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Abstract: Increasing emissions from mining areas and a high global warming potential of methane
have caused gas management to become a vital challenge. At the same time, it provides the op-
portunity to obtain economic benefits. In addition, the use of combined heat and power (CHP) in
the case of coalbed methane combustion enables much more efficient use of this fuel. The article
analyses the possibility of electricity production using gas engines fueled with methane captured
from the Budryk coal mine in Poland. The basic issue concerning the energy production from coalbed
methane is the continuity of supply, which is to ensure the required amount and concentration of
the gas mixture for combustion. Hence, the reliability of supply for electricity production is of key
importance. The analysis included the basic characterization of both the daily and annual methane
capture by the mine’s methane drainage system, as well as the development of predictive models to
determine electricity production based on hourly capture and time parameters. To forecast electricity
production, predictive models that are based on five parameters have been adopted. Models were
prepared based on three time variables, i.e., month, day, hour, and two values from the gas drainage
system-capture and concentration of the methane. For this purpose, artificial neural networks with
different properties were tested. The developed models have a high value of correlation coefficient.
but showed deviations concerning the very low values persisting for a short time. The study shows
that electricity production forecasting is possible, but it requires data on many variables that directly
affect the production capacity of the system.

Keywords: internal combustion engine; energy efficiency; pollutant emission; coalbed methane;
neural networks; electricity production forecasting

1. Introduction

Methane has been emitted into the atmosphere for centuries, but industrial develop-
ment has increased the concentration of methane in the atmosphere. It is one of the most
important greenhouse gases with a significant global warming potential (GWP). Methane
absorbs infrared radiation to a greater extent when compared to carbon dioxide, which
translates into a GWP that is up to 28 times higher over a 100-year period [1]. The high level
of coalbed methane emissions, as well as increased public concern for the environment,
including efforts to reduce greenhouse gases emissions, increased interest in technologies
for the capture, and use of methane. In view of the significant calorific value of the gas
released and its impact on the environment, systems for methane capture and use of mine
gases are becoming increasingly popular.

1.1. Methane Emitted from Mines

The energy sector is considered to be the second largest source of methane emissions
(the one largest is agriculture) [2]. Mining activity has a large share in this sector. It is
estimated that, globally, methane emissions from mining activities will continue to increase
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(Figure 1). The increase between 2005 and 2030 may be as high as 50% [3,4]. Globally, it is
estimated that the mining sector is responsible for 8% of methane emissions [5].

Figure 1. Total CH4 Emissions from Coal Mining [3].

The figure above presents both historical results and predictions of future values of the
global emission. Methane emissions from mines have declined in OECD (Organisation for
Economic Cooperation and Development) countries, Europe, and Asia, due to the reduction
of coal extraction and implementation of further projects limiting the environmental impact
of mines. The situation is different in non-OECD Asian countries, where the level of
emissions related to the activity of mines is growing dynamically. The largest increase in
methane emission is expected in the non-OECD countries of Asia. Between 1990 and 2005,
the value of emissions in these regions was nearly doubled. According to the EPA report [3],
China is expected to account for a majority of the increase in world coal production and
the consequent increase in methane emission from mining activities.

It was found that, in Poland in 2019, total methane emissions from coal seams where
mining was performed amounted to 916.1 million m3, which means that, on average.
1742.9 m3 of methane was released into the atmosphere per minute. The average efficiency
of methane drainage from coal seams was 34.6% and the efficiency of utilization of cap-
tured methane was 64.1% [6]. 502 million m3 of methane were captured using the methane
drainage systems [7]. Because of the harmful effect of methane on the atmosphere, its
emission will be increasingly limited. The European Commission has published a commu-
nication on a strategy to reduce methane emissions [8]. Legislative proposals are expected
to be introduced in 2021 that will facilitate taking stronger measures to reduce methane
emissions in all sectors, including energy. More precise measurement and reporting meth-
ods by companies are expected to be introduced. Greater use is to be made of satellite and
airborne monitoring. Concerning Poland, the first airborne measurements of estimated
methane emissions have already been carried out [9]. The European Commission indicates
that, in relation to coal mines, the greatest benefits can be achieved by reducing methane
emission to the atmosphere and gas flaring, and reducing the methane leaks from coal
mines. Therefore, the management and efficient use of captured methane is becoming
increasingly important. This mainly applies to existing mines, but also to closed mines [10],
the proportion of which will increase in the coming years. The first works on capturing
and utilization of methane from abandoned mines are already underway [11].

1.2. Use of Methane Emitted from Mines

Methane is a valuable fuel, and its capture and utilization can significantly increase the
profitability of mining operations. The captured methane can be used directly to generate
electricity or heat, which, in turn, can bring economic benefits to the mine in the form of
energy sales or reduced operating costs. The capture and use of mine methane can be a
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fundamental part of a corporate social responsibility strategy, which is a very important
advantage at a time of growing global concern regarding the impact of climate change
and the sustainability of the mining industry [12]. There are several options for electricity
production from coal mine methane and at present, there is no single approach that is
suitable for all projects. The proper system must be determined on a case-by-case basis, as
each system has its own requirements as well as advantages and disadvantages [13]. The
potential use of Capture Mine Methane (CMM) in the range of 30% to 100% methane is
possible using various technologies. The most common solutions are the use of methane as
fuel in industrial furnaces, boilers, and burners, powering engines or turbines for electricity
production, injection into gas pipelines, and use as feedstock in the fertilizer industry or
as vehicle fuel. For off-site gas applications, especially for individual customers, storage
tanks are sometimes built to ensure that peak demand can be met and to buffer supply
in the event of a gas production outage. Because of the high costs, the area required,
visual effects, and risks associated with storing large quantities of flammable gas mixtures,
off-site use of methane is generally avoided, hence it is most often used directly in the
mining facility. The use of discharged methane depends on the quantity and quality of
the gas produced. In the past, a methane concentration of at least 30% was required. In
recent years, internal combustion engines have started to appear on the market that can
use mine gas with a methane concentration below 30%. The guidelines distinguish the
medium/high and low concentration (<30%) methane use from drainage, as the transport
of low concentration gas is extremely dangerous and should be avoided [12]. The amount
of methane captured is directly influenced by the methane drainage system used, the
technical solutions employed, and a drainage roadway location [14]. Work on increasing
the efficiency of energy production, the use of low-methane fuel or the management of
coal mine methane in new, previously unused energy systems is still in progress. For
example, the use of Stirling engines that reduce the problem of instability of the fuel source
is being tested [15,16]. A good method to increase the efficiency might be combining
electrical systems using methane with others (e.g., mine water desalination system) [17]
or combined systems with fuel cells and steam turbines [18]. In many systems, there is
an issue concerning fluctuations in the concentration of methane in the fuel. This often
requires the methane concentration to be adjusted for proper operation—an example is the
use of mine gas in high temperature fuel cells [19]. Different combustion system solutions
for changing methane concentration in the fuel are analyzed—e.g., combustion system
with a swirl chamber [20] or the combined combustion of methane from ventilation air
(VAM) and methane from methane drainage (CMM) [21].

Methods of the use of methane gas that is produced during mining are the subject
of many works [10,12,22,23]. The most common use of methane is electricity production
and the sale of methane to the gas network [1]. Solutions that have recently attracted a
lot of interest are CHP) and trigeneration (CCHP) systems that are used both in industrial
and commercial buildings. Cogeneration, as compared to separate electricity and heat
generation, reduces primary energy consumption by 15% to 30% [24]. Cogeneration can
reduce the cost of producing final energy. When discussing the benefits of cogeneration,
it should be remembered that the CHP technology also contributes to the reduction of
greenhouse gas emissions into the atmosphere, which, in the era of more expensive carbon
dioxide emission allowances, makes its use even more attractive. An important advantage
of CHP systems is their simple structure. Because of their small size and wide range of
power values (from a few kilowatts to several megawatts), these systems are an excellent
tool for the development of distributed energy, and the possibility of locating them close to
the end user reduces grid losses. Usón et al. [6] presented an analysis of the “ecological
footprint” of trigeneration systems that are powered by different types of fuel, being
expressed in terms of thermo-ecological cost. The results of the study concerning the use of
coal mine methane proved to be good. Although methane is a non-renewable resource, the
methane capture system reduces the free gas emissions to the atmosphere, which lowers
the thermo-ecological cost. As a result, this type of power supply for cogeneration systems
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achieves much better environmental performance than the use of natural gas. Therefore,
the use of methane from mining plants provides a double environmental benefit. Such a
solution brings both savings on non-renewable raw material resources, e.g., natural gas,
as well as a reduction of free methane emissions from excavations. CH4 is converted to
carbon dioxide during combustion of the captured methane, which has a much lower GWP
index. Meybodi and Behnia [16] proposed the use of Stirling engines in CHP systems of
a local coal mine in Australia. The results indicate that the use of the modelled system
not only leads to a significant reduction in GHG emissions, but also to an improvement
in economic efficiency. The study considered emissions of carbon dioxide, methane, and
nitrous oxide expressed in CO2 equivalent. The use of three 1.5 MW engines was proposed.
The results show that the inclusion of a CHP system based on a Stirling engine leads to
a 65.4% reduction in annual greenhouse gas emissions. In 1998, in Lünen in the Ruhr, a
CHP system was installed using methane from an abandoned mine (closed in 1990). In
the installed generator set, a gas engine enables the simultaneous generation of electricity
(374 kW) and heat (538 kW). The electricity generated is fed into the grid of the local
energy supplier via a transformer station. Because of the satisfactory results, two years
later the generator set was replaced by a unit with an electrical capacity of 941 kW [25].
Additionally, a cogeneration system was implemented at the abandoned Lothringen mine
in Bochum. The system consists of cogeneration units, a compression station, medium
voltage equipment, and a connection to the local district heating system. The Bochum
plant uses 2000 m3/h of methane and reduces CO2-eq emissions by 200 kt per year. The
energy produced, which can satisfy the needs of more than 13,000 households, is provided
into the district heating system. At the beginning of 2004, the plant was connected to
the Bochum district heating network [13]. Above, the authors presented a literature
review on the general use of methane. Because of the total gas emissions and the impact
of methane on the environment, the analyzed topic is crucial, and the development of
this field is prospective. In the literature, only a few publications on the prediction of
electricity generated by gas engines fueled with methane are provided. The use of ANN to
model the power produced from the generator is an interesting solution. Ashraf et al. [26]
proposed an ANN model to construct a generator power curve for a coal power plant based
on twenty-four operating parameters. Similar forecasting methods are widely used in
predicting generated electricity, but, usually, these studies include electricity consumption
forecasting. There are also papers on the power prediction of renewable energy sources,
such as photovoltaic panels [27–29] and wind turbines [30,31]. The proposed publication
fills the literature gap that has been noticed by the authors.

Mine gas is drained for the operational safety of the mine. Recently, efforts have
focused on industrial capture methane from coal seams. Interest in this topic is increased
because the captured methane can be used, for example, in the production of electricity.
Many factors affect methane intake and cause its fluctuation. Gas quality will affect the
efficiency of the engine. Nevertheless, mine gas has similar parameters and it contains
a constant amount of pollutants in a given location, which results from the exploitation
of seams with similar parameters. The quality of the gas also affects the durability of
the engine. The exploitation of coal bed methane is more effective when the mines are
operating. It is possible to further capture methane for electricity production after the
closure of a mine and finishing of the exploitation of coal seams. Using gas engines is
profitable and, depending on the amount of methane, the investment payback period
is several years. The profitability of investments increases with the taxation of carbon
dioxide emissions. In Poland, about 64.1% of the captured methane was used in 2019—
primarily as fuel for gas engines or gas boilers to produce electricity and heat. Currently,
there are more than 40 gas engines in operation in the Polish mining industry that use
methane from methane drainage systems [32]. The operation of gas engines requires both
an adequately high methane concentration in the fuel (minimum 25–40%, depending on
the system [12,19,33]) and stability of the volume flux supply [34]. Methods of the mine
methane use based on the example of Polish coal mining company JSW S.A. are presented
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in detail in paper [35]. In 2017, the company used 103,648.8 thousand m3 of methane from
methane drainage systems. 57,248.8 thousand m3 of methane were utilized as combustion
in gas engines for energy production.

This paper presents predictive models of electricity generation using coal mine
methane based on artificial neural networks. The paper contains a statistical analysis
of methane-air mixture capture, methane capture, and electricity production in the year
2020. The structure of this study is organized, as follows. The above section describes
methane capture and the methods of its use. It also describes the solutions used in coal
mines including cogeneration and trigeneration systems. Section 2 presents the character-
istics of the mine analyzed and a description of the method used. The methane capture
system and the engines used for its utilization are described in detail. The data collection
system and parameters used for the ANN models are also discussed. Sections 3 and 4
present both the parameter analysis at different time horizons and the prediction results
using the proposed models. In this section, actual data and predicted electricity production
are compared. The models are also compared and evaluated using the indicators that are
discussed earlier. Section 5 presents conclusions and key observations.

2. Materials and Methods
2.1. Use of Methane Emitted from Mines

The Budryk mine is one of the newest hard coal mines concerning the ones located in
the Silesian Province. The focal point of the research is a methane utilization system that
is based on TBG 620 V 20 K gas engines in the Budryk mine, which belongs to the Upper
Silesian Coal Basin (southern Poland). Table 1 presents the basic characteristic of the TBG
gas engine.

Table 1. General specifications of TBG 620V gas engine [36].

Parameter Unit Value

Engine power kW 1875
Mean effective pressure bar 16.9

Exhaust temperature (approx.) ◦C 420
Generator efficiency % 96.9

Electrical power kW 1817
Electrical efficiency % 40.9
Thermal efficiency % 43.1

Total efficiency % 84.0

In 2017, 19,927.9 thousand m3 of methane were captured at the Budryk mine, of
which 11,825.9 thousand m3 (59%) were utilized. In the TBG 620 V 20 K gas engines,
9672.0 thousand m3 were disposed of and in the WR-10 boilers 2153.9 thousand m3 [37].
Figure 2 presents the TBG 620 V 20 K gas engine and the gas engines in the Budryk mine.

In the year 2020, 33,009,267.2 m3 of the methane–air mixture was captured at the
Budryk mine with the simultaneous capture of pure methane amounting to 18,019,344.4 m3.
The average annual concentration of methane in the mixture was 51.1%. The extracted
methane is used to produce electricity and heat. Figure 3 shows a schematic diagram of the
cogeneration system producing electricity and heat.

The measurement system for cogeneration combustion of methane in the Budryk
mine makes it possible to continuously analyze the basic parameters of the gas (pressure
P, temperature T, humidity H, gas volume flowrate F, methane volume flowrate F, and
methane quality Q) and current information on the production of electricity. Figure 4 shows
the location of measuring points.
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Figure 2. Gas engines (a) TBG 620V gas engine [38]; (b) in the Budryk mine.

Figure 3. Combined heat and power generation system at the Budryk mine.

Figure 4. Measurement system for methane utilisation in the Budryk mine with measurement
points of gas parameters: P—Pressure; T—Temperature measurement; H—Humidity; Q—Quality;
F—Flowrate.

2.2. Methodology and Data Collection
2.2.1. Data Collection

An analysis of coalbed methane capture was carried out based on data that were
collected from the methane drainage system. The data were collected from 1 January to
31 December 2020. Because of the high frequency of readings, it was decided to carry out
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an analysis of electricity production based on hourly average values of each parameter.
In total, the analysis included 8276 measurement series. Six parameters were identified,
whose impact on electricity production was verified. Two groups were distinguished
among the variables. Time variables include the month, day of the week, and hour of
measurement. The second type of variables defines the methane emission, namely methane
capture, methane concentration, and methane–air mixture capture. Table 2 presents the
parameters, together with the units.

Table 2. Identified variables and outputs.

Parameter Unit

Day of the week -
Month -
Hour h

Methane capture, FCH4 m3/min
Methane concentration, C %

Methane-air mixture capture, F m3/min
Electricity production, Ep kWh

The collected data were compiled in different daily cycles and the mutual relationships
between the parameters were then determined. For this purpose, Statistica software and
an Excel spreadsheet were used.

2.2.2. Neural Networks

Artificial neural networks (ANNs) are popular machine learning techniques that sim-
ulate the mechanism of learning in biological organisms. The human nervous system
contains cells, which are called neurons. Nowadays, ANNs are a rapidly growing field of
data analysis methods, which are applied in economic research, forecasting of electricity
production or energy demand, among others. An artificial neural network calculates the
input data function, propagating the calculated values from the input neurons to the output
neurons and using weights as intermediate parameters [39]. Neurons are distributed in
different layers, including the input layer, hidden layers, and output layer. The number of
neurons and layers in the ANN model depends on the complexity of the system dynamics.
ANN learns the relationship between inputs and outputs of the system through an iterative
process, called training. The input layer is used for input variable values. Each hidden and
output neuron is connected to all elements of the previous layer [40]. Each input to a neuron
has an associated weight. The weights are adjustable numbers that are determined during
training. The selection of appropriate parameters as inputs and outputs of ANNs is very
important in creating an accurate and reliable model. The availability of data for the selected
parameters, knowledge of the system to identify the relationships between different param-
eters, and the objectives of model execution are the primary factors in selecting appropriate
inputs and outputs. The accuracy of the selected output parameters can be checked using
sensitivity analysis [41]. Figure 5 shows a simplified diagram of the neural network.

There are many types of neural networks with varying levels of sophistication. They
can be classified according to their structures and learning algorithms. In terms of structure,
neural networks can be divided into two types: feedforward networks and recurrent
networks. In terms of learning algorithms, there are two main types of learning algorithms:
supervised and unsupervised learning algorithms. In addition, there is a third type,
reinforcement learning, which can be seen as a type of supervised learning. The multilayer
perceptron (MLP) is one of the most well-known types of feedforward networks. This type
of network consists of input, hidden, and output layers. The first of the layer includes the
input variables on which the expected value depends. The last-mentioned layer, called the
output layer, contains the predicted values. The hidden layers are intermediate neurons
between input and output variables. The input layer neurons forward the raw data to the
hidden layer. Subsequently, hidden neurons process signals using appropriately assigned
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weights. Commonly used activation functions are threshold function, sigmoidal, hyperbolic
tangent, or radial basis function [42].

Figure 5. Simplified diagram of the neural network.

The Statistica software (Statistica 13, StatSoft, Tulsa, OK, USA) [43] was used to pro-
vide ANN models that are based on the analyzed variables. The use of the artificial neural
network package enabled learning and testing models. The least-squares approach was
used to find the best fit for the dataset. Therefore, different combinations of activation
functions and the number of hidden units were tested to find the optimal values. The func-
tions were selected among four types: linear, hyperbolic tangent, logistic, and exponential.
Regarding the number of the hidden units, the optimal value was searching in the range
from five to 500 neurons. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization
algorithm was implemented for training the proposed neural networks. Three groups of
data were extracted from the entire set of collected data: training, testing, and validation
samples. 70% of the entire data set was used for training. The remaining data were divided
equally (15% each) into two parts for validation and testing. The paper presents the results
for five models with the best accuracy of the fitting. Particular attention is given to the
model with the best results according to the proposed evaluation indicators.

2.2.3. Evaluation of the Model

The purpose of training neural networks is to minimize the error of the model against
the actual values. Minimizing the error means improving the training performance and
obtaining a more accurate model. When training ANNs, various definitions and types of
error can be considered. For example, absolute error is defined as the difference between
actual performance and predicted performance. During MLP learning, the mean squared
error (MSE) or root mean squared error (RMSE) is often used [41]. The accuracy of the
given models was tested using five fit indices: the correlation coefficients (r), the mean
absolute error (MAE), root mean squared error (RMSE), and mean absolute percentage
error (MAPE) and weighted absolute percentage error (WAPE). MAE and RMSE both
provide information on the mean prediction error in models according to the observed
variable. MAPE is a common measure for calculating the forecast error in time series
analysis that reflects the percentage variation between forecast variables, while WAPE
is equivalent to the MAPE index, but it represents the weighted error. The indices are
calculated using the equations that are shown below:

r =
cov(EA, EP)

σEA σEP

(1)

MAE =
1
n

n

∑
i=1
|EA,i − EP,i| (2)
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RMSE =

√
1
n

n

∑
i=1

(EA,i − EP,i)
2 (3)

MAPE =
1
n

n

∑
i=1

|EA,i − EP,i|
EA,i

(4)

WAPE =
∑n

i=1|EA,i − EP,i|
∑n

i=1 EA,i
(5)

where cov is the covariance, σ means the standard deviation, n is the entire number of
observations, EA denotes the actual value, and EP represents the predicted value.

3. Results
3.1. Preliminary Analysis

The initial stage of the research was a preliminary analysis of the obtained results both
concerning the statistics and data distribution during the analyzed period. Table 3 presents
the statistical analysis of all the identified parameters.

Table 3. Basic statistical parameters of variables.

Variable Unit Minimum Maximum Mean Median

Month - From January to December
Day - From Monday to Sunday

Hour - From 0:00 to 23:00
Methane capture FCH4 m3/min 0.02 86.28 35.10 26.59

Methane concentration C % 19.89 93.92 53.05 51.85
Methane-air mixture capture F m3/min 0.39 130.40 64.47 55.87

Electricity power Ep kWh 135.00 9991.00 5601.51 4983.00

Because three of the analyzed variables characterize the flow of gases that are drained
from hard coal seams, it was decided that the correlations between them are so significant
that not all of them should be included in the analysis. Methane capture was considered
to be the most significant parameter, so, at the next stage, the relationship between this
parameter and two others was examined: methane-air mixture capture and methane
concentration. Figure 6 shows this relationship and the correlation coefficient r.

Figure 6. Methane concentration and methane-air mixture capture as a function of methane capture.
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As one might see, the relationship between methane capture and mixture capture is
clear and the correlation coefficient is 0.97. A relationship with methane concentration
might also be spotted, but with a lower correlation coefficient of 0.59. On this basis,
methane–air mixture capture was not further analyzed, as the correlation between this
parameter and methane capture is so high that it will not be significant for the prediction
models being developed. Moreover, the concentration level is very important due to its
influence on the stability of gas engine operation.

In further steps, the distribution of the parameters over time was developed. Figure 7
presents the variations of the three crucial parameters throughout the year 2020. Electricity
production, mixture and methane capture, and methane concentration in the methane–air
mixture were considered.

Figure 7. Variability of generated electricity, capture, and concentration of the methane in the
analyzed period.

As one might see, the values of energy production, as marked on the figure with
a dotted line, vary from very low, even below 200 kWh/h to 10,000 kWh/h. The clean
methane capture varies in this period from almost 0 to less than 90 m3/h. The methane
concentration is the most stable variable. The values of this parameter vary in the range
from 30 to more than 90%; however, most of the measurements are in the range from 45% to
65%. Lower or higher readings are individual. When analyzing the figure, a clear trend can
be observed in the annual cycle, where much higher indications of both methane capture
and electricity production were recorded in winter. On the other hand, these parameters
are even three times lower in summer.

In the next stage, the variability of parameters in daily cycles was analyzed. For this
purpose, two days were selected—one in summer and one in winter. Figure 8 shows the
distribution of methane concentration, methane capture, and electricity production on
4 January and 4 December.

As can be concluded from the figures, there is no clear daily trend and the values
of the parameters presented are relatively stable. At this stage, no relationship between
parameters was observed. In the next stage, the data were analyzed in a monthly cycle.
Figure 9 shows the values of the most significant parameters, i.e., methane capture, and
electricity in each of the months. The main aim of these graphs is to present the variability of
these parameters throughout the whole year. Figure 9a presents the electricity production
in the form of a box plot by month. Figure 9b shows the methane capture and electricity
production by month.
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The monthly methane capture varies over a very wide range from 587,692 m3 per
month in July, to 2,749,247 m3 per month in November. This translates into electricity
production of 2120 MWh and 6960 MWh, respectively. In the analysis, in addition to
developing a predictive model, the authors presented the environmental impact of methane
capture and electricity production using methane. Methane capture affects the reduction
of emissions directly to the atmosphere, which is particularly important in the case of
methane, which is characterized by a high GWP factor (ranging from 25 to 30, according
to various sources). Table 4 shows a detailed summary of methane capture values and
corresponding CO2 emissions.

Even when assuming that the GWP factor is 28, in July, when the capture was the
lowest, it results in emissions of approx. 10,811 tonnes of CO2eq. However, in November,
the obtained values were the highest—50,575 tonnes CO2eq. Adding up the monthly
values, annual methane capture from the analyzed mine of 18,019,344.4 m3, which results
in the emission of 331,484 tonnes CO2eq per year, was obtained. The methane emissions
associated with the extraction are very significant and can influence the greenhouse effect,
as shown in the table above. Therefore, the capture, destroy or use (e.g., combustion) of
methane is a crucial environmental issue.
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Table 4. Monthly summary of methane capture and emission expressed in CO2 equivalent.

Month Methane Capture, m3/Month Emission, Tonnes of CO2eq

January 2,337,720.4 43,004.7
February 2,488,802.4 45,784.0

March 1,812,867.1 33,349.5
April 920,231.4 16,928.6
May 785,181.9 14,444.2
June 666,233.5 12,256.0
July 587,692.4 10,811.2

August 776,021.1 14,275.7
September 802,078.8 14,755.0

October 2,081,505.0 38,291.4
November 2,749,247.4 50,575.2
December 2,011,763.0 37,008.4
Year 2020 18,019,344.4 331,483.9

The analysis of the variability distribution over time in different time horizons was the
first stage of the work. Subsequently, the relationships between all of the variables analyzed
in this study were determined. For this purpose, a correlation matrix was prepared to
present the relationships between both the input parameters and the sought electricity
production value. Table 5 presents the matrix.

Table 5. Matrix of the correlation coefficients.

Month Day of the
Week Hour Methane-Air

Mixture Capture
Methane
Capture

Methane
Concentration Electricity

Month 1.000
Day of the Week −0.012 1.00

Hour 0.997 0.011 1.000
Methane-air mixture capture −0.124 0.078 0.121 1.000

Methane concentration 0.004 0.115 0.007 0.975 1.000
Methane capture 0.354 0.160 0.353 0.451 0.591 1.000

Electricity 0.258 0.114 0.259 0.822 0.857 0.580 1.000

An analysis of the above table shows that methane capture and methane–air mixture
capture are the two parameters with the greatest impact on energy production. As pre-
viously described, due to the high correlation between these parameters, only methane
capture was accepted for further analysis, as it is characterized by a higher correlation
coefficient. While the results may lead one to assume that the day of the week would be
the least relevant factor when creating a model, this parameter has also been included in it.
The month and hour of measurement are characterized by similar correlation coefficients at
about 0.26, but, based on Figure 10, it is presumed that the month may play a particularly
vital role in the predictive model. Summarizing the above consideration, five variables
were selected for MLP models. Models consider three-time parameters (month, day of the
week, and hour) and two parameters characterizing methane capture in the analyzed mine
(methane capture and methane concentration). The preliminary analysis also focused on
examining the relationship between electricity production and the parameter with the high-
est correlation coefficient, i.e., methane capture. Figure 10 provides a detailed analysis of
this relationship. Figure 10a shows the dependence of electricity on clean methane capture
in a box plot form, where the independent variables are divided into value intervals every
10 m3/min. Figure 10b shows the same relationship, but in a simple form of a regression
graph with histograms.
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3.2. Neural Network Models

The predictive models were prepared using Statistica software, as described in detail in
Section 2.2.2. Three datasets were used for the creation of the models: training, validation,
and test part. Groups represent 70%, 15%, and 15% of the total data in the analysis,
respectively. The selection of the optimal parameters, i.e., the type of the functions and
number of hidden units, was made possible by multiple tests of the possible combinations.
The error function during the network learning process was chosen to be the sum of the
squares. The five selected networks with the best fit coefficient were retained for further
analysis. Table 6 shows detailed data on the proposed networks.

Table 6. Details of the selected MLP models.

Network Hidden Layer
Activation-Function

Number of Hidden
Units

Output Layer
Activation-Function

MLP 1 Logistic 293 Logistic
MLP 2 Hyperbolic tangent 250 Logistic
MLP 3 Logistic 494 Logistic
MLP 4 Hyperbolic tangent 139 Logistic
MLP 5 Hyperbolic tangent 280 Logistic

3.3. Prediction Results—Evaluation

Indicators that made it possible to evaluate the proposed predictive models were
determined based on the formulas defined in Section 2.2.3. Table 7 shows the full summary
for each of the five models.

Table 7. Comparisons of forecasting accuracy for analyzed models.

Evaluation
Factors

Number of the MLP Model

1 2 3 4 5

r 0.958 0.954 0.952 0.957 0.951
MAE 437.79 441.96 465.74 445.26 469.34
RMSE 764.71 796.94 812.27 771.32 823.38
MAPE 15.47% 15.87% 16.48% 15.69% 16.52%
WAPE 7.82% 7.89% 8.31% 7.95% 8.38%

As shown by the analysis, the best fit coefficient was obtained using the MLP 1 model.
While the differences between the proposed models were minor, due to the smallest values
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of all error indicators and the highest correlation coefficient, it was determined that using
this model would result in obtaining the most accurate values. The fit coefficient of the
MLP 1 model was 0.958, with a mean error of 437.79 kWh/h and a weighted absolute
percentage error of 7.82%.

A sensitivity analysis was developed for each parameter to check how the specific
inputs affect the prepared models. Table 8 shows the sensitivity indices of the five inputs
for each of the proposed models. Although no clear trends in the distribution of electricity
production were observed in the daily cycle, the hour parameter played a major role in each
of the models. The month of measurement—another parameter that seemed important as
early as the initial stage—was similar in this regard. For obvious reasons, methane capture
was another significant parameter for all of the models. The day of measurement and
methane concentration had the smallest impact on the results obtained.

Table 8. Sensitivity analysis of variables.

Input Parameter
Number of the MLP Model

1 2 3 4 5

Month 28.41 17.79 11.28 21.40 10.36
Day 1.93 1.66 1.52 1.99 1.62

Hour 63.55 44.22 26.31 36.64 22.32
Methane capture 16.17 7.50 7.47 16.80 8.16

Methane concentration 1.78 1.64 1.53 1.92 1.44

Because the MLP 1 model produced the best results, as shown in Table 8, the prediction
results based on this model were used for further analysis. Irrespective of the fact that the
fit results that are shown in the table are largely indicative of the quality of the networks
developed, the results were also presented in a graphical form. Figure 11 shows the
variation of actual and predicted values as a function of time, as well as the relationship
between the two quantities. As one can see in the figure, the model’s performance is the
worst in the case of spikes and very low values deviating from the mean.
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4. Discussion

The subject of this paper is the production of electricity using gas engines fueled
by methane from coal mine “Budryk”. Analyzed mine is located in southern Poland.
The article presents issues that are related to capturing methane and using it to generate
electricity. According to the results of the conducted analysis, methane capture by the
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drainage system in the Budryk mine varies in range from 587,692 m3 to 2,749,247 m3 per
month. These values correspond to monthly electricity production by the gas engines
ranging from 2120 MWh to 6960 MWh, respectively. Throughout one year, 18,019,344 m3

of methane was captured at this mine, which amounts to 331,484 tonnes of CO2eq.
The authors proposed five MLP prediction models with very similar predictive accu-

racy. The models differed in regard to their activation functions and the number of hidden
neurons. The correlation coefficients obtained range from 0.95 to 0.96. The presented
models have an average prediction error between 437.79 and 469.34. On the other hand,
the mean percentage error ranged from 15.47% to 16.48%. The evaluation indicators made
it possible to select the most accurate network—MLP 1—that had a MAPE of 15.47% and
a WAPE of 7.82%. In this model, hyperbolic tangent was used as an activation function
for the hidden layer, while logistic was selected for the output layer. The total number of
hidden units amounts to 293. The sensitivity analysis shows that electricity production
is affected by many factors, including the quantity and concentration of the methane-air
mixture. Time factors, such as the hour of measurement, were also significant, which is
due to the cycle of extracting the coal from coal seams. At designated times, a process is in
place that increases the emission of methane, which can then be captured and transferred
to the methane drainage system. Its emission during the months in which the given values
were recorded was related to the production schedules. Production was reduced during
the summer, which also affected the amount of methane captured. It may also be related
to the reduction in mining during the peak infection period among mine workers during
the COVID-19 pandemic. In the proposed models, the prediction was strongly affected by
the time parameters –hour and month of measurement. Of course, methane capture also
played a major role in each model. The prepared models were designed to estimate the
level of produced electricity based on five variables. As with any predictive model, model
accuracy is critical. Forecasting how much electricity can be obtained from systems utilizing
captured methane is essential for the proper management of mine energy resources.

5. Conclusions

The topic of environmental emissions never ceases to be relevant. Therefore, the
capture of methane, which is a high-GWP gas, is the subject of much research work.
Methane emissions carry a high risk to both the workers and the environment. However,
properly captured and used methane can be a valuable energy source. Based on the
solutions implemented and methane resources available in Poland, it is evident that the
economic use of mine methane resources can become a vital energy source for it. This
paper presents an annual analysis of methane capture by the methane drainage station at
the Budryk mine, as well as electricity production from its combustion. The analysis of
the monthly values from the drainage system shows that methane capture ranges from
587,692 m3 to 2,749,247 m3 per month using the utilization system with described gas
engines allowed generating from 2120 MWh to 6960 MWh of electricity, respectively. The
annual methane capture from the analyzed mine in 2020 amounts to 18,019,344.4 m3. It
corresponds to the emission of 331,484 tonnes CO2eq per year.

Analyses over various periods have shown that the values examined—both methane
capture and electricity generation—are affected by numerous factors. As noted before,
energy production depends on such factors as the time of measurement and the type of
gas used in energy systems, among others. Artificial neural networks make it possible
to estimate the desired value with specific input parameters. Consequently, this requires
distinguishing the parameters that determine a given value. The proposed predictive mod-
els can estimate electricity production with satisfactory accuracy, depending on methane
capture and concentration, as well as the day, month, and hour of its measurement. Ex-
treme values pose the most significant problem for the proposed models, especially the
instantaneous minimum values, which are difficult to explain using the variables iden-
tified. The best accuracy was obtained by using the logistic function for the output and
hyperbolic tangent function for the hidden layer. The total number of hidden neurons
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for this model was 293. The correlation coefficient of this model is 0.958, while the mean
error and weighted absolute percentage error amount to 437.79 and 7.82%, respectively.
The proposed models make it possible to determine the predicted electricity production
with satisfactory accuracy. Based on the predicted values, proper energy management on
the mine is possible. The estimation of the amount of energy required from other sources
(e.g., the power grid) is crucial. Moreover, operators could predict an excess of generated
electricity, i.e., when and how much produced energy will not be used by systems on the
mine site.

Predicting electricity production is vital in ensuring effective management of energy
resources at mining sites. Technical solutions to support the capture and use of methane
remain a topic of interest to coal mining companies, which constantly try to upgrade their
existing methane installations. It is necessary to identify further factors that can help fill the
research gap and improve the predictive model, so that it can forecast electricity production
with the greatest accuracy possible. Forecasting electricity production is crucial due to
the financial aspects that are related to settlements between gas suppliers and electricity
producers. Gas suppliers must provide a minimum amount of the methane mixture under
the right pressure to maintain the minimum required amount of electricity generated. In
the analyzed case, a minimum methane concentration of 40% had to be maintained to
ensure the proper operation of the gas engines to prevent their shutdown. The amount of
methane captured is also important for the methane supplier, as the supplier is bound by
a contract.
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Nomenclature

C Methane concentration, %
Ep Electricity production, kWh/h
F Methane-air mixture capture, m3/min
FCH4 Methane capture, m3/min
H Relative humidity of gas, %
P Pressure of the methane-air mixture, kPa
T Temperature of gas, ◦C

Abbreviations
ANN Artificial Neural Network
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
CCHP Combined Cooling, Heating and Power
CHP Combined Heating and Power
CMM Coal Mine Methane
GWP Global Warming Potential
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MLP Multilayer Perceptron
MSE Mean Squared Error
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RMSE Root Mean Squared Error
TBG Gas Engine TBG
VAM Ventilation Air Methane
WAPE Weighted Absolute Percentage Error
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