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Abstract: Increased integration of renewable energy sources brings new challenges to the secure and
stable power system operation. Operational challenges emanating from the reduced system inertia,
in particular, will have important repercussions on the power system transient stability assessment
(TSA). At the same time, a rise of the “big data” in the power system, from the development of wide
area monitoring systems, introduces new paradigms for dealing with these challenges. Transient
stability concerns are drawing attention of various stakeholders as they can be the leading causes
of major outages. The aim of this paper is to address the power system TSA problem from the
perspective of data mining and machine learning (ML). A novel 3.8 GB open dataset of time-domain
phasor measurements signals is built from dynamic simulations of the IEEE New England 39-bus test
case power system. A data processing pipeline is developed for features engineering and statistical
post-processing. A complete ML model is proposed for the TSA analysis, built from a denoising
stacked autoencoder and a voting ensemble classifier. Ensemble consist of pooling predictions from a
support vector machine and a random forest. Results from the classifier application on the test case
power system are reported and discussed. The ML application to the TSA problem is promising,
since it is able to ingest huge amounts of data while retaining the ability to generalize and support
real-time decisions.

Keywords: power system stability; transient stability assessment; transient stability index; machine
learning; deep learning; autoencoder; transfer learning; ensemble; dataset

1. Introduction

The increasing penetration of renewable energy sources, coupled with the liberalized
energy markets, gives rise to new challenges for safe, secure and stable power system
operation. A growing share of renewables, i.e., wind and photovoltaic (PV) power plants,
in the overall generation mix, combined with the simultaneous decommissioning of the
conventional carbon-fired power plants, is putting the power system operation under
increased stress [1,2]. Some of the principal operational challenges include: (1) reduced
system inertia, (2) over-generation, (3) adequacy risks, (4) poor reactive power for voltage
control, (5) grid congestion, (6) reduced frequency regulation, (7) steep residual load ramps,
(8) negative residual load, (9) effectiveness of energy trading, and others. Particularly
notable are the problems of reduced system inertia (when less generators with rotating
mass are in operation) and adequacy risks (i.e., the lack of reserve margin to meet load
at peak times) [3]. With the increased proportion of renewables in the generation mix,
problem of the reduced system inertia will increase, with significant repercussions on the
transient stability assessment (TSA) of the power system. Grid congestion may result from
wind–solar production being concentrated within localized areas, while the steep residual
load ramps are direct consequences of PVs operational restrictions. Aforementioned
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issues, among other things, exert new (and intensify existing) stresses on the stability
and security of the (already strained) power systems. Moreover, they may exacerbate
negative effects of severe faults, severe weather, and other internal and external power
system disturbances [2,4]. Transient stability concerns are drawing attention of various
stakeholders, as they can be the leading causes of major outages, which are accompanied by
severe economic losses. For example, according to the Electrical Power Research Institute,
power supply outages crisis create globally an economic loss estimates of $104 billion to
$164 billion annually [2].

These developments are paralleled by the rise of “big data” in the domain of power
system analysis. A development of the Wide Area Monitoring System (WAMS), within the
power system, enables managing and utilizing huge numbers of dispersed phasor mea-
surement units (PMUs), which provide high resolution data for supporting and enhancing
reliability, stability and security of power systems. For example, according to Wang et al.
(data from 2016), more than 2500 PMUs have been installed in Chinese North Intercon-
nection, and each PMU collects more than 30 data features and refreshes them every
20 milliseconds [5]. This generates huge amounts of data that, potentially, can be mined
for information. Namely, PMUs can directly collect various system dynamic information,
including generator active and reactive power, rotor angle, various protection actions,
and many others—many of which contain critical information for assessing the system
security and stability [6]. Utilizing these PMU measurements data with the aid of artificial
intelligence for a real-time power system TSA is currently a major topic of interest among
researchers from academia and industry.

With all the recent advancements in power system monitoring, communication in-
frastructure, process control, and forecasting methodologies, it is now becoming possible
to develop more advanced power system TSA schemes that can utilize available infor-
mation for a safe, secure and stable power system operation. This development is heav-
ily dependent on the use of advanced data mining and machine learning (i.e., artificial
intelligence) techniques.

1.1. Literature Overview

Power system dynamic performance crucially depends on its ability to maintain a
desired level of stability and security under various disturbances. The main focus of this
paper is on the transient (or large signal rotor angle) stability, which can be considered as
one of the most important types of power stability phenomena [2]. Figure 1 graphically
presents a taxonomy of power system transient stability methods [7].

Figure 1. A taxonomy of power system transient stability analysis methods.
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Traditionally, the main approach to determine the stability of a power system was
through a time-domain simulation (TDS), which is computationally cumbersome and does
not meet requirements of modern systems [2]. Although direct methods reduce the compu-
tational requirements and provide stability margins, they have their own weaknesses [8].
Hybrid methods combine TDS with direct methods in different ways [7]. The focus here
will be on the applications of different machine learning (ML) methods which are becom-
ing predominant.

Authors in [9] applied a decision tree (DT) classifier to the transient instability predic-
tion. DT is a weak learner with a strong tendency for overfitting. In order to overcome this
deficiency, authors in [10] apply a three–stage DT based scheme for predicting the out-of-
step conditions. Zhang et al. in [11] proposed a weighted random forest (RF) approach
to the power system TSA. RF uses many DTs as base learners and removes many of their
weaknesses. Baltas et al. in [12] presented a comparison of several different approaches.

Support vector machine (SVM) is another popular ML method for the TSA, which
was used in [13,14] and, with certain improvements, in [15]. Several adaptations of the
original SVM have also been proposed for the TSA: core vector machine [5] and ball vector
machine [16]. Additionally, a neuro–fuzzy SVM approach was proposed in [17]. The SVM
is confirmed as one of the best single models for tackling the TSA problem. It has a small
number of hyperparameters which yield a stable decision boundary under many different
circumstances. It can easily adapt to non-linearity using the kernel trick, and is generally
fast to train.

Another popular approach to the TSA analysis is the artificial neural network (ANN),
refs. [12,18]. Hou et al. in [19] proposed using a convolutional network, while Bahbah and
Girgis in [20] proposed using a recurrent network, for solving the TSA problem. A review
of different ANN based approaches (for the rotor angle stability control) is provided in [21].
Furthermore, specialized ANN architectures, developed specifically for the time-series
processing, have also been applied to the TSA problem. These are based on special layer
types: long short-term memory (LSTM) layer [22,23] and gated recurrent unit (GRU)
layer [24]. These approaches generally do not require a separate features engineering step
and can ingest raw time-domain signals. This completely removes any expert knowledge
from the model building pipeline and the entire process is fully automated, which has its
advantages and disadvantages.

A further extension of the ANNs, by stacking many layers, brings deep learning
to this problem [25–27]. A hierarchical deep learning approach was presented in [28].
Autoencoders, as a special kind of ANN architecture, have also been applied to the TSA
problem [29,30]. However, application of deep learning brings with it special problems of
initialization, convergence, long training time, vanishing gradients, forgetfulness, dead
neurons, and others [31,32].

By combining predictions from several (or many) individual models, in different ways,
it becomes possible to build better performing and more robust models. This process is
known as ensembling and can be, generally speaking, tackled in many different ways [33]:
bagging, boosting, voting, stacking, blending, etc. Ensembles use individual qualities
of different base models to create superior second-level models. Hang et al. in [34]
propose boosting DTs as weak learners in creating ensemble for the TSA. Li et al. in [35]
propose using gradient boosting machine. Baltas et al. in [36] propose boosting and voting
ensembles for the TSA classification problem. Another approach to ensemble multiple
models, using the soft voting, is proposed in [37] for the same type of problem.

Finally, there are still other avenues of attacking the TSA problem. These are variously
based on statistical learning [38], mutual information theory [39], evolutionary comput-
ing [40], and others. Power system TSA is a rapidly evolving field, on the intersection
of traditional power system analysis and artificial intelligence domains, under intense
scrutiny by many researchers coming from different backgrounds and bringing their unique
and valuable insights.
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1.2. Contributions

The focus of this paper is on the utilization of various power system dynamic infor-
mation, with a machine learning approach, for the power system TSA analysis. The contri-
bution of the paper to the state-of-the-art is seen from two different perspectives: (1) data
mining, features engineering and statistical post-processing of measured signals, and (2) fea-
ture space dimensionality reduction and TSA classifier building.

The first main contribution of the paper involves building a novel data set of time-
domain signals for a benchmark test case power system. A sophisticate model of the
IEEE New England 39-bus test case power system was built in the MATLAB/Simulink
environment and utilized for generating a comprehensive database of PMU–type signals,
emanating from different power system contingencies. Different load and generation levels
of the system are covered, as well as all three major types of short-circuit events in different
parts of the network. The dataset is 3.8 GB large and openly shared under the Creative
Commons CC-BY license. Furthermore, a novel data processing pipeline is introduced for
transforming this systematically generated dataset into the appropriate stochastic form,
which captures natural class imbalance and statistical distribution of different fault types.

The second main contribution of the paper deals with introducing undercomplete
denoising stacked autoencoder for reducing the dimensionality of the original feature
space while preserving maximum information. This is reinforced by building a deep neural
network (DNN) classifier for the power system TSA, by means of employing a transfer
learning technique (with unsupervised pretraining). In addition, a classifier for the power
system TSA is built using an ensemble learning approach. Ensemble uses the weighted
soft voting for averaging prediction probabilities from two base classifiers: SVM and RF.
These classifiers are compared on the same data set and their performance is measured
using diverse metrics.

The rest of the paper is organized as follows. Section 2 introduces a data generation
process, from the time-domain simulations of power system transients, and describes a
data processing pipeline. Section 3 presents a ML architecture, which involves autoencoder,
transfer learning and ensemble building, complete with classifier calibration and hyper-
parameters optimization. Section 4 presents results of the analysis of the test case power
system with a discussion, which is followed by conclusions in Section 5.

2. Dataset Preparation

A large dataset of time-domain PMU signals is built using a highly-detailed MAT-
LAB/Simulink [41] model (Section 2.1) of the IEEE New England 39-bus test case power
system [42]. A fully automatic data processing pipeline follows (Section 2.2), with features
engineering, statistical post-processing, stratified shuffle split and data scaling. Figure 2
presents a single-line diagram of the IEEE New England 39-bus test case power system that
serves as a benchmark for the TSA analysis [6,29,30,37,42]. Power system features a total
of 10 synchronous machines of different nominal powers, a number of transmission lines
(TLs), three-phase power transformers and loads. Generator G1 represents an aggregation
of large number of generators [42] and serves as a surrogate of the external power system.
Each machine includes an excitation system control and a turbine governor.
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Figure 2. A single-line diagram of the IEEE New England 39-bus test case power system.

2.1. MATLAB R©/Simulink Test Case Set-Up and Simulation

Figure 3 presents a MATLAB/Simulink [41] model for the part of the power system
from Figure 2, together with a detailed view of the generator model, including automatic
voltage regulator (AVR), power system stabilizer (PSS) and turbine governor control.
Generators are modeled as three-phase synchronous machines in dq rotor reference frame.
A single-mass tandem compound steam prime mover, with speed regulator, steam turbine
and a shaft is used for the steam turbine and governor. Hydraulic turbine with a PID
governor system is used for hydro power plants. Different types of AVRs and exciters are
used to model excitation systems [42]. Each generator can be equipped with multiple PSSs
of different types (Figure 3). Loads are represented by three-phase parallel RLC branches.
Three-phase Π–section line blocks are used to represent TLs. Interested reader is at this
point advised to consult an excellent book by Kundur [43] for additional information.

Flexibility of the test case power system is further enhanced by the use of specialized
blocks and object-oriented programming. Three MATLAB R© [41] workspaces are used to
generate programming code that allows extensive modifications of the model after each
simulation. The initial state of the system, along with the fixed system parameters, are set
in the base workspace. Setting the variable model parameters, such as the duration and
location of the short-circuit and the parameters that specify consumed power adjustment
of the system, is enabled through the use of global workspace. Model workspace is used
for selecting the type of short-circuit fault. The fault type, along with a desired timing of its
onset, is manipulated using the specialized blocks which are deployed across the network.
All TLs are divided into two flexible parts in order to facilitate programmatically changing
the fault location. The whole process is driven by code and fully automated.
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a) b)

Figure 3. A view of the MATLAB/Simulink model: (a) detail of the power system marked by a rectangle on Figure 2,
(b) generator G7 model’s internal components and systems.

2.2. Features Engineering and Statistical Processing

Building of the dataset starts from a comprehensive set of systematic time-domain
simulations (of post-contingency power system dynamics), using the nominal network
topology with specific loading levels [44–46]. The consumed power was set at 80%, 90%,
100%, 110% and 120% of the basic system load levels (for different system load levels,
both generation and loads are scaled by the same ratio). Then, for each load level, three
different types of faults are assumed: (a) three-phase, (b) double-phase, and (c) single-phase
short-circuits. They are located either on the busbars or on the TLs. When they are located
on a TL, it was assumed that they occur at 20%, 40%, 60%, and 80% of the line length.
The whole network from Figure 2 was, systematically, completely covered by all three types
of faults. Furthermore, timing of the fault considers a moment on the reference voltage
(phase A), obtained from the argument of the sine function at the time instant

tstart = ψ/( f · 360) + t0,

where t0 is the moment of the fault initiation (1 s), f is the frequency and ψ is the phase
angle [37]. Hence, faults are initiated after the power system steady state has been attained.
At the same time, fault clearance times are associated with the time delays of the first and
second zones of the distance protection relays, depending on the location of the fault. Relay
protection of the generators was not considered. Bus faults, and those within the first zone
of the distance protection, are cleared in 100 ms, while those falling within the second zone
are cleared after 400 ms (time is measured from the moment of the fault inception).

For each contingency, a complete electro–mechanical transient simulation of the test
case power system is carried out. The total number of systematic time-domain simulations
required for the New England 39-bus test case equals 9360, which is a very large number
for this level of model sophistication. The simulation run-time depends on the location and
type of fault, its duration, pre-fault power system state, and other factors. The observation
period of each simulation was set at 3 s, which is generally enough time to capture the
nature of the transients under study. Saving of the time-domain signals to hard disk is
taken with a time step of 1/60 s, which is consistent with the PMU measurements time
resolution [45]. An Intel R© Core i9 CPU with 16 GB of RAM was used to process this large
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number of simulations, which enabled the use of parallel workers. Parallel Computing
Toolbox

TM
was used [41]. The total execution time was approximately 10 h and 30 min.

Simulations produce hundreds of measured quantities—as time-domain signals—for
the network elements and machines (e.g., three-phase voltages and currents, active and
reactive powers, rotor speeds and angles, etc.); Refs. [5,6,11,16,34,37]. Features that are
used for the ML are extracted from these time-domain signals at two distinct time instants:
(a) pickup time (pre-fault value) and (b) trip time (post-fault value) of the associated
distance protection relays. These point-values, taken during each contingency, become raw
features of the data set.

Table 1 presents select features, extracted from the time-domain signals, for the
New England 39-bus test case power system [6,11,37,45]. All of the features are directly
measured. There are no artificially engineered features. The majority of features are as-
sociated with measurements on the generators (both rotor and stator quantities). Phase
angles of the voltage and current measurements have been disregarded, since it was found
(following an in-depth feature analysis) that they are not very relevant [37]. It is clear
that the number of features (sparingly chosen from a very large number of possibilities)
is large, even for this relatively small test case power system. More importantly, it grows
considerably with the increase in the number of buses and/or machines in the system
and can easily become difficult to manage and process (curse of dimensionality). Hence,
the main obstacle to successfully training any kind of ML model is found in controlling
and/or reducing this large number of features without significant loss of information.

Table 1. Features derived from the time-domain signals.

Feature Description Number

Rotor Speed 10
Rotor Angle Deviation 10
Rotor Mechanical Angle 10
Stator Voltage 10
Stator d-component Current 10
Stator q-component Current 10
Power Load Angle 2 × 10 1

Generator Active Power 2 × 10 1

Generator Reactive Power 2 × 10 1

Bus Voltage Magnitude 3 × 2 × 39 2

1 pre-fault and post-fault values. 2 pre-fault and post-fault values in three phases.

The use of supervised ML techniques further requires labeling of the collected samples.
Transient stability index (TSI) is used here to indicate the preservation or loss of the power
system stability [5]:

η =
360− |∆δmax|
360 + |∆δmax|

, (1)

where ∆δmax is the maximum load angle difference between any two generators on the
system. The TSI index provides a fast indication of the system (in)stability, based on the
time-domain simulations [5,12,36,47]. If the TSI is positive, the system is in synchronism,
otherwise it is in the out-of-step and thus unstable. Hence, TSI index determines a class
label, where zero is used for the stable cases and one for the unstable cases.

Figure 4 graphically presents the data processing pipeline that follows this initial
raw dataset building step. It consists of statistical post-processing of systematic simula-
tions data (features), followed by the train/test data set split and concluded with a data
scaling process.
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Figure 4. An overview of the data processing pipeline.

A random set without replacement is selected from the population of systematically
generated cases in such a way that the statistical distribution of different fault types follows
the rule [37]: 70% single-phase, 20% double-phase and 10% three-phase faults. This brings
dataset close to the overall (long term) statistical distribution of three different fault types
in the power system. Moreover, it creates a stochastic dataset from the original population
of systematic simulations. In addition, random selection preserves the natural imbalance in
the allotment of the stable/unstable cases, which is a crucial aspect of the TSA phenomenon.
It is expected that, with a larger power system, the imbalance of the final dataset to be very
pronounced, which will have important repercussions on the subsequent ML models.

When the dataset is imbalanced (i.e., with a small number of cases belonging to the
unstable class), a random sampling is not an option for splitting the data into training and
test sets, since it would introduce a considerable sampling bias. Hence, a splitting strategy
is needed that would preserve the class imbalance between the training and test sets. One
such approach is known as the stratified sampling [48]. In the stratified shuffle split, a total
population of training cases is divided into homogeneous subgroups (known as strata),
and the right number of instances are randomly sampled (without replacement) from each
stratum to guarantee that the test set is representative of the overall population.

Standardization of the dataset is a common requirement for many ML models. Hence,
the last step of the data processing pipeline standardizes features in the training and test
sets by removing the mean (i.e., centering) and scaling to a unit variance. Centering and
scaling happen independently on each feature by computing the relevant statistics on the
samples in the training set (only).

3. Machine Learning Architecture

Power system TSA of a real-world power system would impact huge parts of the
power grid, which would involve thousands of measured time-domain signals (from which
tens-of-thousands of features could be extracted). In addition, with data coming from
the WAMS, it would be very difficult, error-prone and time-consuming to label many
contingency cases. Hence, in order for the ML models to cope with this large amount of
(mostly unlabeled) information it becomes necessary to reduce/filter the number of features,
preferably using an unsupervised learning approach. This is seen as an indispensable data
processing step of the classifier building pipeline [25,28,30,34]. Furthermore, since labeling
of the contingency cases invariably produces (highly) imbalanced data sets, special care is
needed during building and training of the subsequent ML models [36,37].

For effectively dealing with this two-pronged problem, the following two-part ML
architecture is proposed: an undercomplete denoising stacked autoencoder, as an unsu-
pervised deep learning model, is built and trained on the unlabeled data for intelligently
compressing the feature space (Section 3.1), after which a binary classifier is built and
trained using the labeled data. Two different classifiers are proposed and compared:
(1) deep neural network classifier (Section 3.2) trained with a transfer learning approach,
and (2) voting ensemble classifier (Section 3.3) built from SVM and RF using the weighted
soft voting approach.
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3.1. Undercomplete Denoising Stacked Autoencoder

Stacked autoencoder is a special kind of DNN for unsupervised (nonlinear) dimen-
sionality reduction, which features an encoder and a decoder working in tandem [32,48–50].
Figure 5 presents a simplified illustration of the autoencoder model with an encoder
function gφ(·) and a decoder function fθ(·).

Figure 5. A simplified illustration of the autoencoder model.

The low-dimensional encoding learned from input x in the central (bottleneck) layer
is z = gφ(x) and the reconstructed input is x′ = fθ(gφ(x)). Nonlinear functions gφ(·) and
fθ(·) are, essentially, two mirror–image DNNs, graphically presented in Figure 6.

Figure 6. An overview of the undercomplete denoising stacked autoencoder architecture.

The undercomplete stacked autoencoder, as can be seen, is composed of two back-
to-back connected DNNs, namely, the encoder and a decoder networks. In other words,
these two subnetworks need to have the same number of layers (and neurons per layer),
in relation to the central (bottleneck) layer. Input and output layers need to have the same
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number of neurons as the dimension of the feature space. The encoder network’s hidden
layers reduce the number of neurons (usually by halving) from the input layer, creating
a funnel-shape towards the central layer which serves as an information bottleneck (the
bottleneck layer captures a compressed latent encoding). Then, decoder network’s hidden
layers increase them back again using the same sequence of steps.

The denoising stacked autoencoder, in addition, features a Gaussian noise layer imme-
diately after the input layer, which injects noise into the input data (i.e., partially corrupts
input data in a stochastic manner) and makes it harder for the decoder to reconstruct the
inputs (i.e., learn input features). This reduces potential for overfitting and increases the
robustness of the encoder–decoder pair, resulting in codings that preserve maximum infor-
mation while reducing the dimensionality of the feature space [48]. Stacked autoencoder
is superior to other dimensionality reduction techniques (such as the linear or quadratic
discriminant analysis andprincipal components analysis), and it can be used for automatic
features extraction [48,49].

Initial exploration of the autoencoder architecture—selection and tuning of hyper-
parameters (stacking of layers, selecting layer sizes, choosing neuron activation, regu-
larization type and strength), scheduling and fine-tuning the optimizer learning rate,
batch size, and other related issues—is tackled by means of the bandit-based optimiza-
tion (Section 3.4.3). This provides automation at the expense of increased computational
burden. Autoencoder is trained in the unsupervised manner, for a number of epochs,
on the training set until there is no significant progress in the reduction of the Kullback–
Leibler divergence loss [33]. Kullback–Leibler divergence measures the difference between
the approximating and reference probability distributions, which is minimized under
this loss. Adam (i.e., adaptive moment estimation) optimizer with an exponential de-
cay of the learning rate and early stopping is employed during training, using a batch
size of 32 instances. Exponential schedule decreases the learning rate from the initial
value `0 every ds steps with a decay rate of β ∈ (0, 1), which yields at the k-th step a
learning rate of `k = `0 · βk/ds . Hidden layers are fully-connected, with the i-th layer
given by y(i) = fReLU(W(i) · x + b(i)), where neurons feature a ReLU activation function
fReLU(x) = max(0, x) and L2–penalty regularization. Glorot normal initialization is ap-
plied to neurons weights [31]: W ∼ N (0, σw); σw =

√
2/(ni + no), where ni and no is,

respectively, the number of input and output connections for the layer. A dropout layer
can be used for additional regularization. Cross-validation with a stratified shuffle split of
the training data set is used for model validation. Once the learning process terminates,
the encoder part of the autoencoder is used for (nonlinear) dimensionality reduction of the
features space (i.e., for encoding the training and test data sets).

3.2. Transfer Learning with Deep Neural Networks

Building a DNN classifier, by means of a transfer learning technique, encompasses
reusing (i.e., cloning) the encoder part of the previously trained autoencoder and extending
it with a stack of additional layers [32,48,50]. These additional hidden layers extend the
encoder architecture and in-fact create a DNN classifier. Since this is a binary classifier,
the last layer has a single neuron with a sigmoid activation function fs(x) = 1/(1 + e−x).
Hidden layers are fully-connected, with neurons that feature a ReLU activation function
with a Glorot normal initialization and L2–penalty regularization. Finally, a Monte Carlo
dropout layer is introduced in order to facilitate estimating the confidence of the classifier
predictions [48]. This confidence can be determined from a statistical distribution of
classifier prediction probabilities that is constructed with a repeated Monte Carlo trials.
Figure 7 graphically represents the essence of the transfer learning process of building a
DNN classifier (with unsupervised pretraining).
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Figure 7. Building a DNN classifier, by means of a transfer learning process, from the clone of the
pretrained undercomplete denoising stacked autoencoder.

Supervised training of this DNN classifier, by means of a transfer learning approach,
is a two-step process [48]:

1. layers of the encoder part of the classifier architecture are frozen (which means that
their weights cannot change during training) and the entire network is trained using
labeled training data for a number of epochs, until there is no progress in the reduction
of the binary cross-entropy loss [33];

2. layers of the encoder part of the classifier architecture are un-frozen and optimizer
learning rate is lowered for a second round of supervised training (i.e., fine-tuning)
using the same labeled training data, again until there is no significant progress in the
reduction of the binary cross-entropy loss.

Both rounds of training employ the adam optimizer with an exponential decay of
the learning rate, and with a shuffled batch size of 32 instances. However, the fine-tuning
phase uses considerably (i.e., 10 times) lower starting learning rate. Cross-validation on the
training data set is used for model validation, along with an AUC binary classifier metric
(Section 3.5) and early stopping, where validation set is created from the training set using
the stratified shuffle split strategy. Furthermore, in order to cope with the class imbalance
in the data, a class weight balancing is used during training to boost the representation
(inversely proportional to the class frequencies) of the samples from the under-represented
(i.e., unstable) class. After the DNN classifier has been further calibrated (Section 3.5), final
predictions are made on the test set using the averaged prediction probabilities from a few
hundred repeated Monte Carlo trials. This enables estimating classifier’s confidence about
the class predictions.

All deep learning models are implemented in the Python programming language,
using the TensorFlow 2 library from Google [51].

3.3. Ensemble Learning

Ensemble learning consists of pooling together predictions from a set of different base
models to produce better and more robust predictions. The key to making ensembles work
is the diversity of the set of base learners. For this reason, one should ensemble models
that are as good as possible while being as different as possible. Ensemble learning is here
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used to build a meta-classifier, which combines and aggregates two very different models:
(1) SVM classifier (Section 3.3.1) and (2) RF classifier (Section 3.3.2). Figure 8 graphically
depicts the process of building this meta-estimator using the soft voting approach. Each
base model is assigned a weight in the voting ensemble, which produces weighted av-
erage of probabilistic predictions from these individual classifiers. Ensemble learning is
implemented by using the Scikit–Learn [52] Python library.

FL
Figure 8. An overview of the voting ensemble classifier built from SVM and RF base models.

Each base classifier is individually trained on the codings (training set) obtained
from the autoencoder (Section 3.1) and produces independent predictions on the test
set (i.e., outputs prediction probabilities, p). Since the dataset is imbalanced, each base
classifiers uses class weight balancing during training, in order to put more weight on the
samples from the under-represented class (by automatically adjusting weights inversely
proportional to the class frequencies in the input data) [52]. Base classifiers are trained
using the f1–measure as a scoring metric and individually calibrated on the training set
(Section 3.5).

Voting ensemble (VE) classifier collects predicted class probabilities from the base
classifiers, obtained on the test set (from which a small portion is reserved for validation),
and computes their weighted average p̄ = ∑ p ·ω. A final label is derived from the class
with a highest average probability. Individual classifier weight (ωj) contributions to the
ensemble are computed by solving the following constrained optimization problem:

min
ω
{−[y · log

m

∑
j=1

p ·ωj + (1− y) · log(1−
m

∑
j=1

p ·ωj)]}

s.t.
{

∑ ωj = 0,
0 ≤ ωj ≤ 1, j = 1, . . . , m

(2)

which features a negative log-likelihood of the classifier Llog(y, p) = − log Pr(y|p), where
y ∈ {0, 1} is a true class label and p = Pr(y = 1) is the probability estimate from the
classifier (on the validation set); with m = 2 being the number of base models. Solution of
the optimization problem in (2) is found by using the sequential least-squares programming
routine from the Scipy [53] Python library.
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3.3.1. Support Vector Machine Classifier

SVM classifier is a supervised learning method that uses a subset of training points
(called support vectors) and kernels in constructing the decision function, which for a given
sample x can be written as follows:

f (x) = ∑
i∈SV

yiαi · K(xi, x) + b, (3)

where summation of sample pairs (xi, yi) is over the space of the support vectors (SV),
while K(·) is the selected kernel function. Unknown coefficients αi and b are to be deter-
mined by solving the following optimization problem [33]:

min
w,b,ζ

1
2
||w||2 + C

n

∑
i=1

ζi

s.t.
{

yi(wTφ(xi) + b) ≥ 1− ζi,
ζi ≥ 0, i = 1, . . . , n

(4)

where C is the penalty that acts as an inverse regularization parameter, while ζi is a slack
variable and n is the number of samples. Introduction of a slack variable, which allows
some samples to be at a distance ζi from their correct margin boundary, is necessary to
cope with otherwise infeasible constraints of the optimization problem. Here, a radial basis
function (RBF) kernel is used [33]:

K(x, x′) :=
〈
φ(x), φ(x′)

〉
= exp(−γ‖x− x′‖2).

(5)

The penalty (C) and the kernel coefficient (γ) for the RBF, as two crucial hyperparam-
eters of the SVM, are optimized using the Bayesian optimization (Section 3.4.2), with a
cross-validation on the training set. It should be noted that penalty interacts quite strongly
with the kernel parameters. Further details of the SVM implementation and solution to (4)
can be found in [33].

3.3.2. Random Forest Classifier

RF classifier is an ensemble learner built using randomized decision trees. DT is a
non-parametric supervised learning method that makes predictions by learning simple
decision rules inferred from the data features [33]. DT classifier constructs a binary tree
using the feature and threshold that yield the largest information gain at each node. It
consists of branches and leafs, and is usually grown to full size, after which a pruning step
is often applied to improve its ability of generalization. The complexity and size of the
tree can be controlled by the appropriate hyperparameters [52]. DT classifier is prone to
overfitting (i.e., it has a low bias but a high variance).

RF classifier creates a diverse set of these DT classifiers by introducing randomness
in the classifier construction (perturb-and-combine) and subsequently aggregates their
predictions by averaging (probabilistic) predictions of the individual DTs. In RF, each DT
in the ensemble is built from a sample drawn with replacement (i.e., bootstrap sample),
from the training set. Furthermore, when splitting each node during the construction
of a tree, the best split is found either from all input features or from its random subset.
The purpose of introducing these two separate sources of randomness is to decrease the
variance of the RF, improve its predictive accuracy and control the overfitting. The process
of building a forest of trees can be controlled by a number of hyperparameters [52], which
are optimized using a random search with a k-fold cross-validation on the training set
(Section 3.4.1).
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3.4. Hyperparameters Optimization

A crucial part of the ML model training process involves the hyperparameters opti-
mization, which can be carried-out using different approaches [48,50]. Three methods will
be briefly presented hereafter: (1) random search, (2) Bayesian optimization, and (3) Bandit-
based optimization. Each optimization method defines a configuration space (of hyperpa-
rameters) and uses a particular search algorithm.

3.4.1. Random Search

Random search is one of the simplest methods for the ML model’s hyperparameters
optimization. It is suited for situations where there are large numbers of parameters
of different types (continuous with and without bounds, discrete that are ordered or
not, conditional, etc.) [52]. The random search method only presupposes the individual
statistical distributions (either continuous or discrete) for each of the hyperparameters.
Then, during a fixed number of iteration cycles, parameter values are randomly sampled
from these specified distributions. With each combination of sampled hyperparameters,
a model is trained using the k-fold cross-validation approach. The best combination of
sampled hyperparameters are retained after the iterative process is finished. This method
is superior to the grid search, but less informed than the Bayesian optimization.

The following hyperparameters of the RF classifier are fine-tuned using the random
search [52]: number of trees, maximum depth of tree, number of samples required at a leaf
node, minimum number of samples required to split an internal node (all from discrete
uniform distributions); fraction of samples for training each tree, fraction of features
to consider, threshold for early stopping in tree growth (all from continuous uniform
distributions); function to measure the quality of tree split (from a discrete set); bootstrap
sampling binary variable.

3.4.2. Bayesian Optimization

Bayesian optimization (BO) features a Gaussian process prior and evidence to define a
posterior distribution over the space of functions, where optimization follows the principle
of maximum expected utility [54]. It imposes limits on the hyperparameter space of the
model, which can be very wide, and uses guided search through this hyper-space using
the cross-validation on the training set [55]. It does not impose specific distributions on the
hyperparameters. This approach is suited for the ML models that are expensive to train
and have a small number of real-valued hyperparameters.

The BO rests on the underlying Gaussian process (GP) that can be defined as [33]:

f (x) ∼ GP
(
0, κ(x, x′)

)
, (6)

which stipulates a zero mean and here implements a Matérn kernel:

κ(r) =
21−ν

Γ(ν)
·
(√

2νr
`

)ν

· Kν

(√
2νr
`

)
, (7)

with ν = 1/2, where ` stands for the kernel width, while Γ(·) is the Gamma function and
Kν(·) is the modified Bessel function. At the same time, the upper confidence bound (UCB)
is selected for the acquisition function (AF) of the BO, as follows [33,54]:

α(x; θ) = µ(x; θ)− β · σ(x; θ), (8)

where θ is the parameter of the AF which can be fine-tuned, while β is pre-selected by the
user and controls the exploration–exploitation trade-off. The role of the acquisition function
is to guide the search for the optimum. Typically, high acquisition corresponds to potentially
high values of the objective, whether because the prediction is high, the uncertainty is large,
or both. Maximizing the AF is used to select the next point (xi+1) at which to evaluate.
The AF from (8) balances the trade-off of exploiting and exploring the hyper-space of
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potential values (through the β parameter). When exploring, it chooses points where the
surrogate variance is large. When exploiting, it chooses points where the surrogate mean is
high [54].

The predictive (posterior) distribution can be described by the following update
rule [33,54]:

P( fi+1|D1:i, xi+1) = N
(

µi(xi+1), σ2
i (xi+1)

)
(9)

with:
µi(xi+1) = kTK−1f1:i

σ2
i (xi+1) = κ(xi+1, xi+1)− kTK−1k

(10)

where D1:i and f1:i = f (x1:i) are, respectively, a set of previously processed points (i.e.,
hyperparameters) and their associated values; K is the kernel matrix of the processed
points x1:i and k is the vector of kernel values at the next point xi+1. The iterative process
is started from the randomly selected initial hyperparameter values and stopped after the
predefined number of iteration steps. Additional implementation details can be found
in [54].

During each iteration step, a ML model with the most-current values of hyperparame-
ters is trained on the part of the training set and validated on the held-out part, using the
cross-validation approach. The best combination of hyperparameters are retained after the
iterative process is finished.

3.4.3. Bandit-Based Optimization

A so-called “hyperband” bandit-based optimization is employed, which speeds-up
random search through the adaptive resource allocation and early-stopping [52,56]. This
method is well suited for dealing with large number of hyperparameters of different types.
Hyperparameter optimization is formulated as a pure-exploration non-stochastic infinite-
armed bandit problem, where a predefined resources such as iterations, data samples,
or features are allocated to randomly sampled configurations. The hyperband algorithm
balances the number of hyperparameter configurations n given some finite budget B of
resources (i.e., n versus B/n), by considering several possible values of n for a fixed B [56].
Associated with each value of n is a minimum resource r that is allocated to all config-
urations before some are discarded; a larger value of n corresponds to a smaller r and
hence more aggressive early-stopping strategy. Hyperband, in addition, employs and
extends on the successive halving algorithm, which essentially works by (1) allocating
a budget to a set of hyperparameter configurations, (2) evaluating the performance of
all configurations, (3) throwing out the worst half, and (4) repeating until a single con-
figuration remains [52,56]. The hyperband algorithm iterates over different values of n
and r and for each pair invokes successive halving algorithm, yielding a high-performing
configuration (according to the selected loss metric) after a number of iterations. Additional
implementation details can be found in [56].

3.5. Performance Metrics and Classifier Calibration

Transient stability index, which indicates preservation or loss of system stability, has
been introduced to label the samples (Section 2.2) as belonging to the stable or unstable
class. With a data set that features class imbalance, and when considering unequal miss-
classification costs, accuracy of the binary classifier alone cannot be considered a valid
metric for reporting its performance [33]. All types of classification errors need to be
considered, as well as their repercussions on the subsequent decision making process.

Precision (i.e., positive predictive value, PPV) and recall (i.e., true positive rate, TPR),
as derived measures, capture the important trade-off that the classifier needs to perform,
since there is an inverse relationship between them (where it is possible to increase one at
the cost of reducing the other). Precision is the ratio:
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PPV =
tp

tp + fp
, (11)

where tp is the number of true positives and fp the number of false positives. True positives,
in this setting of transient stability analysis, are results where classifier correctly predicts
unstable cases. False positives are, at the same time, results where classifier falsely predicts
that the cases are unstable which are in fact stable (i.e., false alarms). Recall is the ratio:

TPR =
tp

tp + fn
, (12)

with fn being the number of false negatives. False negatives are results where classifier
falsely predicts that the cases are stable which are in fact belonging to the unstable class.
This kind of error is worse, in terms of the repercussions on the subsequent decisions,
than the false alarms. Classification accuracy is defined as:

ACC =
tp + tn

tp + tn + fp + fn
, (13)

with tn being the number of true negatives (i.e., results where classifier correctly predicts
stable cases). Accuracy, however, can be a misleading metric for imbalanced data sets.

Both precision and recall are scored in the range between zero and one. A precision
score of 1.0 for the unstable class means that every item labeled as belonging to this class
does indeed belong to it (but it says nothing about the number of items from this class
that were not labeled correctly). A recall of 1.0 for the unstable class means that every
item from this class was correctly labeled (but it says nothing about how many items
from the stable class were also incorrectly labeled as belonging to this class). For the TSA
analysis, classifier’s recall score can be seen as more important than precision. Individual
scores (PPV and TPR) can be further combined into a single metric, the Fβ score, which is a
weighted average of the precision and recall:

Fβ = (1 + β)2 · PPV · TPR
β2 · PPV + TPR

(14)

In addition, F1 ≡ Fβ=1, which can also be defined in terms of the Jaccard coefficient (JC)
as JC = F1/(2 − F1). However, this measure ignores true negatives (tn) and can also
be misleading for unbalanced classes. A better approach would be to use the Matthews
correlation coefficient (MCC):

MCC =
tp · tn − fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(15)

which is generally regarded as a more balanced measure for the class imbalanced data sets.
Matthews coefficient ranges between −1 and +1. A coefficient of +1 represents a perfect
prediction, 0 no better than random guessing and−1 indicates a total disagreement between
prediction and observation. Finally, the Brier score (BS) is reported, which measures the
accuracy of probabilistic predictions:

BS =
1
n

n

∑
i=1

(yi − p(xi))
2, (16)

where yi and p(xi), respectively, denote the i-th sample’s label and probability of being
classified into the positive class, while n is the number of samples. The Brier score, as a
mean square error, is lower with better calibrated predictions (but strictly positive).

Classifier performance can be further gauged by the area under the receiver operating
characteristic (ROC) curve (i.e., the so-called ROC–AUC score) [52]. A complementary
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comparison, which better emphasizes unequal miss-classification costs, is possible using a
so-called detection error trade-off (DET) curve, which is plotted using a normal deviate
scale [52]. This curve allows comparing classifiers in terms of false positive rates (FPR) and
false negative rates (FNR) they produce.

Finally, classifier calibration deals with choosing the optimal probability threshold
level in relation to the balance between the precision and recall, or in terms of false alarm
vs. missed detection costs. In other words, this threshold level depends on the importance
of different classifier errors ( fp vs. fn) on the subsequent decisions and needs to account
for the class imbalance.

4. Results of New England 39-Bus Case Study

A subset of the obtained results will be presented here, due to space concerns. The au-
toencoder first reduces the dimensionality of the feature space down to 16D, which is
considered sufficiently low-dimensional representation for this case study [9,12,37]. Next,
the DNN classifier is trained using a two-step process (Section 3.2), which follows cloning
and extending the encoder part of the (pretrained) stacked autoencoder. Consequently,
Figure 9 presents the binary cross-entropy loss values during both phases of the DNN clas-
sifier training. A training and validation loss values (using cross-validation) are provided
as a function of the training epoch. The loss value reaches a plateau after certain number of
epochs, which is detected by the early stopping [51], indicating convergence of the model.

FL
Figure 9. Training and validation loss values for a DNN classifier during transfer learning: (a) net-
work training phase, (b) network fine-tuning phase.

A voting ensemble classifier (Section 3.3) was built from individually trained SVM
and RF classifiers, each cross-validated on the training data set (from the codings of the
autoencoder). Prediction probabilities from the SVM and RF classifiers were averaged
(using weighting) by means of soft voting. A weight ratio of approximately 60:40 in favor
of the SVM was obtained from solving Equation (2), confirming that it is a better classifier.
Individually trained classifiers were calibrated using the precision/recall curves, which are
graphically presented in Figure 10. A threshold level was marked, for each of the classifiers,
at which the highest precision and recall combination could be simultaneously achieved.
Threshold defines the internal level at which the probability (of the unstable class) was set,
and its optimal value often differed from the 0.5 baseline.
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b)

Figure 10. Precision/recall trade-off curves for each of the classifiers: (a) DNN classifier, (b) SVM classifier, (c) RF classifier
and (d) VE classifier.

The inverse–proportional relationship between the precision and recall was evident. It
can be seen that the recall often started to fall (dramatically) after a certain threshold level.
It is also clear that one could not increase the precision of the classifier without reducing the
recall, and vice–versa. Hence, the different importance that the precision and recall have on
the subsequent decisions featured prominently in the classifier calibration step. Fine-tuning
of the threshold value needed careful consideration of the unequal miss-classification costs.
For example, it can be seen that the VE classifier threshold could be further adjusted for an
increased recall at the expense of a slightly reduced precision.

The classifier produced a prediction probability for each sample in the test set, which
was converted (based on the threshold level) to the statement of belonging to the unstable
class. Figure 11 presents a confusion matrix for each of the three individual classifiers.
A confusion matrix features (off diagonal) the number of false positive ( fp) and false
negative ( fn) errors the classifier produces on the test data set (Section 3.5). Particularly
important in the setting of power system TSA were the false negatives. The DNN and
the SVM classifiers had the same number of false negative errors, while the RF classifier
performed only slightly worse. These results could vary between runs due to the stochastic
nature of the models (which did not influence the final classifier decisions).

Figure 11. A confusion matrix for the DNN, SVM, and RF classifiers, determined on the test set.
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Moreover, since the DNN classifier yielded a (final) prediction probability by the
process of averaging prediction probabilities from several hundred Monte Carlo trials
(Section 3.2), this particular classifier (unlike others here) in the process generated a full
probability distribution (instead of a single value) of the prediction probability. This
probability distribution is graphically displayed in Figure 12 for a few selected cases from
the test set. The probability distribution is depicted with a “boxplot” with a superimposed
“strip plot” (overlaid on the boxplot to give a visual clue to the distribution shape) . It can
be seen that the threshold level of the DNN classifier cut through the statistical distribution.
Confidence of the DNN classifier in the predictions was clearly evident. For example,
the classifier was much more certain about Case 2 belonging to the stable class then about
Case 3, which could reveal obscure details about particular cases that can be important for
understanding (and improving) classifier performance.

Figure 12. Monte Carlo determined statistical distribution of prediction probabilities from a DNN
classifier for a few select cases (Cases 1 through 4 belong to the stable class, while the Case 5 belongs
to the unstable class). Boxplot: bottom and top lines of the box represent, respectively, first (Q1) and
third (Q3) quartiles; the line inside the box is the median value (Q2); “whiskers” represent the lowest
datum still within the 1.5 IQR (interquartile range) of the lower quartile, and the highest datum still
within the 1.5 IQR of the upper quartile; diamond points outside the whiskers represent outliers;
“star” indicates the mean value.

A further comparison of the classifiers performance on the test set could be analyzed
by means of the ROC and DET curves. Figure 13 presents ROC and DET curves for each
of the classifiers, including the voting ensemble. The ROC curves are here depicted in
the coordinate system of precision and recall scores, with isolines of constant F1–metric
values superimposed for reference. This is an alternative presentation of the traditional
ROC curve that better emphasizes the importance of the class imbalance (the better the
classifier is the closer is its curve to the upper-right corner). A classifier that is no better
than random guessing would have the ROC curve as a diagonal y = −x. At the same
time, DET curves are plotted in normal deviate scale and allow comparing classifiers in
terms of false positive rate (i.e., false alarm probability) and false negative rate (i.e., missed
detection probability). In power system TSA analysis, higher cost is generally associated
with a missed detection. A balancing of (unequal) decision costs between false alarm and
missed detection can be achieved by using a DET curve, by choosing optimal threshold
level based on error type weighting.
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b)

Figure 13. Comparison of DNN, SVM, RF and VE classifiers: (a) receiver operating characteristic
(ROC) curves presented on top of the isolines of constant F1–metric values; (b) detection error
trade-off (DET) curves plotted in normal deviate scale.

In addition, Table 2 presents classifier comparisons in terms of different classification
metrics obtained from the test set. Particularly notable is the comparison between classifiers
in terms of the Jaccard and Matthews coefficients. It can be seen that the VE classifier
increased both of these metric scores from those of the individual (SVM and RF) classifiers
that went into the ensemble. It further had the highest recall among all classifiers, while
retaining high precision, which was particularly important for the power system TSA
problem. Finally, its Brier score was very low, which means that it was well calibrated.

Table 2. Classification metrics of different classifiers measured on a test set.

Metric DNN SVM RF VE

Accuracy 0.985577 0.987179 0.980769 0.988782
Recall 0.966387 0.966387 0.949580 0.974576
Precision 0.958333 0.966387 0.949580 0.966387
F1–score FL 0.962343 0.966387 0.949580 0.970462
Jaccard coef. 0.927419 0.934960 0.904000 0.942623
Matthews coef. 0.953436 0.958466 0.937698 0.963554
Brier score 0.016836 0.009447 0.014037 0.010506
FL ROC–AUC score 0.978243 0.979233 0.968849 0.980848

Sensitivity Analysis and Discussion

Sensitivity of the classifiers to the increasing severity of the autoencoder’s dimen-
sionality reduction (i.e., constriction of the bottleneck layer) has been analyzed as well.
Aggregate results from several runs are reported, due to the stochastic nature of the encod-
ing process. The resulting classifiers precision and recall (mean values) are provided in
Figure 14 as bar graphs, for three different autoencoder’s coding dimensions of decreasing
size. It can be seen that the classifiers performance decreased and volatility increased
(“ticks” denote standard deviation) with the reduction in size of the coding dimensions.
However, enough information was being preserved even with a severe dimensionality
reduction, enabling the classifiers to retain a relatively high values of precision and recall.
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Figure 14. Classifiers sensitivity to the increasing severity of the autoencoder’s dimensionality reduction.

Additionally, a further increase of the ensemble’s robustness could be achieved by
introducing a pool of SVM estimators instead of using a single instance (i.e., by using
the bootstrap aggregation of SVMs). A pool of SVM classifiers was first established by
instantiating individual SVMs using stratified random subsamples from the training data
set. Each model in the pool had different hyperparameters (obtained with the BO), and they
competed with each other for dominance under the following constrained optimization:

min
η
{−[y · log Lq + (1− y) · log(1− Lq)]}

for Lq =
q

∑
i=1

ηi · P|y=1

s.t.
{

∑ ηi = 0,
0 ≤ ηi ≤ 1

(17)

where ηi is the relative score of the j-th model and q is the number of models in the pool; y
is a true class label and P|y=1 is a probability estimate of the unstable class. Optimization
given by (17) essentially minimizes the cross-entropy of the pool of SVMs. A predicted
probability, as a weighted average (based on their relative scores) from the entire pool of
SVMs, was used in the final voting ensemble (Section 3.3). Table 3 presents optimal hyper-
parameters and relative scores for a pool of three SVMs. Introduction of this additional
source of randomness and averaging into the model building process further decreased the
ensemble’s variance and helped control the overfitting.

Table 3. Hyperparameters and relative scores for a pool of SVM classifiers.

SVM Penalty (C) Kernel L (γ) Score (η)

1 71.54452 0.017971 0.107
2 572.6880 0.036714 0.590
3 68.10741 0.177792 0.303

A combination of the undercomplete stacked autoencoder, which reduced the high-
dimensionality of the original feature space (while preserving information), with a well-
calibrated voting ensemble classifier, provided an overall well-balanced ML model for
the power system TSA analysis. The high quality of the classification metrics, obtained
from using a small number of input component features (i.e., codings), attested also to the
performance of the autoencoder. Its full potential, however, would be revealed only on
a much larger power system with many more signals/features [25]. A high performance
of the SVM was confirmed, which partially stems from the use of Bayesian optimization
for fine-tuning its hyperparameters. The ensemble, at the same time, pulled together
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predictions of two very different classifiers, building on their individual qualities in the
process (in terms of robustness and classification performance).

Applying deep learning to the power system TSA problems will facilitate the next
generation of TSA tools to move from preventive countermeasures (contingency analysis
on pre-fault operating points) to corrective control. However, there are still important
issues that need to be resolved. One such issue is the problem of transferability of deep
learning models across different power systems. Namely, the principal downside of
the end-to-end deep learning, which employs LSTM (and/or GRU) layers for ingesting
raw time-series signals, is the inability to transfer learned information between different
power system architectures [23] . Consequently, here proposed approach leverages expert
knowledge for the features engineering (which is fully automated nonetheless). Another
related issue concerns the computational resources needed for processing huge amounts
of PMU signals using very complex deep learning models (that feature many millions
of parameters). Further problems arise from the class imbalance of the data sets, noisy
and missing data, labeling of cases for supervised learning, and other complexities of the
real-world power systems.

5. Conclusions

A data-driven ML approach to solving the power system TSA was proposed in this
paper. A novel 3.8 GB dataset of time-domain PMU–type signals was built from com-
prehensive electro–mechanical transient simulations of power system contingencies. It
is openly shared under the CC-BY license. A sophisticate MATLAB/Simulink model of
the IEEE New England 39-bus test case power system was built for that purpose and its
flexibility greatly enhanced by the use of specialized blocks and object-oriented program-
ming. A novel data processing pipeline was introduced for transforming the systematically
generated dataset into the appropriate stochastic form (that captures class imbalance and
statistical distribution of fault types), and splitting the data using the stratified shuffle
approach. This dataset forms a convenient database for experimenting with different types
of ML (including deep learning) models for the TSA analysis.

Furthermore, a complete ML based approach to the TSA classification has been
proposed. It features an undercomplete denoising stacked autoencoder and a soft voting
ensemble of SVM and RF base classifiers. Autoencoder, as an unsupervised learning
model, can be trained (off-line) on a large corpus of unlabeled data. Its effectiveness
in reducing/compressing the dimensionality of the feature space (without appreciable
loss of information) has been corroborated in this case study. As a result, the training
of the subsequent VE classifier is significantly faster and produces a better performing
model at the same time. This effectiveness of the autoencoder is expected to increase with
a larger data corpus. The classifier decisions can be used in real-time as inputs to the
intelligent system for a corrective power system control and decision making. The voting
ensemble pools (probabilistic) predictions from two very different base models and creates
a weighted average that balances individual strengths of these underlying estimators. High
performance of the VE classifier has been corroborated in this case study.

Applying deep learning to the power system TSA problems is showing promise,
with several important issues that still need to be fully resolved. Training of complex
deep learning architectures is still more of a black art than science, with special problems
of convergence, vanishing gradients, forgetfulness, dead neurons, and others. A major
issue is the problem of transferability of deep learning models across different power
systems. In addition, many excellent deep learning architectures built, for example, for im-
age processing can be applied in power system analysis only with great difficulties and
uncertain performance in the real world. Building the next generation of TSA tools, using
data mining and machine learning, is still a work in progress. This paper is seen as a
contribution to the growing pool of knowledge and ML models that show great promise on
standard benchmark test case power systems. However, stepping from benchmarks into
the real world is often plagued with difficulties emanating from unforeseen circumstances.
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Therefore, future work will involve pursuing several avenues of research: (1) increasing the
dataset size with new simulations, (2) increasing the class imbalance with new contingen-
cies, (3) introducing different types of noise and measurement errors into the dataset for
stress–testing the models, (4) using deep learning for features extraction from time-domain
signals, (5) experimenting with engineering new artificial features and (6) testing different
ensemble methods.
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ML Machine Learning
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TL Transmission Line
TPR True Positive Rate
TSA Transient Stability Assessment
TSI Transient Stability Index
UCB Upper Confidence Bound
VE Voting Ensemble
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