
energies

Article

Robust Clustering Routing Method for Wireless Sensor
Networks Considering the Locust Search Scheme

Alma Rodríguez 1,2,3,* , Marco Pérez-Cisneros 1 , Julio C. Rosas-Caro 2 , Carolina Del-Valle-Soto 2 ,
Jorge Gálvez 1 and Erik Cuevas 1

����������
�������

Citation: Rodríguez, A.;

Pérez-Cisneros, M.; Rosas-Caro, J.C.;

Del-Valle-Soto, C.; Gálvez, J.; Cuevas,

E. Robust Clustering Routing Method

for Wireless Sensor Networks

Considering the Locust Search

Scheme. Energies 2021, 14, 3019.

https://doi.org/10.3390/en14113019

Academic Editor: Satoru Okamoto

Received: 12 April 2021

Accepted: 17 May 2021

Published: 23 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500,
Guadalajara C.P. 44430, Jalisco, Mexico; marco.perez@cucei.udg.mx (M.P.-C.);
jorge.galvez@academicos.udg.mx (J.G.); erik.cuevas@cucei.udg.mx (E.C.)

2 Facultad de Ingeniería, Universidad Panamericana, Álvaro del Portillo 49, Zapopan 45010, Jalisco, Mexico;
crosas@up.edu.mx (J.C.R.-C.); cvalle@up.edu.mx (C.D.-V.-S.)

3 Desarrollo de Software, Centro de Enseñanza Técnica Industrial Colomos, Calle Nueva Escocia 1885,
Providencia 5a Sección, Guadalajara C.P. 44638, Jalisco, Mexico

* Correspondence: alma.rvazquez@academicos.udg.mx

Abstract: Multiple applications of sensor devices in the form of a Wireless Sensor Network (WSN),
such as those represented by the Internet of Things and monitoring dangerous geographical spaces,
have attracted the attention by several scientific communities. Despite their interesting properties,
sensors present an adverse characteristic: they manage very limited energy. Under such conditions,
saving energy represents one of the most important concepts in designing effective protocols for
WSNs. The objective of a protocol is to increase the network lifetime through the reduction of
energy consumed by each sensor. In this paper, a robust clustering routing protocol for WSNs is
introduced. The scheme uses the Locust Search (LS-II) method to determine the number of cluster
heads and to identify the optimal cluster heads. Once the cluster heads are recognized, the other
sensor elements are assigned to their nearest corresponding cluster head. Numerical simulations
exhibit competitive results and demonstrate that the proposed protocol allows for the minimization of
the energy consumption, extending the network lifetime in comparison with other popular clustering
routing protocols.

Keywords: locust search algorithm; wireless sensor networks; swarm-based algorithms; clustering
routing protocol; energy-efficiency; metaheuristic algorithms

1. Introduction

Recently, wireless communications have been widely used since they provide a robust
and flexible way to transmit information. Wireless communications refer to the association
between mobility and connectivity, considering the air as a transmission medium. [1]. Wire-
less sensor networks represent the most popular technology among the existing wireless
schemes. To operate wireless sensor networks, efficient processes from a computational and
energetical point of view are required. Under such conditions, communication protocols
are methodological structures that allow guaranteeing the efficiency of such processes.

A wireless network of sensors involves a set of electromechanical devices distributed
within a defined geographical section. These elements can provide important information
about the area in which they are distributed. This information is exchanged and transmit-
ted among the sensors of the network by using a certain transmission channel [2]. The
performance of wireless sensors depends on battery management. This fact represents the
main problem since it determines its energy autonomy. Therefore, it is important to use a
base station (BS) to improve information processing through a centralized transmission.
In the context of WSNs, the BS is also referred to as the sink or fusion center due to its
aggregation capabilities.
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Cluster-based or hierarchical routing are popular schemes with interesting characteris-
tics such as efficiency and scalability in communications. The generic ideas of hierarchical
routing have been integrated with several methodologies to save energy in WSNs. In
the structure of a hierarchical method, nodes with high energy are only considered for
processing and transmit information [3]. On the other hand, nodes with low energy are
used to collect information in regions near the target. Hierarchical routing corresponds
to a powerful approach to diminish the energy consumption inside the cluster structure
through the aggregation of information. Hierarchical routing methods integrate processes
to reduce the size of the transmission packet to the determined sink [4].

Under such conditions, the assignation of nodes with special purposes can signifi-
cantly increase the lifetime of the network and the scalability of the architecture. Cluster
Heads (CHs) are special nodes used as references in cluster-based or hierarchical schemes.
Scalability represents an important property in WSNs. This concept is an open problem that
has not been resolved in most of the routing methods due to the constraints imposed by the
initial assumptions. In a generical WSN approach, cluster-based protocols consider a single
sink and some cluster heads in order to extend their influence of the covering space [5].
With this architecture, WSNs maintain low scalability producing expensive processes in
terms of energy consumption. Incrementing the number of nodes or the influence diameter
of the network provokes an energetical overload and a bottleneck in the transmission of
the information.

An efficient protocol should present mechanisms to save energy in each node. The
objective is to increase the frequency of the recharging process from the batteries. This fact
is important since the recharging process is usually difficult and even not possible. Under
this architecture, software processes inside the nodes distribute the power load among
different nodes [6]. Hierarchical routing incorporates two roles in the behavior of each
node. The existence of such operation modes allows considerable energy saving. These
different transmission modes, as cluster head and generical sensor, can be important when
this architecture is also implemented in all layers [7].

On the other hand, optimization strategies such as metaheuristic methods refer to
optimization methods that can solve complex systems. These algorithms are extracted
from the observation of biological or social processes, that according to a determined
perspective, can be interpreted as search strategies. Due to its high application potential,
several metaheuristic methods have been introduced in the literature. Some of the most
popular metaheuristic schemes involve schemes such as the Differential Evolution (DE)
method [8], Genetic Algorithms [9], the Particle Swarm Optimization (PSO) [10], the
Artificial Bee Colony (ABC) algorithm [11], the Gravitational Search Algorithm (GSA) [12],
and the Grey Wolf Optimizer [13], to name a few. Metaheuristic methods do not assume
continuity differentiability, convexity, or determined initial conditions. These properties
represent the most important advantages in comparison to other optimization approaches.
Although these schemes produce interesting results, they maintain different difficulties
when used to solve high multimodal formulations.

The Locust Search (LS-II) [14] scheme is a metaheuristic technique extracted from the
modeling of the biological behavior of the desert locusts. A locust entity behaves consid-
ering two opposite processes: solitary and social. Under the solitary process, elements
avoid being in contact with other entities with the objective to explore new promising areas
for food sources. On the other hand, the social process considers the high concentration
of the entities to consume the areas with abundant food resources. This mechanism of
concentration involves the attraction of entities located in areas of low food levels to those
elements that are in positions with the best food sources. With the combination of both
behaviors, the LS-II approach presents very effective global and local search properties.
These characteristics have motivated its use in a wide variety of complex optimization
formulations such as parameter estimation of chaotic systems [15], image processing [16],
and pattern recognition [17], to name a few.
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In this paper, a novel clustering routing protocol for Wireless Sensor Networks is
presented. The approach is designed based on the Locust Search (LS-II) method. In the
proposed protocol, the number of cluster head nodes and their selection is identified
by the LS-II approach. Once cluster heads nodes are selected, the rest of the sensor
nodes are assigned to their nearest cluster head. Under such conditions, the network
structure is constantly modified by the LS-II until finding the optimal distribution of the
node structure that reduces the transmission distance. Numerical simulations exhibit
competitive configurations, which demonstrate that our routing protocol obtains minimal
energy consumption, improving the lifetime and extending the stability period of the
network in comparison with other popular clustering routing protocols.

The main contributions of this research can be summarized as follows: (1) a new
clustering routing protocol for Wireless Sensor Networks is proposed, (2) the scheme
translates the clustering routing task in an optimization formulation, (3) the solution of the
optimization problem (number of cluster head nodes and their selection) is identified by
the Locust Search (LS-II) method which has never been used for these purposes.

The next sections of the paper are structured as follows. In Section 2, the related
work is discussed. In Section 3, the main characteristics of the Locust Search (LS-II)
method are analyzed. Section 4 explains our clustering protocol. Section 5 exhibits the
numerical simulations of our protocol compared with other well-known methods. Finally,
the conclusions are discussed in Section 6.

2. Related Work

Multiple applications of WSNs, such as those represented by the Internet of Things
and monitoring dangerous geographical spaces, have motivated the enhancement of differ-
ent aspects of WSNs, namely, topology optimization [18], distributed and decentralized
detection [19–21], multipath routing protocols [22], and communication failures [23,24].
From the wide range of enhancements, routing protocols have attracted the attention
of several scientific communities due to their applications in energy savings. From all
routing protocols, clustering schemes represent the most popular approaches to manage
energy consumption. A clustering scheme allows the efficient administration of the energy
consumption for the working cycle of WSNs [25,26]. The Low Energy Adaptive Clustering
Hierarchy Protocol (LEACH) [27] corresponds to the most well-known clustering protocol
scheme in the case of homogeneous WSNs. In its operation, the LEACH method considers a
set of cluster heads (CHs) which are randomly identified while the rest of the sensor nodes
are frequently interchanged as CHs or generic nodes. Therefore, the energy consumption
is uniformly distributed in each node with the objective to extend the network operation.
Multiple other protocols that use the LEACH method as a part of their structure have
been proposed in the literature producing distinct levels of performance [28–32]. Another
popular routing protocol represents the Vice-CH-enabled (VCH) scheme [33]. It reduces
energy consumption by the use of a two-step process. In the mechanism of VCH, the CH
nodes are selected, considering only the nodes that currently maintain power possibilities.
The numerical results produced by VCH indicate that its operative properties are better
than those included in the LEACH protocol [34].

The LEACH and VCH schemes are designed to work with homogeneous WSNs. In
spite of interesting characteristics, they present a low performance when they are used
in Heterogeneous Wireless Sensor Networks (HWSNs). For this reason, elements of both
approaches have been incorporated to design other new routing protocols [35,36] that can
operate appropriately with HWSNs. From these schemes, the Stable Election Protocol
(SEP) [37] protocol is one of the most popular. Under the operation of SEP, it is considered
two-node prototypes: advanced elements and normal nodes. Advanced elements have
a higher probability than normal nodes to present a CHs behavior. Therefore, the SEP
approach considers distinct threshold patterns according to the node behavior. With this
mechanism, SEP manages the energy of advanced elements efficiently and eliminates the
consumption of normal nodes to extend the lifetime of the network. The mechanisms of
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the SEP protocols have been used to produce several other approaches. Some interesting
methods involve the Modified Stable Election Protocol (M-SEP) [38]. Under the operation
of the M-SEP, the consumed energy of each node is evaluated with regard to the complete
network to identify the nodes that have a high potential to become CHs. Therefore, nodes
with a better energy level have a higher probability of being CHs than those that present low
energy levels. The incorporation of this process by M-SEP considerably enhanced the life
cycle of the network and its transmission rate. The P-SEP [39] protocol is another method
based on the original SEP approach. The P-SEP determines probabilistically the uncertainty
of the energy contained in each node through the modeling of this level according to
its behavior. With this information, it is avoided the selection of a node with a lower
energy that is lower than a threshold value. Therefore, only the elements that surpass this
threshold have a possibility to become CHs nodes. With a similar mechanism as P-SEP,
the clustering protocol Distributed Energy-Efficient Clustering Algorithm (DEEC) [40] has
been designed as an effective method to operate HWSNs. In DEEC, it is also employed a
threshold limit to identify the CHs. The sensor energy level limits the period of time that
a sensor behaves as a CH. The mechanism of DEEC considers that high energy elements
generate stable transmission behaviors.

As an alternative to traditional schemes, the design of clustering protocols has also
been conducted considering metaheuristic algorithms [41–43]. According to the existent
literature, metaheuristic approaches have exhibited better performance levels than those
schemes based on classical computing strategies in terms of robustness and accuracy.
Under the metaheuristic methodology, the problem of clustering protocol is turned into an
optimization formulation where an objective function is modeled to estimate the quality
of a solution. With the information provided by the objective function, the metaheuristic
method tries different sensor configurations until finding the solution that obtains a longer
lifetime of the network [44,45]. In the literature, different clustering protocols have been
designed following metaheuristic concepts. Some representative schemes involve the
Energy Centers using Particle Swarm Optimization (EC-PSO) [46]. Under EC-PSO, the
CHs are initially determined considering a geometric approach. Then, the PSO method
is applied to select the sensor that will assume the role of the CH node from the network.
The EC-PSO scheme also considers a process to avoid the selection of nodes that maintain
low energy levels. Another important approach is the Genetic-Algorithm-Based Energy-
Efficient Clustering (GAEEC) [47]. Under this protocol, a Genetic Algorithm is considered
to select the CH nodes through a similarity metric. Therefore, the GA method employs as
an objective function a model that evaluates the transmission cost produced by each node
according to its energy level. In recent years, a routing protocol that considers the Grey
Wolf Optimizer has been also introduced. Under this protocol, distinct objective functions
are considered to evaluate the node properties of each sensor. The values provided by
each objective function represent weights that are dynamically adapted according to the
distance from the nodes of the network. Under this approach, it is identified the node
configuration that reduces the total sum of weights. In spite of their interesting results, these
metaheuristic methods present a critical disadvantage, such as premature convergence. It
refers to the act of detecting a suboptimal node configuration as the best solution for an
optimization problem. Different from other protocols based on metaheuristic principles,
our proposed approach is the mechanism to determine the CH nodes. In our LS-II scheme,
candidate solutions are encoded to automatically identify the number of CHs. Under this
approach, it is avoided the consideration of a fixed percentage of CHs or a predefined
probability to obtain the CHs. Since the LS-II method prevents premature convergence,
our technique ensures that the optimal number of CHs is selected and not a suboptimal
configuration. The proposed scheme models a distinct objective function to guide the
search process towards the node configuration, which better fits the constraints imposed
by energy savings and load balancing.

Due to the large number of acronyms involved, a list of them and their meaning is
presented in Table 1.
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Table 1. Acronyms/abbreviations.

Acronym Meaning

WSNs Wireless Sensor Networks
HWSNs Heterogeneous Wireless Sensor Networks
CHs Cluster Heads
CH Cluster Head
BS Base Station

LEACH Low Energy Adaptive Clustering Hierarchy
Protocol

SEP Stable Election Protocol
P-SEP Probabilistic Stable Election Protocol
DEEC Distributed Energy-Efficient Clustering
M-SEP Modified Stable Election Protocol

EC-PSO Energy Centers using Particle Swarm
Optimization

GAEEC Genetic-Algorithm-Based Energy-Efficient
Clustering

VCH Vice-CH-enabled
LS-II Locust Search II
LS Locust Search
DE Differential Evolution
GA Genetic Algorithms
PSO Particle Swarm Optimization
ABC Artificial Bee Colony
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimizer

3. The Locust Search (LS-II) Method

The Locust Search (LS-II) method refers to a metaheuristic technique obtained
from the modeling of the gregarious behavior observed in swarms of locusts. The
mechanisms incorporated in LS-II avoid the concentration of individuals in promising
areas and improve the exploration of the search space through the redistribution of
agents [48]. With the combination of both behaviors, the LS-II approach presents
very effective global and local search properties. These characteristics have motivated
its use in the solution of very complex problems [49]. The LS-II proceeds from the
original LS (Locust Search method). Different from LS, the new LS-II incorporates new
operators and mechanisms to increase its capacity to avoid the agent concentration.
Such mechanisms allow a better balance between exploration and exploitation to find
the global solution when it faces several local minima.

Under LS-II, a population P of N locusts symbolize a set of N candidate solutions
P = {x1, . . . , xN} (where N corresponds to the whole population size). The set of ele-
ments from P interacts with each other examining a n-dimensional search space. Each so-
lution xi = [xi,1, . . . , xi,n] is identified inside a constrained space
U =

{
xi ∈ Rn|ld ≤ xi,d ≤ ud

}
(where ld and ud symbolize the lower and upper limits for

the d-th decision variable, respectively).
As with any other metaheuristic approach, LS-II involves an iterative model in

which candidate solutions modify their location at each iteration during its execution.
The position of each candidate solution is modified through the application of a set
of operators modeled from the two behavioral processes observed in locust insects:
solitary process and social process.

3.1. Solitary Process

Candidate solutions in the solitary process move in distinct trajectories examining
promising areas of food sources (good solutions). During this process, search agents
avoid concentrating on other elements. This mechanism is designed considering a
model of attraction and repulsion forces undergone among solutions within the popula-
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tion P. Under such conditions, at each iteration t, the resultant attraction and repulsions
forces (called social force) experimented by a specific search agent xi is modeled by the
following formulation:

St
i =

N

∑
j = 1
i 6= j

st
i,j (1)

where st
i,j represents the pairwise attraction-repulsion between the candidate solutions xi

and xj which is modeled by the following expression:

st
i,j = ρ

(
xi, xj

)
L
(
ri,j
)
hi,j + rand(−1, 1) (2)

where the function ρ
(
xi, xj

)
denotes the dominance value between xi and xj. The value

L
(
ri,j
)

corresponds to the social factor while ri,j symbolized the Euclidian distance ‖xi− xj‖.
The vector is the unit vector from xi to xj.

hi,j =
xi − xj

‖xi − xj‖
(3)

rand(−1, 1) symbolizes a random vector of dimension n whose values are uniformly distributed.

The social factor L
(
ri,j
)

is defined by the following relationship:

L
(
ri,j
)
= Fe−ri,j/G − e−ri,j (4)

where the elements F and G represent the attraction-repulsion factor and influence size,
respectively. The function ρ

(
xi, xj

)
expresses the relative dominance between search agents.

To implement ρ
(
xi, xj

)
, each search agent xi is ranked with a number within the interval

[0, N − 1]. The best candidate solution is associated with the rank 0 while the worst element
with the rank N − 1. The concepts of best or worst are considered in terms of the produced
fitness value. Once assigned the ranks for each candidate solution, the dominance value is
modeled as follows:

ρ
(
xi, xj

)
=

e−(
rank(xi)

N ) if rank(xi) ≤ rank
(
xj
)

e−(
rank(xj)

N ) if rank(xi) > rank
(
xj
) (5)

Therefore, due to the influence of the total social force St
i , each search agent xi present

a determined tendency of being attracted or repelled to or from other elements within the
population P. Under such circumstances, the new location x∗i assumed by the search agent
xi because of the influence of the total force is computed as follows:

x∗i = xi + St
i (6)

Therefore, the set of candidate solutions has been modified to the updated population
P∗ =

{
x∗1 , . . . , x∗N

}
.

3.2. Social Process

The social process is a mechanism applied to improve the accuracy of the best candi-
date solutions identified from P∗ during the solitary process. During the social process, it
is generated a subset of search agents B =

{
b1, . . . , bq

}
that involves the best q elements

of the population P∗. Then, for each candidate solution x∗i ∈ B, a set Mi of a new random

solutions
(

Mi =
{

mi
1, . . . , mi

a
})

are generated inside a limited subspace Ci ∈ U. The
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subspace Ci in which it is generated a new solutions around x∗i =
[

x∗i,1, . . . , x∗i,n
]

presents
the following limits:

Clower
i,d = x∗i,d − r (7)

Cupper
i,d = x∗i,d + r

where Clower
i,d and Cupper

i,d corresponds to the upper and lower limits of each subspace Ci for
the d decision variable (d ∈ [1, . . . , n]). On the other hand, the perturbation r is computed
by the following expression:

r =
∑n

d=1(ud − ld)
n

· β (8)

where ld and ud symbolize the lower and upper limits for the d-th decision variable,
respectively. n is the total number of dimensions, while β corresponds to a scale element
that regulates the limit size of Ci. The value of β is within the interval [0,1].

Finally, the new position of the search agent xt+1
i is obtained as the best element of the

set integrated by the value of x∗i and all its a respective random solutions
{

mi
1, . . . , mi

a
}

.
This task can be modeled by the following formulation:

xt+1
i = best

(
x∗i , mi

1, . . . , mi
a

)
(9)

The complete search procedure of LS-II is an iterative process that starts with random
initialization of the population P(k) in the first iteration (k = 0). Then, it is applied the
solitary operator over the current population P(k). As a result, a temporary population
P∗ is produced. Finally, the social operator is considered to generate the next population
P(k + 1). This process is repeated until the number of iterations has been reached. Figure 1
shows the flowchart of the complete process.

Figure 1. Flowchart of the LS-II approach.

4. The New Clustering Routing Approach

In this part, our proposed clustering routing protocol based on the Locust Search
(LS-II) method is explained. The process of operation in our proposed scheme is divided
into two main steps: the configuration stage and the operation stage.
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4.1. Configuration Step

In its initial stage, network parameters and their architecture need to be defined. This
fact is because it is possible to define several network configurations depending on the
requirements of the application. The network is mainly defined by the characteristics of its
sensor nodes.

The WSNs involve a set of nodes that define a topological structure where the infor-
mation should be collected. Therefore, our protocol considers some network constraints
and a determined topology. These assumptions have been taken into account in order to
maintain compatibility with other works reported in the literature.

Network assumptions:

1. The network presents one base station BS a group of cluster heads elements CH, and
a set of sensor nodes n.

2. The energy in the base station is supplied through an external source, while the power
level of each sensor node is bounded.

3. A particular sensor node is considered dead or useless when its energy level is empty.
4. All sensor elements have a homogeneous characteristic.

Network topology:

1. In its initial stage, all nodes are randomly distributed in the area where the information
is collected.

2. The position of each node does not change during the network operation.
3. The base station is located in the middle of the sensing section.
4. It is not fixed the number of clusters of the structure.
5. Every generic node (also known as a leaf node) is assigned to its nearest cluster

head element.

Once the network structure is already defined, the process for the generation of the
connections for the whole network is executed. This step is the configuration phase. Under
this phase, an initial set of CHs is selected to produce the initial cluster structure. In the
selection process of the optimal set of CHs, our proposed scheme adopts the following
energy model of consumption.

Model of Energy Consumption

In a generical WSNs, the processes that consume most of the energy stored in the sys-
tem are data reception and transmission. The amount of necessary energy for transmitting
or receiving information varies according to the distance d and the packet size where the
information is encoded. Under this perspective, the required energy level for transmitting
a packet with l-bit is expressed by the following formulation.

ETX(l, d) =
{

lEelec + lε f sd2, d ≤ dth
lEelec + lεmpd4, d > dth

(10)

where ETX represents the level of energy consumption to transmit information, l symbolizes
the encoded data size, Eelec corresponds to the dissipation of energy when it is transmitted
or received only one bit of data, ε f s denotes the energy factor of dissipation in the free space
model, εmp refers to the factor of energy dissipation considering a multipath attenuation
formulation, and dth represents a threshold value that defines the maximal transmission
distance. It is computed by the following equation.

dth =

√
ε f s

εmp
(11)

The energy needed for receiving a packet of l-bit is computed by Equation (10).

ERX(l) = lEelec (12)
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A generical sensor node ni can only transmit information to the cluster head. Under such
conditions, the energy consumption of node ni can be calculated by the following model:

E(ni) = ETX(l, d) (13)

On the other hand, the energy consumption of a cluster head CHj integrates several
elements: the energy consumption when packets are received, the collection of the data
information, and the transmission of the collected data to the base station. Therefore, the
energy consumption for CHj is computed by the following expression:

E
(
CHj

)
= ERX(l)Nj +

(
Nj + 1

)
lEDA + ETX(l, d) (14)

where Nj denotes the number of nodes that belong to the cluster j. EDA corresponds to the
consumed energy for 1 bit of collected data. Under this scheme, the residual energy of a
generic node ni is determined by Equation (13).

Et
r(ni) =

{
Et−1

r (ni)− ETX(l, d), Et−1
r (ni) > 0

0, Et−1
r (ni) ≤ 0

(15)

On the other hand, the residual energy consumed by a cluster head CHj is computed
by the formulation defined in Equation (14).

Et
r
(
CHj

)
=

{
Et−1

r
(
CHj

)
− E

(
CHj

)
, Et−1

r
(
CHj

)
> 0

0, Et−1
r
(
CHj

)
≤ 0

(16)

In the configuration step, the LS-II is used to identify the initial set of CHs. Likewise,
it is generated the initial network structure according to the energy consumption model.
Once the LS-II has selected the cluster head nodes, the rest of all nodes are assigned to the
nearest CH. However, if the distance of the generical node to its nearest CH is longer than
the distance to the base station, then the generical node should not be considered as part of
this cluster. Instead, its information will be transmitted directly to the base station.

4.2. Operation Step

The operation step is the process where the CH nodes are selected to produce an
optimal network structure by the LS-II algorithm. In this stage, once the optimal set of
CHs has been selected, the information is transmitted to the BS. Each round, the data
transmission is verified. One round refers to the invested time in which the information
is transmitted from generical nodes to CHs and then to the BS. The network structure
is updated in each round by executing the LS-II scheme in order to identify the optimal
structure. The mechanism to select the CHs and the optimal network structure is explained
in the following subsections.

4.2.1. Determination of Optimal Cluster Heads

In our scheme, the LS-II method identifies the set of CHs. In the identification, two
main concepts are adopted: the residual energy of CH and the distance from a CH to
the BS.

The proposed scheme identifies a sensor node as CH when its residual energy is quite
high in comparison with the rest of the sensors. According to the energy consumption
model, cluster heads consume more energy than generical nodes. Therefore, sensor nodes
that present the highest residual energy levels should be considered as CHs in order to
balance their effects.

Determining the optimal node structure allows saving energy. Under such conditions,
the identification of CHs is achieved through a reduction of the distance among nodes. For
this operation, it is considered that crosslinks are eliminated since they generate interference
through the data transmission.
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Different from other schemes, the number of CH nodes is not represented by a fixed
constant. Instead, the number of CHs is constantly modified in order to obtain the best
network structure in each round. Likewise, the determination of the set of CHs is not
random or probabilistic produced, such as in the DEEC or LEACH approaches. Instead
of this, in our scheme, the LS-II technique automatically selects the best sensor nodes to
become CHs in each round. This mechanism allows the use of the proposed scheme
for a wide range of WSN applications without considering this constraint imposed for
other protocols.

Then, each sensor node is assigned to the closest cluster head once the optimal set
of clusters has been determined. However, there is an exception: If the distance of the
sensor node is shorter to the BS than the distance to the CH, then the sensor node is not
assigned to this group. Therefore, the information from this node is transmitted to the
base station. Once this process is finished, a candidate network structure is used for a
transmission simulation in order to evaluate its performance. The process for determining
the best network structure is discussed in the following section.

4.2.2. Identification of Optimal Network Structure

In our approach, the LS-II scheme selects the optimal cluster network structure C by
determining the optimal group of cluster heads. Therefore, in each execution, cluster head
nodes are identified to integrate a new network topology. Then, the network performance
is evaluated with regard to its fitness value. In this paper, an objective function to assess the
effectiveness of the network structure is implemented. This cost function integrates four
elements: the total distance from cluster heads to the base station, the total intra-cluster
distance, the residual energy of cluster heads, and the energy consumption. The objective
function is modeled by the following Equation (17).

f (C) = f1(C) + f2(C) + f3(C) + f4(C) (17)

The first element denotes the total intra-cluster distance, which is computed as follows:

f1(C) =
dmax

(
∑k

j=1 d
(
nj, CHj

))
−∑k

j=1 d
(
nj, CHj

)
dmax

(
∑k

j=1 d
(
nj, CHj

))
− dmin

(
∑k

j=1 d
(
nj, CHj

)) (18)

Assuming the subset of sensor elements nj belonging to the group j and CHj repre-
senting the cluster head, the maximum and minimum total intra-cluster distance of each
sensor node in nj to its respective cluster head CHj is dmax and dmin, respectively. Being d
the total intra-cluster distance.

The second element corresponds to the total distance from cluster heads with regard
to the base station. This term is modeled as follows:

f2(C) =
dmax

(
∑k

j=1 d
(
CHj, BS

))
−∑k

j=1 d
(
CHj, BS

)
dmax

(
∑k

j=1 d
(
CHj, BS

))
− dmin

(
∑k

j=1 d
(
CHj, BS

)) (19)

where the maximum and minimum total distance from each CHj to BS is dmax and dmin,
respectively. Being d the total intra-cluster distance.

The third element refers to energy consumption which is computed as follows:

f3(C) =
Emax

(
∑k

j=1 ∑
Nj
i=1 E

(
nij
)
+ E

(
CHj

))
− E

(
∑k

j=1 ∑
Nj
i=1 E

(
nij
)
+ E

(
CHj

))
Emax

(
∑k

j=1 ∑
Nj
i=1 E

(
nij
)
+ E

(
CHj

))
− Emin

(
∑k

j=1 ∑
Nj
i=1 E

(
nij
)
+ E

(
CHj

)) (20)

where E
(
nij
)

denotes the energy consumption of a generical sensor node i which is assigned
to cluster j. The number of nodes in the group j is Nj. Emax and Emin represent the maximum
and minimum total energy consumption of the network, respectively.
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The fourth element represents the relationship between sensor node members of the
sum of the residual energy and its cluster head:

f4(C) =

Ermax

(
∑k

j=1
∑

Nj
i=1 Er(nij)
Er(CHj)

)
− Er

(
∑k

j=1
∑

Nj
i=1 Er(nij)
Er(CHj)

)

Ermax

(
∑k

j=1
∑

Nj
i=1 Er(nij)
Er(CHj)

)
− Ermin

(
∑k

j=1
∑

Nj
i=1 Er(nij)
Er(CHj)

) (21)

where Er
(
CHj

)
represents the residual energy of the cluster head. Er

(
nij
)

corresponds to
the residual energy of the sensor node. Emax and Emin denote the maximum and minimum
total residual energy, respectively.

A lower value of f (C) expresses that the identified set of clusters represents a better
cluster network structure. Therefore, the LS-II method selects a set of cluster heads to
produce distinct cluster structures in each execution with the objective to determine the
optimal network structure. Our proposed protocol is exhibited in Algorithm 1.

Algorithm 1. LS-II routing protocol

Input: Number of alive nodes
Output: The number of k clusters
while t ≤ tmax
| Identify cluster heads considering the search strategy of LS-II
| if the distance from a node to the closest CH is smaller than to the BS
| | Allocate the node to the closest CH
| else
| | The node transmits the information right to the BS
| end if else
| Compute the cost function of the produced cluster network structure f

(
Ct)

| if f
(
Ct) < f

(
Copt)

| | Update the identified cluster network structure as:
| | f

(
Copt)← f

(
Ct)

| end if
end while

5. Experiments and Simulation
5.1. Metrics

A simulation was carried out to measure the performance of the proposed method.
The metrics used to validate the technique contemplate the network lifetime, the total
residual energy, the network stability period, the number of received data packets by the
sink node, and the residual energy deviation. In the following, the description of these
metrics is presented in detail.

The network lifetime considers the period in which the network starts the transmission
and when the first node dies. This measure allows the analysis of the network stability in
which all the sensors are alive and working. On the other hand, the network instability
contemplates the period from the first dead node to the end of the network life, which
occurs when all nodes are dead.

The residual energy is determined by the sum of the residual energy of the alive nodes
in the network divided by the sum of the initial energy of all nodes. This metric indicates
the percentage of available energy in the network in every round and can be formulated as:

p(t) = 100

(
∑N

i=1 Er(ni, t)

∑N
i=1 Eo(ni)

)
(22)
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where t is the current round, while Er(ni, t) is the residual energy of the node i in the round
t. The initial energy node i is defined by Eo(ni). Therefore, the percentage of the total
residual energy is given by p(t).

The residual energy deviation measures the difference between the node with the
highest residual energy and the node with the lowest residual energy, divided by the total
initial energy. This metric is expressed in percentage and is calculated as follows:

DR(t) = 100

(
Ermax (n, t)− Ermin(n, t)

∑N
i=1 Eo(ni)

)
(23)

In the round t, the node with the maximum residual energy in the network and
the node with the minimum residual energy in the network is given by Ermax (n, t) and
Ermin(n, t), respectively.

The last metric considered in the experiments is the throughput, which measures the
total number of packets sent to the BS by every cluster head.

5.2. Methods of Comparison and Parameter Settings

To prove the efficiency of the proposed method, it has been compared against one
of the most popular clustering routing protocols: the Low Energy Adaptive Clustering
Hierarchy Protocol (LEACH). Furthermore, the proposed technique has also been compared
against other recent metaheuristic schemes used in clustering routing protocols, namely
the Gray Wolf Optimization (GWO) algorithm.

The simulation requires the parameter settings listed in Table 2. To ensure a fair
comparison, these parameters have been configured with the same values for all the
routing protocols considered in the experiments. The simulation parameters include the
size of the sensing area, the number of sensor nodes in the network, the size of the packets,
the initial energy of the nodes, and other values necessary to simulate the behavior of the
network during the transmission-reception process.

Table 2. Parameter settings.

Parameter Value

Sensing area 100 m2

Packet size l 4000 bits
Number of sensor nodes N 100
The energy dissipation for transmitting or receiving 1 bit
of data Eelec

50 nJ/bit

Energy for 1 bit of data aggregation EDA 5 nJ/bit
The coefficient of energy dissipation in the multipath
attenuation model εmp (transmission coefficient
amplifier)

0.0013 pJ/bit/m4

The coefficient of energy dissipation in the free space ε f s
(transmission coefficient amplifier) 10 pJ/bit/m2

Initial energy of sensor nodes Eo 0.003 J
The coefficient of energy dissipation in the multipath
attenuation model εmp (transmission coefficient
amplifier)

0.0013 pJ/bit/m4

Additionally to the simulation’s parameter settings, the proposed method and the
protocols in comparison need particular parameter configurations to ensure their best
performance. These parameters are reported in Table 3.
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Table 3. Setting parameters of the methods in comparison.

Protocol Parameter Value

GWO a (linearly decreased from 2 to 0) [2,0]
LEACH p (the percentage of CHs) 0.05

LS-II q (the number of best individuals considered for the social phase) 10

The LEACH protocol only requires the percentage of cluster heads assigned in every
round, whose value usually is at least 5% of the alive nodes. Therefore, we have configured
this value to 0.05. The YSGA method needs the number of search agent groups as an
initial parameter. According to the author’s recommendation, this value has been set to
4 since extensive experiments have demonstrated that it reaches its best performances
when four groups are configured for the search process. On the other hand, the GWO
employs one parameter to regulate the exploration-exploitation in the search process.
According to the author’s recommendation, this parameter variates linearly from 2 to 0
throughout the optimization stage. Finally, the LS-II method only requires the number
of best individuals needed for the social phase. This value has been set to 10 since the
method’s best performance is achieved using this value. As additional parameters, the
YSGA, GWO, and LS-II algorithm require the population size and the maximum number
of iterations, which have been set to 20 and 50, respectively.

All the experiments have been carried out using the MATLAB R2019a software on a
PC with the Intel® Core ™ i7-8550u processor at 1.80 GHz.

5.3. Network Lifetime

The network lifetime analyzes the evolution of the alive and dead nodes in every
round. This evolution is illustrated in Figures 2 and 3, respectively, where the graphics
represent the obtained simulation results for all comparison methods. Figure 2 shows how
many alive sensor nodes remain in the network in every round, while Figure 3 reveals the
number of accumulated dead nodes in each round. From the graphics, it is clear that the
proposed scheme outperforms the protocols in comparison since it manages to maintain
more alive nodes in every round than the other methods. In other words, the proposed
scheme manages to further reduce the number of nodes out of energy compared to the
other protocols in every round.

Figure 2. Alive nodes’ evolution.

Contemplating the attained outcomes, the proposed method manages to extend the
network’s lifetime more than the protocols in comparison. The LS-II scheme can reach such
results because it can automatically build the optimal number of clusters to stabilize the
power load and extend the network lifetime. Moreover, the proposed protocol can change
the network configuration in each round to increase the sensors’ lifetime and reduce the
power expenditure.
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The simulation of the network lifetime is also illustrated in Figure 4, where the cluster
configuration selected by the proposed scheme for different periods is shown. Figure 4a–d
show the optimal cluster configuration in rounds 1, 5, 11, and 15, respectively. The figure
exemplifies the clusters’ formation given the set of cluster heads chosen by the proposed
method in distinct rounds. In the figure, it can be appreciated that the number of cluster
heads can change from one round to another. Similarly, the number of clusters and the size
of every cluster can be different. Furthermore, the figure shows the nodes that have died
over time and how they are excluded from the clustering-transmission-reception process.

Figure 3. Dead nodes’ evolution.

Figure 4. Wireless sensor network clustering evolution: (a) cluster configuration in round 1, (b) in round 5, (c) in round 11,
and (d) in round 15.
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In Figure 4, the base station is placed at the center of the sensing area and sym-
bolized with a gray color diamond marker. On the other hand, normal sensor nodes
are represented as gray color circles, while cluster heads are indicated with gray color
squared markers. In contrast, dead sensor nodes are illustrated with black color circles.
Regarding the communication links, every normal sensor node that belongs to a specific
cluster has a connection line to its cluster head identified by a particular line style,
which is a dotted line. Similarly, the communication between every cluster head and
the base station is represented with a dashed line. Finally, a simple line represents
the communication link of every normal sensor node that is not part of a cluster and
transmits directly to the base station.

5.4. Total Residual Energy

The total residual energy of the network is calculated by summing every sensor node’s
remaining energy in every round. The evolution over time of this calculation for each
protocol is reported in Figure 5. A closer inspection of this statistic reveals that the proposed
protocol reaches the highest residual energy throughout the network lifetime. From the
figure, it can be observed that the level of energy in all protocols is 100% at the beginning
of the simulation. However, the power consumption gradually reduces the total residual
energy in every round until the residual energy percentage is zero. Nevertheless, the
proposed approach uncovers the cluster structure that consumes the minimum energy in
every single round. Consequently, it achieves the lowest energy expenditure and maximizes
the network’s residual energy, outperforming the other protocols in comparison.

Figure 5. Total residual energy.

5.5. Network Instability Period

The statistics of the network instability period are shown in Figure 6. The figure
reveals the round in which the first sensor node dies for every protocol in comparison.
Likewise, the figure shows the round where half of the sensors are out of power and the
time where all sensor nodes are dead.

From the achieved outcomes, it is remarked that the proposed protocol accomplishes
the maximum values. The first dead node appears at round 8 in the proposed method.
Fifty percent of the network dies in round 12, while the complete set of sensor nodes dies
in round 22. The GWO and LEACH protocols reached lower indicators concerning the first,
half, and last node out of power in the wireless sensor network, proving that the proposed
method provides a longer lifetime to the network.

5.6. Throughput

The throughput measures the number of packets that have been sent to the base
station. It is desirable to send the largest number of packages throughout the life of the
network. This measure is illustrated in Figure 7. The throughput is inherent to the number
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of alive sensor nodes transmitting data packets in every round, which means that the
collection of information is more significant.

Figure 6. Network instability.

Figure 7. Throughput: total number of packets sent to the BS.

Figure 7 clearly shows that the proposed protocol has the highest throughput. The
number of packets sent to the base station reaches 1200 for the LS-II, while the LEACH
protocol sends less than 1000. These results are as expected since the proposed method
extends the life of the network, and therefore, the amount of gathered data is improved.

5.7. Energy Deviation

The difference between the two sensors with the maximum and minimum residual
energy determines the energy deviation. This statistic measures the load balancing, which
indicates how the energy expenditure is distributed among all the sensor nodes. When the
load is not balanced, the network presents a higher instability period, a shorter lifetime,
and the sensor nodes’ premature death. The energy consumption is not balanced if the
energy deviation is high. Therefore, it is desirable to reduce this metric for better load
balancing, and at the same time, it is desirable to prolong the time in which the highest
peak is reached.

The energy deviation obtained from the experiments is illustrated in Figure 8. The
statistic in the figure reveals that the LEACH protocol generates the maximum peak,
reaching the highest peak in round three. Therefore, this protocol has the worst load
balance. In contrast, the lowest energy deviation is attained by the proposed method LS-II,
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which archives the highest peak in round nine. Therefore, the proposed scheme shows the
best performance when the energy deviation is analyzed.

Figure 8. Energy deviation.

6. Conclusions

A novel clustering routing protocol based on the LS-II scheme has been proposed in
this article. The approach achieves the optimal cluster structure to decrease the energy
expenditure in each transmission-reception process, extending the network lifetime.
The LS-II protocol regulates the number of cluster heads and automatically decides the
nodes’ role as regular sensors or cluster heads in each round. The proposed approach
is compared against the LEACH protocol, which is one of the most popular clustering
routing protocols. Additionally, another similar protocol scheme based on the GWO
has been used in the performance analysis. Simulation results have demonstrated that
the proposed technique performs better than the comparison methods. Several metrics
were implemented to evaluate the proposed protocol, such as the network lifetime, the
energy consumption, the energy deviation, the number of packets delivered, and the
network instability period. The statistical analysis has demonstrated that the proposed
strategy handles very well, improving the network’s lifetime, and at the same time, it
provides a better balance in load energy. As further research directions that deserve
attention, we can establish A) the use of metaheuristic mechanism to improve the
accuracy of the solutions, B) the use of the opposition-based phenomenon to increase
the exploration capacities of the LS-II scheme, and C) the dimensionality reduction of
the optimization problem for the scalability of the network.
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