρ)N

N!
1− ρζK−N

1− ρ

]−1

(A2)

ζ is a geometric function such that ζ < 1 if ρ < 1. It is obtained as:

ζ =
ρRG

1− ρ + ρRG
(A3)

The quantity RG = Ew(M/G/N)
Ew(M/M/N)

is a function of N and ρ. It can also be expressed as:

RG =
(1 + c2

N)RD

(2RD − 1)c2
N + 1

(A4)

where c2
N represents the squared coefficient of variation in the charging time. In this study,

to approximate a deterministic charging time, we considered c2
N = 0. The value of RD also

depends on N and ρ and is obtained as follows:

RD =
1
2

[
1 + F(θ)g(ρ)

(
1− exp

{
− θ

F(θ)g(ρ)

})]
(A5)

where θ and F(θ) must satisfy the conditions in Equations (A6) and (A7), respectively.

θ ∼=
N − 1
N + 1

, N ≥ 1 (A6)

F(θ) ∼=
θ

8(1 + θ)

(√
9 + θ

1− θ
− 2

)
, with g(ρ) ∼=

1− ρ

ρ
(A7)

The average number of EVs waiting in the queue (i.e., the queue length) is approxi-
mated as:

E(Lq) ≈
K

∑
i=N

(i− N)pi
∼=

(Nρ)N

N!
ζ

(1− ρ)(1− ζ)
{1− ζR − R(1− ζ)ρζR−1}p0 (A8)

Further, we obtained the average waiting time in the queue (A9) and the number of
rejected EVs (A10) using Little’s formula, and it is defined as:

E(W) ≈
E(Lq)

λ
(A9)

E(Rej) ≈ λpb (A10)
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