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Abstract: Engine knock determination has been conducted in various ways for spark timing cali-
bration. In the present study, a knock classification model was developed using a machine learning
algorithm. Wavelet packet decomposition (WPD) and ensemble empirical mode decomposition
(EEMD) were employed for the characterization of the in-cylinder pressure signals from the ex-
perimental engine. The WPD was used to calculate 255 features from seven decomposition levels.
EEMD provided total 70 features from their intrinsic mode functions (IMF). The experimental engine
was operated at advanced spark timings to induce knocking under various engine speeds and load
conditions. Three knock intensity metrics were employed to determine that the dataset included
4158 knock cycles out of a total of 66,000 cycles. The classification model trained with 66,000 cycles
achieved an accuracy of 99.26% accuracy in the knock cycle detection. The neighborhood component
analysis revealed that seven features contributed significantly to the classification. The classification
model retrained with the seven significant features achieved an accuracy of 99.02%. Although the
misclassification rate increased in the normal cycle detection, the feature selection decreased the
model size from 253 to 8.25 MB. Finally, the compact classification model achieved an accuracy of
99.95% with the second dataset obtained at the knock borderline (KBL) timings, which validates that
the model is sufficient for the KBL timing determination.

Keywords: knocking; classification; in-cylinder pressure; spark-ignition engine; wavelet packet
decomposition; ensemble empirical mode decomposition; supervised learning

1. Introduction

Knocking is the most critical combustion phenomena in spark ignition engines. Knocks
are considered as the noise perceived via the engine structure due to the spontaneous
ignition of a portion of the end-gas [1]. Moreover, the end-gas area is larger in the knocking
cycle than in the normal cycle [2]. Knocking can lead to severe damage in the in-cylinder
components such as the piston, piston rings, cylinder liner, spark plug, and valves. In
recent years, there has been an increase in the significance of knock phenomena due to the
increased compression ratio and power density of modern gasoline engines. The knock
tendency is a function of various parameters, which include the compression ratio, fuel
grading, and spark timings. Knock suppression can be achieved by the use of exhaust gas
recirculation (EGR), proper injection techniques, the enhancement of the tumble and squish
flows [3], modification of the autoignition characteristics by hydrogen enrichment [4], and
water addition [5]. For a specific engine under given operating conditions and a known fuel,
the spark timing control is an effective method for the suppression of knocking. Although
it soothes knocking, the spark timing retard deteriorates the fuel economy. Thus, the spark
timing is generally set at the instance when the first knock is observed. Such a spark
timing is referred to as the knock borderline (KBL) timing or knock-limited maximum
brake torque timing [6]. Therefore, significant research attention has been directed toward
the development of a reliable knock detection method, possibly by the examination of
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individual engine cycles in real-time and the distinction between knock cycles and normal
non-knock cycles.

It should be noted that preprocessing can distort the in-cylinder pressure characteris-
tics required for the accurate evaluation of the knock intensity. Maurya et al. [7] carried
out various digital signal processing techniques on the in-cylinder pressure traces from
a homogenous charge compression ignition (HCCI) engine. The power spectrum results
revealed that smoothing and averaging eliminated most of the high-frequency components
from the in-cylinder pressure signal.

Several knock intensity metrics have been developed for the quantification of the
knocking intensity, most of which are based on the in-cylinder pressure oscillation.
Shu et al. [8] evaluated two knock intensity parameters calculated using the maximum
amplitude of pressure oscillation (MAPO) [9] and the knock intensity factor for the
20 crank angle (CA) range [10] methods at various engine speeds. It was concluded
that the KI20 knock metric was superior to MAPO due to its more significant pressure
oscillation information.

Shen et al. [11] developed a knock intensity metric based on the resonant frequency
of the in-cylinder pressure. The in-cylinder pressure traces from the engine speed within
the range of 800–2000 rev/min were employed for the development of the parameters.
The proposed knock metric exhibited a high signal-to-noise ratio and required a shorter
computational time than the reference knock parameter based on the average energy
calculated over a frequency range of 6–25 kHz.

Ettefagh et al. [12] investigated knock detection based on the engine block vibration
using an auto regressive moving average (ARMA) model. The vibration signal from an
accelerometer was obtained during the operation of the experimental engine at 600 rev/min.
It was found that the fourth moving average parameter of the ARMA model exhibited
significant discrepancies between the non-knock and knock phenomena. Moreover, the
proposed method could detect the weakest knock.

Bares et al. [13] suggested a knock probability estimation based on the in-cylinder
temperature and exogenous noise. The trapped mass estimated from the in-cylinder
temperature improved the accuracies of the air mass flow rate measurement and knock
probability estimation. The results revealed that the random nature of knocking can be
attributed to the irregularity in the in-cylinder temperature. Moreover, the model could
predict the knock probability during the estimation of the trapped mass from the resonant
content of the in-cylinder pressure.

Molinaro et al. [14] developed pattern classification techniques for knock detection
based on the vibration signal from a piezoelectric accelerometer. The classification tech-
niques were evaluated using 144 vibration cycles, which consisted of 88 knock cycles and
56 normal cycles. Based on the validation of the techniques based on 500 cycles and five
engine speeds, the classification techniques decreased the false alarm rates to 0–5% at all of
the engine speeds. Moreover, the conventional detector exhibited knock detection errors of
2–30%.

To obtain accurate results, an appropriate signal processing technique should be
selected for the given in-cylinder pressure signals from the engine. Liu et al. found that
the deflation method is effective in vibration signal separation [15]. Moreover, reweighted
singular value decomposition (RSVD) exhibited a remarkable denoising performance in
the detection of faults in rotary machines by enhancing the weak significant features [16].

Since Huang et al. first introduced the empirical mode decomposition [17], em-
pirical mode decomposition (EMD) has been widely used in signal analysis and fault
diagnosis [18]. Since it decomposes high-frequency oscillating signal components from
low-frequency oscillating components [19], the EMD method is suitable for the in-cylinder
pressure signal processing. The numbers of peaks, zero crossing, entropy, and sifting were
extracted from the resultant intrinsic mode functions (IMF).

Wavelet packet decomposition (WPD) is one of the promising decomposition methods
applicable for evaluating harmonic distortion in power systems [20]. WPD, essentially
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the same as discrete wavelet transform (DWT), provides 2n sets of wavelet coefficients,
whilst DWT produces only n + 1 sets of wavelet coefficients. Subasi et al. [21] concluded
that WPD was superior to EMD and DWT in the seizure onset determination in the
electroencephalogram recordings.

Recent approaches based on neural networks exhibit improved knock prediction
performances. Bennett et al. [22] reconstructed the in-cylinder pressure from accelerometer
measurements using a recurrent nonlinear autoregressive with exogenous input (NARX)
neural network. The neural network model was then trained using the robust adaptive
gradient descent (RAGD) algorithm. The trained model exhibited a 5% error in the peak
in-cylinder pressure values and 2-CA error in the peak in-cylinder pressure location at an
engine speed of 1000 rev/min. A highly accurate in-cylinder pressure estimation technique
based on the cylinder block vibration can provide a substantial cost reduction in knock
prediction. Multilayer neural networks can potentially be used to extract the in-cylinder
pressure information, peak pressure, and timing from the crank speed signal [23].

In this study, several conventional knock classification methods were thoroughly
reviewed and applied to the present experimental data as comparison to the proposed
machine learning model performance. Firstly, an algorithm was developed that can detect
whether an individual cycle is a knock or normal cycle based on the in-cylinder pressure
trace. The feature extraction was based on the WPD and EEMD, and it was trained via
the supervised machine learning technique. In most previous studies, the in-cylinder
pressure or accelerometer signals of several representative knock cycles from limited
engine operating conditions were analyzed using various signal processing techniques.
The proposed knock determination algorithm is a standalone model that can classify
individual cycles in real time. The model algorithm was trained using several knock cycles
with significantly different intensities under various operating conditions, and its accuracy
was verified under a different dataset under normal operating conditions. In addition,
the proposed model was sufficiently compact to be embedded in a microcontroller for
real-time monitoring.

2. Materials and Methods
2.1. Instrumentation

The experimental engine was a natural-aspired, four-cylinder, spark-ignition engine
for automotive applications. The engine specifications are listed in Table 1. An eddy-current
(EC) dynamometer was coupled with the engine for loading. A stock electric starter motor
was employed to initiate the engine rotation, given that an EC dynamometer cannot start
an engine. When the engine speed reached a given level, fuel injection and spark ignition
were provided for the engine to run. The dynamometer controlled the engine for operation
at the target engine speed. Figure 1 shows the schematic of the experimental facility.

The spark timing was controlled using the engine control system, which consisted
of a stock engine control unit (ECU) and emulator (ETK, ETAS, Bosch). The fuel injection
timings and valve timings were not changed. Moreover, the stock components in the fuel
injection and spark ignition systems were employed as obtained.

Table 1. Engine specifications.

Parameters Units Nominal Values

Number of cylinders - 4
Bore m 0.072

Stroke m 0.084
Displacement volume m3 1368

Compression ratio - 14
Fuel injection type - Port injection

Ignition - Spark plug
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Figure 1. Schematic of the engine experimental facility.

The external engine cooling system circulated the engine coolant through a water-
cooled heat exchanger. The stock engine thermostat was disabled; thus, the coolant fluid
was consistently directed toward the external cooling system. The coolant temperature at
the engine inlet was maintained at the desired temperature using a chilled water system
from the laboratory and an electric heater. The heater was used only for the engine startup
and low load operations.

Four piezo-electric pressure transducers (6113B, Kistler, Switzerland) were installed
on the four cylinders for in-cylinder pressure measurements. Each transducer was installed
on a hole with M10 thread machined on the engine head near the spark plug. It should be
noted that the pressure transducer is a reliable tool for in-cylinder pressure measurements
in internal combustion engine research. The specification of the pressure transducer is
listed in Table 2. The crank angle was determined using an encoder installed on the crank
shaft, with a CA resolution of 0.1. The corresponding sampling frequency was 180 kHz at
the engine speed of 3000 rev/min. A high-speed data acquisition and combustion analyzer
system (Indicom, AVL, Austria) was employed to display the real-time in-cylinder pressure
traces, and to record the pressure data over 300 consecutive cycles.

Table 2. Specification of the 6113B pressure transducer.

Parameters Nominal Values

Pressure range 0–20 MPa
Overload capacity 25 MPa

Linearity ≤±0.5% full scale output
Operating temperature range −20–350 ◦C

2.2. Engine Experiments

Two experiments were conducted to obtain two separate datasets. The two datasets
were obtained at three different speed levels and under two load conditions. In particular,
the engine was operated under conditions that are common in daily use. The target engine
speed and brake mean effective pressure (BMEP) of the two datasets are presented in
Tables 3 and 4. After the engine reached the steady condition at desired point, spark timing
was advanced by 0.75 CA to induce knocking until severe knocking was observed. The
resultant spark timings indicate substantial advance as shown in Tables 3 and 4. Then,
data was acquired repeatedly 5–15 times to obtain total 30 knock cycles at each point.
Each run acquired 1200 consecutive cycles from four cylinders. The first dataset included
66,000 cycles from 55 runs under the six points, whereas the second dataset consisted
of 25,200 cycles from 21 runs under five points. The first dataset was employed for the
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development of the model, whereas the second dataset was employed for the validation of
the model, which was acquired at the KBL spark timings.

The KBL spark timing at each operating point was first determined from the spark
timing sweep. The KBL timing was determined based on the knock audibility. A 10-mm
diameter copper tube with a length of 6 m was fixed on a bolt head of the engine cylinder
block near Cylinder 1. The sound due to knocking was transmitted through the copper
tube; thus, rendering the knocking audible to an engine operator via the other end of the
tube. Moreover, the test cell door was kept closed to filter out the engine noise from the
knocking sound. This is the standard procedure in the spark timing calibration that has
been employed in automotive industry for many decades.

In the first experiment, the spark timing of the Cylinder 1 was advanced to induce
severe knocking, whereas the spark timings of the other three cylinders were kept at the
KBL timing. The tables below reveal that a minimum of three sets of data logging were
carried out at all operating points. The spark timing was advanced until the number of
knock cycles reached 30 over 300 consecutive cycles. While advancing the spark timing,
the operator acquired 300 cycles at each timing and then checked the knock intensities of
the 300 cycles. The Indicom combustion analyzer provided the knock intensity parameter
referred to as KI_AVL. As shown in Table 3, data logging was carried out more at Points 1,
3, and 5 than the other three points, given that knocking occurred less frequently under
low load conditions.

Table 3. Target engine speed and brake mean effective pressure of the 1st experiment.

Parameters Units Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Engine speed rev/min 1500 1500 2000 2000 3000 3000
BMEP kPa 400 600 400 600 400 600

Spark timing −37 −29 −40 −32 −37 −30
Runs - 15 5 14 6 9 6

Table 4 lists the second experiment, where spark timings of all the cylinders were
maintained at the KBL timings for the normal engine operation. Thus, only a few and
mild knock cycles were obtained from this experiment. The classification model was
validated with the mild knock cycles from this second experiment. In order for the model
to determine the KBL timing, it is crucial to be able to identify low-intensity knock cycles.
Figure 2 shows the flow chart of the present study.

Table 4. Target engine speed and brake mean effective pressure of the 2nd experiment.

Parameters Units Point 1 Point 2 Point 3 Point 4 Point 5

Engine speed rev/min 1500 1500 2000 2000 3000
BMEP kPa 400 600 400 600 600

Spark timing −9 −2 −10.5 −4.5 −4.5
Runs - 5 4 5 4 3

2.3. Classification Model Development
2.3.1. In-Cylinder Pressure Trace

The Kistler pressure transducer transmitted a voltage signal in the range of 0–5 V for
a gauge pressure of 0–12 MPa. The voltage signal was first converted to the gauge pressure
values using the calibration curve. The pressure was then pegged under the assumption of
a polytropic process.

The 300 consecutive cycles from each of the four cylinders, which amounted to
1200 cycles, were obtained under each set of operating conditions. The individual in-
cylinder pressure traces were used in several conventional knock determinations using the
combustion timings, the knock intensity calculation, and signal processing procedures for
the development of the classification model.
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2.3.2. Heat-Release-Rate Analysis

A heat-release-rate (HRR) analysis was conducted to determine the combustion tim-
ings. The HRR also reveals the autoignition phenomena in knock cycles. The HRR was
estimated from the measured in-cylinder pressure under the assumption of a uniform
temperature throughout the cylinder during the combustion process [1]. A Savitzky–
Golay filter was applied to the in-cylinder pressure for the elimination of the pressure
oscillation [24]. Preliminary filter tests were then conducted, which confirmed that the char-
acteristics of the combustion event were preserved in the smoothed pressure trace; whereas
the oscillation amplitude decreased. The net heat release rate equation (Equation (1)) was
derived from the 1st law of thermodynamics, whereas the heat transfer estimation was
required to obtain the gross heat release rate.

dQn

dt
=

γ

γ − 1
p

dV
dt

+
1

γ − 1
V

dp
dt

(1)

The reliability of the net heat release rate can be significantly improved by the use of the
temperature-dependent specific heat ratio in place of a constant value. Gatowski et al. [25]
formulated the specific heat ratio equation (Equation (2)) based on a single-cylinder engine
experiment with indolene (C18H25) under stoichiometric operation.

γ = 1.392 − 8.13 × 10−5 × Tcyl (K) (2)

The in-cylinder gas was assumed to be an ideal gas. The mass of the gas in the
cylinder was then calculated from the residual mass fraction in [26]. It should be noted that
Equation (3) was formulated under the assumption that the exhaust process is a polytropic
process. The ideal gas law with the trapped mass was used to determine the bulk-gas
temperature during the combustion process, which was substituted into Equation (2) to
determine the specific heat ratio. Moreover, the trapped mass can also be determined from
the direct transformation of the in-cylinder pressure resonance phenomenon [27].

yR[%] = 100 × VB
VEVO

×
(

PB
PEVO

)1/γexh

(3)

2.3.3. Knock Cycle Determination

There are many schemes to determine the engine knock. Since no particular one is
widely accepted as a universal knock detector, several methods collaborated to identify
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individual knock cycles. While acquiring data during the engine experiments, the spark
timing advance was performed based on the combustion sound transmitted from the
copper tube and the knock intensity parameter provided by the combustion analyzer in
the data acquisition (DAQ) system. Subsequent data analysis determined individual knock
cycles based on the shapes of the in-cylinder pressure trace and knock intensity developed
in the present study.

Engine knocking is initiated by autoignition, which can be revealed on the net apparent
heat release rate. Subsequent high-speed pressure wave propagates through the entire
cylinder, which exhibits the ringing pattern on the in-cylinder pressure trace. Visual
examination on the in-cylinder pressure and heat release rate traces of each cycle was
performed for the autoignition and ringing. However, when knocking occurred at late
combustion phase, the autoignition and ringing patterns are rather indecisive.

Figure 3 shows the signal processing procedure for individual knock cycle determina-
tion. First, the measured in-cylinder pressure trace was filtered using a bandpass filter as
shown in Figure 3b. The high and low cut-off frequencies were then adjusted for optimal
filtering. Then, the signal of which absolute values were lower than 0.012 MPa was filtered
out. Figure 3c shows the substantial distinction between two cycles. Finally, the integration
of the filtered signal in Figure 3c provided the quantitative intensity of the knocking. The
resultant integration of knock intensity (IKI) in this study was compared with the knock
intensity provided by the high-speed data acquisition system employed for the in-cylinder
pressure measurements. The knock intensity parameter of the combustion analyzer in
the DAQ system, which was denoted as KI_AVL, was used as the knock intensity in the
automotive industry.

Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

 
Figure 3. (a) In-cylinder pressure trace, (b) band filtered signal, and (c) modulus of band filtered 
knock-cycle and normal-cycle signals. 

2.3.4. WPD Method 
The knock detection model was developed using MATLAB. WPD was employed to 

extract features from the in-cylinder pressure signal [28]. Previous report has confirmed 
the effectiveness of the WPD method with respect to in-cylinder pressure characterization 
[29]. Although Fourier transform decomposes the signal using sines and cosines, the 
wavelet packet decomposes the signal into many subspaces using wavelet functions 
[28,30]. The decomposition includes the translation and scaling of the selected wavelet 
function, in addition to the projection of the signal onto the subspace. The number of de-
compositions was set as expressed by Equation (4). After decomposition, features were 
extracted from each subspace at each level, such as the root mean square, the variance of 
the signal, and other statistically significant parameters. The WPD method provided 255 
features from seven decomposition levels for the training of the machine learning model. 
Table 5 lists the numbers of features from the seven decomposition levels. 𝑁 = 𝑙𝑜𝑔 (𝐿 )𝑙𝑜𝑔 2  (4)

Figure 3. (a) In-cylinder pressure trace, (b) band filtered signal, and (c) modulus of band filtered
knock-cycle and normal-cycle signals.



Energies 2021, 14, 3117 8 of 18

2.3.4. WPD Method

The knock detection model was developed using MATLAB. WPD was employed to
extract features from the in-cylinder pressure signal [28]. Previous report has confirmed the
effectiveness of the WPD method with respect to in-cylinder pressure characterization [29].
Although Fourier transform decomposes the signal using sines and cosines, the wavelet
packet decomposes the signal into many subspaces using wavelet functions [28,30]. The
decomposition includes the translation and scaling of the selected wavelet function, in
addition to the projection of the signal onto the subspace. The number of decompositions
was set as expressed by Equation (4). After decomposition, features were extracted from
each subspace at each level, such as the root mean square, the variance of the signal, and
other statistically significant parameters. The WPD method provided 255 features from
seven decomposition levels for the training of the machine learning model. Table 5 lists the
numbers of features from the seven decomposition levels.

ND =
log

(
Lsignal

)
log 2

(4)

Table 5. Number of features extracted by WPD with respect to decomposition level.

Decomposition Level Number of Features

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128

2.3.5. EEMD Method

The EEMD method is basically white noise added EMD. After a white noise is added
onto the signal, the mode decomposition was performed as in EMD. The white noise forces
the ensemble to exhaust all other components and averages them out, so that only the
signal can remain. EEMD is superior to EMD since the white noise addition solves the
mode-mixing problem in EMD [31].

2.3.6. Neighborhood Component Analysis (NCA)

Based on the prediction results, the feature selection was carried out by conducting
an NCA for classification [32]. The NCA was conducted to evaluate the influence of the
individual features on the prediction results. The NCA impact ranking of the features
facilitated the selection of the significant features. The model was then retrained using the
selected features. The retraining decreased the size of the model without impacting the
prediction accuracy. The regularization parameter optimization was performed on basis
of the regression loss. The value of the regularization parameter that exhibited the lowest
regression loss was 1 × 10−5.

2.3.7. Supervised Learning

A supervised learning algorithm was employed to obtain an inferred function based on
the class labels. Moreover, several decision tree, k-nearest neighbors (KNN), and ensemble
algorithms were evaluated. Although the singular value decomposition (SVD) is a well-
known signal denoising tool [16], it was excluded because it required more computational
time than the algorithms evaluated in this study, which were less complex. During the
evaluations, 30% of the dataset was employed for validation. Two critical performance
parameters considered were the accuracy and training time. Given that the training should
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be completed prior to embedding of the algorithm into the prediction model, the training
time did not have an influence on the performance of the prediction model. However, a
decrease in the training time of the selected algorithm decreased the overall time required
for the development of the model.

The misclassification was weighted more significantly in the detection of all knock
cycles. The misclassification of a normal cycle as a knock cycle was considered as overpre-
diction, whereas the misclassification of a knock cycle as a normal cycle was considered
as underprediction. It should be noted that the misclassification of several normal cycles
as knock cycles was considered as acceptable, given that the model could identify all the
knock cycles. Therefore, the resultant model tended to overpredict the knock cycles. In
addition, the correction of the overpredicted cycles is more effective than the detection of
missed knock cycles, given that the proportion of knock cycles is significantly greater than
that of normal cycles.

3. Results and Discussion

From the knock cycle determination process 4158 cycles were classified as knock cycles
from 66,000 cycles of 55 runs. Point 3 exhibited the highest number of knock cycles from
14 repeated runs. The number of knock cycles of the six operating points are listed in
Table 6.

Table 6. The knock cycle determination results.

Parameters Units Point 1 Point 2 Point 3 Point 4 Point 5 Point 6

Total cycles - 18,000 6000 16,800 7200 10,800 7200
Knock cycles - 869 303 1796 396 552 242

3.1. Combustion Characteristics

Figure 4 presents the in-cylinder pressure traces of one run at Point 6, which consisted
of 209 knock cycles and 91 normal cycles. The 16 selected knock cycles varied from mild
to severe ringing. Note that some retarded knock cycles exhibited only mild ringing.
The significant increase in combustion with respect to the normal cycles indicated the
autoignition prior to the knocking phenomena [2,33].
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The heat release analysis results revealed the difference in the combustion timings
between the knock and normal cycles, as shown in Figure 5. Three knock cycles with
different knock intensities were selected for comparison. All three knock cycles exhibited
autoignition with various magnitudes and similar onset timings. The net heat release rate
traces indicate that the combustion advancement and autoignition were greater in the more
severe knocking cases.
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Figure 5. In-cylinder pressure and apparent heat release traces of three knock cycles.

Given that the knock cycles exhibited a more rapid pressure rise and higher peak
in-cylinder pressure than the average normal cycle, the pressure rise rate (PRR) and peak
in-cylinder pressure (PIP) of the knock and normal cycles were investigated, as shown in
Figure 6. With respect to the normal cycles, a linear relationship was observed between
the PRR and PIP, whereas the two parameters of the knock cycles were slightly dispersed.
Moreover, PRR and PIP were greater in the knock cycles than in the normal cycles. However,
there was a substantial number of knock cycles in which PRR and PIP were similar to those
of the normal cycles. As can be seen in Figure 5 (knock cycle + normal cycle average),
there were several knock cycles that did not exhibit severe ringing, as observed from the
in-cylinder pressure trace.
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The knock cycles exhibited earlier CA10 (crank angle of 10% heat release) and CA50
(crank angle of 50% heat release), and consequently shorter durations between CA10 and
CA50 than the normal cycles as shown in Figures 7 and 8. Although the discrepancies
between the knock and normal cycles were significant for all four parameters, the com-
bustion timings and durations were insufficient in the individual knock cycle detection,
given that several normal cycles exhibited combustion timings that were as advanced as
the knock cycles.
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3.2. The Conventional Knock Determinations

Figure 9 reveals that IKI and KI_AVL were in good agreement, with the exception of
the cycles with very low knock intensities, i.e., normal cycles. The IKI analysis was applied
only for the cycles wherein the filtered signal peaked above 0.12. Based on this criteria,
4158 cycles were identified as knock cycles. Thus, the IKI value of all the normal cycles was
zero. Moreover, KI_AVL was calculated for all cycles. The two knock parameters indicated
that the knock cycles in this study exhibited a wide range of knock intensities.

3.3. EEMD

Figure 10 shows that the first two IMF contained the high-frequency signal compo-
nents due to the knocking phenomena. The peak and amplitude of the 1st and 2nd IMF
seemed to be adequate for knock cycle determination. The pressure rise due to autoignition
was not shown in any IMF, which was exhibited in the heat release rate traces as in Figure 5.
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3.4. Supervised Learning Model for Knock Classification

All the algorithms demonstrated accuracies of 99.9–100%, as shown in Table 7. Thus,
an algorithm was selected for the model development with respect to the training time. The
boosted tree ensemble and random undersampling boost (RUSB) algorithms demonstrated
the shortest training times of 6.5 and 5.9 s, respectively. Based on the comparison, the
ensemble algorithm was selected for the predictive model.

Table 7. Accuracy and training times of various machine learning algorithms employed.

Algorithms Accuracy (%) Training Time (s)

Decision tree
Fine tree 99.9 7.0

Medium tree 99.9 8.2

Coarse tree 99.9 7.5

k-nearest neighbors

Fine KNN 100 149.6

Medium KNN 99.9 149.7

Coarse KNN 99.9 151.1

Cosine KNN 99.7 149.9

Cubic KNN 99.9 3115.5

Weighted KNN 99.9 150.6

Ensemble

Boosted tree ensemble 99.9 6.5

Bagged tree ensemble 99.9 16.0

Subspace discriminant ensemble 99.9 29.7

Subspace KNN ensemble 100 26,816.0

RUSB trees ensemble 99.9 5.9

The proposed model was trained with 46,200 cycles, which amounted to 70% of
the total dataset (66,000 cycles). The training dataset included 43,289 normal cycles and
2911 knock cycles. The remaining 30% of the dataset was employed for validation. The
validation results in Figure 11 reveal that the proposed model detected 99.92% of the
knock cycles, with a 55% misclassification of the normal cycles as knock cycles. The
higher accuracy of the knock cycle prediction was because the misclassification weighting
applied to the knock cycle prediction was greater by a factor of 10. In other words, the
misclassification weighting was set such that the model does not misclassify knock cycles,
although several normal cycles were misclassified as knock cycles.
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The NCA analysis was conducted to evaluate the weights of the 325 features obtained
from the WPD. The feature weights represent the contributions to the classification accuracy.
Figure 12 presents the weights of the 325 features employed in the proposed model. The
NCA results indicated that 37 features were significant in the classification. The numbers
of significant features from EEMD and WPD are 5 and 32, respectively. Only the peak
values of IMF exhibited significance. The decomposition levels of the 32 significant features
are listed in Table 8. As can be seen from the table, seven levels of decomposition were
necessary to obtain all significant features.
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Table 8. The 37 significant features.

The Selected Features

EEMD

IMF-1 -

IMF-2 -

IMF-3 Peak

IMF-4 Peak

IMF-5 Peak

IMF-6 Peak

IMF-7 -

IMF-8 Peak

WPD

Level-0 -

Level-1 -

Level-2 #5

Level-3 #11, 15

Level-4 #18, 21, 23, 29

Level-5 #36, 42, 46, 62

Level-6 #67, 76, 85, 91, 92, 119

Level-7 #131, 134, 147, 152, 162, 171, 180, 182, 183, 186, 191, 215, 218, 241, 251

The proposed model was retrained based on the same dataset using only the sig-
nificant features. Based on the NCA analysis results, many features exhibited negligible
weights. The features with near-zero weights contributed to the accuracy significantly
less than those with high weights. Thus, low-weight feature elimination can significantly
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reduce the size of the model without impacting the accuracy. Figure 13 reveals that the
reduced features improved the model accuracy. The retrained model with 37 selected
features demonstrated exhibited substantial improvement in the normal cycle detection. In
literature the use of selected features resulted in not only the computational time reduction,
but also the classification accuracy improvement by minimizing possible misleading and
overfitting [34].
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Figure 13. Classification accuracies of original and retrained models with the first experiment dataset.

The second dataset was employed for the validation of the determination model. The
engine was operated under five different engine speed and load conditions. A total of
21 runs were taken from repeated operations. The operating conditions are presented in
Tables 1 and 2. Unlike the first experiment, the spark timings were set as the KBL timing to
evaluate the performance of the classification model under normal engine operating condi-
tions. Hence, the second dataset included only 25 knock cycles out of a total 25,200 cycles.

The validation results revealed that the original and retrained models achieved knock
detection accuracies of 99.9% as shown in Figure 14. The two models demonstrated
different performances in the normal cycle prediction. The removal of the insignificant
features increased the overestimation rate from 10% to 30%.
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4. Conclusions

A classification model was developed to distinguish between individual knock cycles
and normal cycles using the machine learning algorithm with an in-cylinder pressure of
66,000 cycles under various engine speed and load conditions. The findings of this study
are as follows:

The heat release analysis revealed that there were significant differences between the
combustion timings of the normal and knock cycles. The CA10 and CA50 of the knock
cycles were significantly earlier than those of the normal cycles. In addition, the knock
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cycles exhibited higher PRR and PIP values, which can be attributed to the progression
of combustion with severe ringing. However, the parameters derived from the heat
release analysis and in-cylinder pressure yielded an acceptable level of accuracy in the
classification of the knock and normal cycles, given that several knock and normal cycles
exhibited similar values.

The WPD and EEMD were effective signal processing techniques for the cycle char-
acterization. The 325 features from seven decomposition levels were sufficient for the
training of the classification model, which demonstrated an accuracy of 99.9% accuracy in
the knock cycle detection. It should be noted that the model achieved a very high accuracy
in the validation test and with the normal engine operation data, which included only mild
knock cases.

The classification model using the features from the WPD and EEMD demonstrated
an accuracy of 99.26% in the knock cycle detection. Moreover, the model demonstrated
an accuracy of 99.96% using a different dataset. The second dataset was obtained from
the engine experiments at the KBL spark timings. In particular, the model detected all the
knock cycles, including those during the engine operation under the normal operating
conditions. It should be noted that the knock intensities of the knock cycles from the normal
operating conditions were significantly lower.

The NCA was found to effectively decrease the size of the classification model. When
only the significant features, i.e., the significantly weighted features based on NCA, were
employed to increase the compactness of the model; the size of the classification model
decreased by 58%, whereas the knock detection accuracy was maintained at 99%. However,
the compact model exhibited a marginal overestimation increase from 10% to 30% in the
misclassification of normal cycles as knock cycles.

It should be noted that the knock cycles were initially classified based on the in-
cylinder pressure trace, HRR, IKI, and KI_AVL. In actual engine calibration process, knock
determination is often based on the engine sound. Even though the in-cylinder pressure-
based determination is reliable, further investigation should be performed on the model
validation with acoustic knock detection method as done in the spark timing calibration
process. Once sufficiently validated, the proposed knock classification model can be
implemented in the engine management system for real-time knock detection.
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Nomenclature

EGR Exhaust gas recirculation
KBL Knock borderline
HCCI Homogeneous charge compression ignition
MAPO Maximum amplitude of pressure oscillation
CA Crank angle
ARMA Auto regressive moving average
RSVD Reweighted singular value decomposition
EMD Empirical mode decomposition
IMF Intrinsic mode functions
WPD Wavelet packet decomposition
DWT Discrete wavelet transform
NARX Nonlinear autoregressive with exogenous input
RAGD Robust adaptive gradient descent
EEMD Ensemble empirical mode decomposition
EC Eddy-current
ECU Engine control unit
BMEP Brake mean effective pressure
KBL Knock borderline
HRR Heat release rate
Qn Net heat release
t Time
γ Specific heat ratio
P In-cylinder pressure
V In-cylinder volume
Tcyl In-cylinder temperature
yR Residual mass fraction
VB In-cylinder volume at exhaust manifold
VEVO In-cylinder volume at exhaust valve opening
PB In-cylinder pressure at exhaust manifold
PEVO In-cylinder pressure at exhaust valve opening
DAQ Data acquisition
IKI Integration of knock intensity
ND Number of decompositions
Lsignal Size of the signal
NCA Neighborhood component analysis
KNN k-nearest neighbors
SVD Singular value decomposition
PRR Pressure rise rate
PIP Peak in-cylinder pressure
RUSB Random undersampling boost
CA10 Crank angle of 10% heat release
CA50 Crank angle of 50% heat release
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