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Żukowski, M.; Krawczyk, D.A.;

Rodero, A. Analysis of the

Applicability of the Parabolic Trough

Solar Thermal Power Plants in the

Locations with a Temperate Climate.

Energies 2021, 14, 3003. https://

doi.org/10.3390/en14113003

Academic Editors: Andrea Giostri

and Marco Binotti

Received: 21 April 2021

Accepted: 20 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of HVAC Engineering, Bialystok University of Technology, 15-351 Bialystok, Poland
2 Grupo de Física de Plasma: Modelos, Diagnosis y Aplicaciones, Campus of Rabanales,

Universidad de Córdoba, E-14071 Córdoba, Spain; fa1rosea@uco.es
* Correspondence: t.teleszewski@pb.edu.pl (T.J.T.); m.zukowski@pb.edu.pl (M.Ż.);
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Abstract: Currently, intensive work is underway in Poland to increase the share of renewable energy
sources in the overall energy balance. Therefore, this paper presents the possibilities of using
concentrated solar power in zones with a temperate climate. A simplified model based on the energy
balance in the solar collectors considering the main operating parameters of the typical solar power
plant was developed. It should be noted here that the model does not take into account issues related
to heat accumulation and electricity generation in a Solar Thermal Power Station. The simulation of
forced convection inside the solar collector absorber was additionally included in the calculations
to improve its accuracy. The model was verified using actual heat measurements at the outlet of
the parabolic collector installation at a Solar Thermal Power Station located in the south of Spain.
The heat generated by a similar solar collector system in a selected region with a temperate climate,
the city of Bialystok (north-eastern Poland, geographic coordinates: 53◦08′07′′ N 23◦08′44′′ E) was
determined by the developed simplified model for different months of the year. Based on the results
of the analysis, it was found that the energy obtained from the same area of concentrated solar
collectors located near Bialystok is eight times lower compared to the location in Cordoba depending
on the variant of the power plant operation.

Keywords: concentrating solar power systems; solar gains; solar plants; parabolic trough collectors

1. Introduction

Solar energy is one of significantly developing branches of renewable energy sources.
Total annual solar radiation on the surface of the Earth is estimated to be about 7500 times
higher than the annual global consumption of primary energy [1]. Trends in new invest-
ments in solar systems sector show 23% increase, comparing to 2004, whereas a period
between 2013 and 2018 was marked by both: annual falls and growths [2]. According
to forecasts [3] the share of fuels in overall energy balance will continue changes and
instead of two-thirds fossil fuels in 2018, two-thirds zero-carbon energy by 2050 will be
reached, supplying almost 50% of world electricity from solar and wind energy, 50-by-50.
On December 11, the Council of Europe approved a plan that will raise the CO2 reduction
target from 40 percent to at least 55 percent by 2030 [4]. Thus far, concentrating technologies
using parabolic trough collectors (PTC) were used in countries with high radiation and
is responsible for more 96% of installed CSP power [5]. As reported by [6] PTC-based
solar thermal systems are mostly used in electricity generation systems, accounting for
approximately 85% of total current installed capacity worldwide.

Currently the most parabolic trough solar thermal power plants (PTSTPP) are in Spain
and the USA [7]. In the literature, examples of models of such systems and analysis of
possible improvements were presented. Knysh [8] proposed a model of the flow dynamics
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and heat exchange in the tube receiver of a solar parabolic trough module (PTM) to be
used during designing solar energy systems with PTC of different power. Tatebi et al. [9],
using a numerical model and experimental data, investigated the effect of metal foams and
nanofluids on the thermal performance of a direct absorption parabolic trough collector
(DAPTC). Authors concluded that porous media with high absorption coefficient and
scattering coefficient could absorb more incoming radiation and transfer to heat transfer
fluid, thus the increase in the collector’s efficiency can be obtained. Possibilities to improve
the absorber tube of a parabolic trough collector, resulting in a heat transfer enhancement
was proposed by Aldulaimi [10]. Abbas et al. [11,12] analyzed different locations in
Spain and compared efficiency of PTCs and Linear Fresnel Collectors (LFCs). The results
of the optimization by means of a validated Monte Carlo Ray Trace code and analytic
methods showed higher annual efficiency in the case of PTCs. Hongn et al. [13] studied
end optical losses of collectors. Salazal et al. [14] developed and valuated an analytic
modelling of the energy flows in parabolic trough solar thermal power plants that allows
for evaluation of energy savings in a case of potential modifications in components, system
design and location. Whereas Ma at al. [15] presented a thermal hydraulic model solved
by a novel numerical approach based on graph theory and the Newton–Raphson method.
Rogada et al. [16] focused on a heat transfer fluid (HTF) used to transfer the thermal
energy of solar radiation through parabolic collectors to a water vapour Rankine cycle, and
proposed a model to optimize the temperature of the fluid. Similar problems were analysed
by Barcia at al. [17] and a dynamic model of the HTF heating process was proposed. It
included main fluid properties such as density, thermal conductivity or specific heat,
thus the model was not limited to commonly used synthetic oil. On the other hand
Llamas et al. [18–20] developed of a mathematical model for the optimal operation of
parabolic-trough power plants with different power in context of their integration into
electricity markets with minimizing grid-connection costs.

Recently, the solar market trend in developed countries seems to be stabilizing. In
2017, the solar investments in developing countries were much higher (USD 115.4 billion)
than in developed economies (USD 45.4 billion) that comparing with 2016 is in line with
41% increase and 17% fall, respectively [2].

The vast majority of publications related to parabolic solar collectors concern a tropical
or subtropical climate [21–24], which is understandable due to the significant DNI values
in these regions. In the case of temperate climate, scientific publications focus mainly on
flat plate collectors [25–28], which are most often used for domestic hot water heating. It
should be emphasized here that parabolic solar collectors can generate high temperature
of the medium in the absorber, which is why they are often used in thermal power plants.
Flat solar collectors without a mirror system, which are used in temperate climates to heat
domestic hot water, do not require such high temperature as parabolic solar collectors. No
information has been found in the literature on the operation of parabolic solar collectors
in the literature on the operation of parabolic solar collectors in temperate climates.

In the case of electricity production in temperate climates, photovoltaic (PV) panels
are commonly used [29]. The main advantage of photovoltaic panels is the use of diffusive
radiation to generate electricity [30]. In areas with high values of solar radiation (tropical
climate), CPS power plants based on parabolic solar collectors generate about 33% [31]
more electricity than PV power plants. Power plants based on photovoltaic cells and
parabolic solar collectors can be combined into hybrid systems [32].

The computational methods used in simulations of the operation of parabolic solar
collectors can be divided according to the complexity of the model geometry. In the most
extensive three-dimensional numerical methods, thermal parameters on the absorber walls
are determined depending on the mirror system or the absorber shape, as a result of
which it is possible to design new constructions of focusing solar collectors [33–35]. Three-
dimensional calculations are most often performed with the use of complex computational
programs Ansys-Fluent [34] or OpenFOAM [35]. The second group of thermal-flow calcula-
tions in solar collectors is related to the problem of the two-dimensional cross-section of the
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solar collector and it is most often a simplification of three-dimensional problems [36]. Both
the two-dimensional and three-dimensional problems are determined using advanced com-
putational fluid dynamics (CFD) programs with a heat exchange module. The third group
are issues related to one-dimensional flow and they can be used to design solar collector
installations with infrastructure. In the case of one-dimensional problems, specialized
software, e.g., System Advisor Model (SAM) [22,24], TRNSYS [37] are also used. Some-
times custom source codes are created [21,38]. They require an appropriate programming
environment, e.g., Matlab or the ability to write own computer programs [39]. The most
popular program System Advisor Model (SAM) [40] can be used for the initial analysis of
the entire solar power plant, where three areas can be distinguished: solar collector instal-
lations, heat storage tanks and devices for generating thermal energy (solar field, thermal
storage, power block). All these modules in a thermal power plant are interconnected into
one system. In the case of the analysis of individual devices that are part of a thermal power
plant, it is good practice to use classic equations resulting from thermal-flow issues. Due to
the lack of data on the operation of parabolic collectors in temperate climates, a simplified
model of estimating heat generated by parabolic collectors has been developed, which can
be implemented in a spreadsheet, e.g., MS Excel or Apache OpenOffice. The developed
simplified algorithm for the operation of parabolic solar collectors was determined on
the basis of the problem of forced convection in the absorber [41]. The presented model
does not take into account the dynamics of the system and devices included in the thermal
power plant [17]. Dynamic modeling [17] of solar power plants introduces possibilities of
optimizing the operation of solar parabolic collectors.

In this paper, a simplified model to evaluate solar energy gains from PTSTPP in
different locations was developed. Moreover, using this model it is possible to estimate
an area of the parabolic through solar field (PTSF) necessary to deliver the energy to meet
the assumed target. The validation of the developed model was performed by comparing
its results with the heat generated by a set of parabolic solar collectors at a real thermal
power plant in the south of Spain. The results of this type of simulations could be useful
for preliminary analysis of the CSC systems applications. The presented model has been
implemented in an MS Excel spreadsheet. The aim of the work is also to investigate the
numerical work of parabolic solar collectors in a temperate climate based on the existing
solar installation in Spain.

2. Simplified Model of Heat Production Forecasting by Concentrating Solar Collectors

Figure 1 shows the satellite view of a solar power plant. In this power plants (geo-
graphic coordinates: 37◦45′18.00′′ N 5◦3′26.00′′ W), five basic parts can be distinguished
(Figure 2): from parabolic solar collectors with pipelines, heat storage tanks, a set of heat
exchangers in which steam is produced, steam turbines with an alternator and devices
for cooling the medium from the steam turbine. The description of the elements of the
collector field and the main parameters of this Solar Plant are presented in Tables 1 and 2,
respectively. The HTF parameters adopted in Table 2 were determined for the average
temperature at the outlet and inlet of a single loop (Tin + Tout)/2. The collector thermal
efficiency ηCPS in Table 2 is defined as the ratio of the useful energy delivered to the energy
incident on the collector aperture. Parabolic solar collectors are the most effective and
most widely used method of large-scale heat generation. Parabolic collectors (Figure 3) are
composed of mirrors that reflect and focus solar radiation on pipes (absorber) filled with
HTF. The liquid is then transported to the steam generation system, then the steam is used
in a steam turbine to generate electricity.

The model focuses on the generation of heat by the collectors which is the part that
depends strictly on the local climatic conditions. The location has a minimal impact on the
operation and performance of the accumulation tanks and the power generators.
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Figure 1. View of solar cylinder parabolic collectors at the Solar Thermal Power Plant “La Afri-
cana” (“satellite” view from googlemaps.com). 

 
Figure 2. Simplified diagram of a thermal power plant with parabolic solar collectors: 1—parabolic 
solar collectors, 2—heat storage tanks, 3—steam generation system, 4—steam turbine, 5—cooling 
tower, 6—water storage reservoirs. 

Table 1. Description of the elements of the collector field in the Solar Thermal Power Station of te 
south of Spain. 

Description Value Unit 
Number of mirrors in a single solar collector: 28 - 
Mirrors surface area in a single solar collector: 68.2 m2 

Number of solar collectors: 8064 - 
Surface area of all mirrors: 549,965 m2 

Number of loops: 168 - 
Number of solar collectors included in one loop: 48 - 

Number of absorbers: 24,192 - 
The length of a single loop: 556.00 m 

Absorber diameter 0.07 m 
Diameters of pipes transporting HTF 0.1143–0.61 m 

Diameters of the outer coats of thermal insulation of pipelines transporting HTF 0.2–0.8 m 

Figure 1. View of solar cylinder parabolic collectors at the Solar Thermal Power Plant “La Africana”
(“satellite” view from googlemaps.com).
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tower, 6—water storage reservoirs.

The hourly heat supplied by the solar collector system is determined from the follow-
ing energy balance:

qnum = qCPS − qR − qP (kWh), (1)

where qCPS is the heat obtained from all solar collectors in one hour, qR is the heat losses at
the receiver (absorber), and qp is heat losses at heating pipes.

The heat obtained from the entire solar collector installation without heat losses is
given by:

qCPS = nloop·qloop (kWh), (2)

with nloop, the number of loops, and qloop(t) is the hourly heat produced by a single loop.
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Table 1. Description of the elements of the collector field in the Solar Thermal Power Station of te
south of Spain.

Description Value Unit

Number of mirrors in a single solar collector: 28 -
Mirrors surface area in a single solar collector: 68.2 m2

Number of solar collectors: 8064 -
Surface area of all mirrors: 549,965 m2

Number of loops: 168 -
Number of solar collectors included in one loop: 48 -

Number of absorbers: 24,192 -
The length of a single loop: 556.00 m

Absorber diameter 0.07 m
Diameters of pipes transporting HTF 0.1143–0.61 m

Diameters of the outer coats of thermal insulation of
pipelines transporting HTF 0.2–0.8 m

Table 2. Operation parameters of the Solar Thermal Power Station of the south of Spain.

Loop Inlet Temperature Tin 292 ◦C

Loop outlet temperature Tout 392 ◦C
Mass flow through the absorber m 7.06 kg/s

The dynamic viscosity of the HTF in the solar installation µ 0.00017 kg/m/s
Thermal conductivity of the HTF in the solar installation λm 0.0871 W/m/K

HTF density in the solar installation ρ 757.85 kg/m3

Specific heat capacity of the HTF cp 2486.5 J/kg/◦C
External convective heat transfer coefficient from the outside

of the pipe ha 25 W/m2/K

Thermal conductivity of solar thermal insulation λ 0.0871 W/m/K
Collectors thermal efficiency ηCPS 0.47 -
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The heat produced by a loop of collectors is:

qloop = π · Da · Lloop · qw (kWh), (3)
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where Lloop is the length of the absorber in a single loop, Da is the diameter of the absorber,
and qw is the heat flux per 1 m2 of the absorber, that can be calculated by:

qw =
DNI · Am · K · ηendloss · ηshadow · ηopt · Cl

π · Da · LSOL

(
kWh/m2

)
, (4)

where LSOL is the absorber length in a single solar collector, Am is the mirror surface area,
DNI is the direct normal irradiation, ηendloss is the coefficient for the calculation of the
relative end loss, ηshadow is the coefficient for solar shading, ηopt is the optical collector
efficiency for perpendicular sun on collector which is assumed to be 0.75% based on
research from the work [42], Cl is the mean cleanliness factor, while K is the Incident
Angle Modifier.

The Incident Angle Modifier was determined according to the following equation [43]:

K = cos(θi)− 0.000525 · θi − 0.0000286 · θ2
i (5)

where θi is the angle of incidence on the collector, with continuous east–west tracking,
which was determined by the equation [44–47]:

θi = arccos
√

cos2(α) + cos2(δs) · sin2(ω) (6)

α = arcsin[sin(δs) sin(φ) + cos(φ) cos(δs) cos(ω)] (7)

αs = sign(ω)

∣∣∣∣arccos
[

cos(90− α) · sin φ− sin(δs)

sin(90− α) cos φ

]∣∣∣∣ (8)

δs = 23.45 sin(280.11 + 0.984d) (9)

ω = (tsol − 12) · 15◦ (10)

where α is solar altitude angle, αs is the solar azimuth angle, δs is the declination angle, ω
is the hourly angle, tsol is the solar time angle, φ is the latitude, and d is the number of the
day of the year (from 1 for 1 January to 365 for 31 December).

Coefficient for the end loss is determined according to the equation [48]:

ηendloss = 1−
L f tan(θi)

LPTC
(11)

where Lf is the focal length of the parabolic trough collector; LPTC is the length of the
parabolic trough collector.

The solar shading coefficient of the shadow from row to row at low solar altitude is
given by the equation [44]:

ηshadow = |cos(ρi)|
Ls

w
(12)

where Ls is the distance from the center of the two PTCs, w is the aperture width, and ρ is
the sun tracking angle described by the following relationship:

ρ = tan−1
[

cos(αs)

tan(α)

]
(13)

The basic condition for the correct operation of a single loop is to obtain the minimum
temperature of HTF, Tout, at the outlet of a single loop for a nominal mass flow m:

Tout =
qloop

m · cp
+ Tin, (14)

where Tin is the inlet temperature of the HTF at the entrance to the loop.
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If the minimum temperature Tout is not achieved, in the presented simplified model it
was assumed that the qloop is equal to zero. Obtaining the set temperature at the outlet from
the loop is a necessary condition for the correct operation of the solar power plant. In the
case of the analyzed solar power plant, the Tout temperature is in the range of 360–392 ◦C.
An increase in DNI causes an increase in the temperature of the medium in the absorber.
As the temperature of the oil at the outlet of the absorber increases, the mass flow through
a single loop increases (Figure 4a,b). When the maximum temperature at the outlet from
the loop Tout = 392 ◦C is reached, the mass flow reaches the nominal value of 7.06 kg/s. In
the event of a decrease in the Tout temperature in the evening hours (which is associated
with a decrease in DNI), the mass flow decreases to the minimum value m = 0.01 kg/s.
For practical reasons, it was assumed that qloop is equal to zero if the required temperature
Tout = 360 ◦C was not achieved.
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The heat losses of pipelines are determined by the following equation:

qP = ∑N
i=1 Li·qi (kWh), (15)

where Li is the length of pipe i and qi(t) is the heat losses per unit length of this pipe, that is
given by:

qi =
(Tm − Ta)π(

1
2λ ln

(
Di
di

)
+ 1

haDi

)
1000

(kW/m), (16)

with Tm, the medium temperature, Ta, the average-hour outside temperature, di, the
diameters of the pipes, Di, the diameters of the thermal insulation around the pipelines, λ,
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the thermal conductivity of the thermal insulation, and ha, the of the external convective
heat transfer coefficient from the outside of the pipe.

The heat losses in the absorber were estimated based on the SCHOTT PTR®70 Receiver
documentation available on the website of the absorber manufacturer [49]. To determine
heat losses in the absorber, a heat loss curve was used [49] and the loops were divided
into 50 elements. Calculations of heat losses in the absorber were made for the current oil
temperature. Assuming a constant heat flux along the absorber walls, a linear increase in
the average temperature of the medium flowing in the absorber was obtained:

Tm(x) = Tin +
qw·π·Da

m·cp
x (◦C), (17)

where Tm(x) is the temperature which varies with length x of the absorber.

3. Validation of the Presented Model through Heat Measurements in an Existing Solar
Thermal Power Station in Spain

The validation of the presented simplified model for estimating heat production by
parabolic solar collectors was performed by comparing the heat determined from the
Equation (1) with the heat measured in the parabolic solar collectors at a thermoelectric
solar plant in the south of Spain (Solar Thermal Power Plant “La Africana”, Tables 1 and 2)
three selected day from 2019 with different climate conditions: 07/02/2019, 03/22/2019,
and 09/09/2019.

The actual values of direct solar radiation measured in Cordoba were used for the
calculations. In the Solar Thermal Power Station of the south of Spain, the automation of
parabolic solar collectors is equipped with east–west tracking and is characterized by high
percentage tracking performance. Percentage tracking performance [50] is a parameter
that compares the absorbed energy for a given type of tracking in relation to the absorbed
energy of full tracking according to the equation:

Percentage tracking per f ormance = Absorbed energy f or a given type o f tracking
Absorbed energy f or f ull tracking 100 (%) (18)

Figure 5 shows the percentage east–west tracking performance in southern Spain
compared to full tracking mode for the four selected days. East–west tracking is relatively
similar compared to full tracking.
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Solar Thermal Power Station in Spain.

The calculations assumed the mass flow in the range from 5 kg/s to 7.06 kg/s with
the minimum temperature condition (Equation (14)) at the outflow from the loop equal
to 360 ◦C. In fact the flow increases gradually with the increase in direct solar radiation,
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reaches its maximum value equal to 7.06 kg/s and then decreases in the evening with
the decrease in solar radiation. An example of the course of changes in the mass flow
measured on 02/07/2018 in a single loop is shown in Figure 4a,b. It should be noted here
that in practice, solar collectors are used to produce heat for a solar power plant only when
the required temperature at the outlet from the solar system is achieved and at nominal
mass flow.

With these assumptions, the heat flux per square meter of the absorber can be calcu-
lated by Equation (4). Figure 6 shows calculations of this heat flux density together with
DNI for selected days in the Spanish Solar Plant. The maximum unit heat flux is about
25 kW per square meter of the absorber.
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The next stage of model validation consisted in comparing the numerical values of
annual heat q supplied by the solar collector system, calculated by Equation (1), and actual
values measured in Solar Plant for selected days of the year: 22 March 2019, 2 July 2019
and 29 September 2019. The results of this comparison are shown in Figure 7a–c. A good
agreement is found between the measured and calculated values of annual heat supplied
by the collector field for the different dates. This agreement shows the goodness of the
model. The observed differences between these values is caused by the control of the
flow in the absorber by the automatic control system. The simulations in this work were
performed for the flow in the range from 5 kg/s to 7.06 kg/s.

According this comparison, the relative error of the developed model was determined
according to the following relationship:

δqnum =

∣∣∣∣ qreal − qnum

qreal

∣∣∣∣100%, (19)

where qnum is the heat determined from Equation (1) and qreal is the heat measured in the
thermoelectric solar plant in Spain, Cordoba province. Table 3 presents the calculation
results of the model and the actual values of heat produced by parabolic solar collectors
in March, July and September. The calculations also considered the shutdown time of
parabolic solar collectors intended for conservation works and for March, July and Septem-
ber, respectively, 11, 3 and 4 days. The relative error of the presented model for the selected
months did not exceed 7.1%.
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Figure 7. Comparison of heat produced by solar collectors with heat determined from the developed
model the Solar Thermal Power Station in Spain for selected days: (a) 22.03.2019, (b) 02.07.2019,
(c) 29.09.2019.

Figure 8 shows the temperature dependence on the output of a single loop consisting
of 48 solar collectors as a function of the density of DNI and mass flow in the absorber.
With the decrease in mass flow in the absorber and the increase in solar radiation intensity,
the temperature at the outlet from a single loop increases. The minimum temperature at
the outlet of a single loop is 360 ◦C and is achieved for DNI of 450 Wh/m2, 670 Wh/m2

and 905 Wh/m2 for flow rates of 5 kg/s, 7 kg/s and 10 kg/s, respectively. In the case of a
working temperature of 392 ◦C, it is obtained for 680 Wh/m2, 920 Wh/m2 for 5 kg/s and
7 kg/s, respectively. With a mass flow of 10 kg/s, the operating temperature is not reached
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for the maximum DNI. The maximum operating temperature of 400 ◦C is achieved with a
flow of 5 kg/s.

Table 3. Relative Errors of the model in the selected days.

Selected Month
Number of Days in the

Month When Solar
Collectors Were Turned off

Heat Measured
qreal

Heat Determined
from the Model Relative Error

qnum δqnum

MWh MWh %

March 2019 11 22,043 20,508 6.96
July 2019 3 61,076 64,210 −5.13

September 2019 4 43,312 40,249 7.07
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Figure 8. Medium temperature in the absorber at the outlet of a single loop as a function of mass
flow and solar radiation (calculations performed for the conditions in Cordoba).

Figure 9 shows an example of the temperature distribution of the medium flowing
through the absorber as a function of the absorber length for a single loop for a constant
mass flow of 6 kg/s and selected DNI: 1000 W/m2, 800 W/m2, 600 W/m2 and 400 W/m2.
The calculations were made according to the Equation (8). The resulting linear rise in
temperature of the medium in the absorber is typical of the constant condition of the heat
flux along the walls [41] of the absorber.
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The results of calculations of the convective heat transfer coefficient inside the ab-
sorber are presented below. For this purpose, a simplified model of forced convection for
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turbulent flow was used. The local convective heat transfer coefficient is described by the
following equation:

h f =
NuDλ

D
, (20)

where D is the absorber diameter, λ is the conductivity coefficient of the medium, while the
Nusselt number is described by the Dittus–Boelter correlation:

NuD = 0.023Re4/5Pr0.4, Re ≥ 10, 000, 0.6 ≤ Pr ≤ 1600, Pr =
cpµ

λ
, Re =

4m
πDµ

, (21)

where Re is the Reynolds number, while Pr is the Prandtl number.
Figure 10 shows the relationship of convective heat transfer coefficient. The convection

coefficient increases with increasing flow through the absorber. With a nominal flow value
of m = 7.06 kg/s, the convective heat transfer coefficient is 2714 W/(m2K). The determined
value of the convective heat transfer coefficient is relatively high compared to the values
determined in the literature [33,38], which is the result of much larger real Reynolds
numbers in relation to the Reynolds numbers from works [33,38]. Increasing the mass flow
of the medium in the absorber to 10 kg/s increases the convective heat transfer coefficient
by about 24%.
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4. Application of the Model for the Performance Prediction of a Solar Thermal Power
Station Located in a Temperate Climate Location

This chapter presents the results of calculations of heat produced by a system of
parabolic solar collectors for a selected region of temperate climate: in the city of Bialystok
located in the north-eastern part of Poland. The climatic conditions of this localization
are presented in Figure 11 and compared with Spanish conditions. The main differences
with the south of Spain are much lower values of direct solar radiation and temperature,
which is mainly due to the different latitude. The annual value of DNI in Cordoba was
1938 kWh/m2/year, while in the case of Bialystok, the annual DNI is 467 kWh/m2/year.

The correct operation of a thermoelectric power plant depends on the minimum
temperature at the outlet of the solar installation, giving by Equation (14), which is 360 ◦C
for a thermoelectric power plant in Spain in the Cordoba province, therefore two variants
were adopted for the calculations:

• Variant A, the result of the calculations is the heat produced by parabolic solar collec-
tors without considering the minimum temperature at the outlet from a single loop of
48 solar collectors,

• Variant B, the result of the calculations is the heat produced by parabolic solar collec-
tors, considering the minimum temperature at the outlet of a single loop of 48 solar
collectors equal to 360 ◦C.
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In the case of variant A (Figure 12a), the heat generated in the south of Spain by the
presented parabolic collectors is approximately four times greater than in the case of Bia-
lystok (Table 4) Parabolic collectors require direct radiation, which is also four times lower
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in Bialystok compared to South of Spain (Figure 11a). Diffuse solar radiation (Figure 11b)
in Spain and Bialystok is similar but, unfortunately, it does not play a significant role in the
production of heat in the case of concentrating solar collectors.
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Table 4. Annual heat produced by solar collectors in Spain (Cordoba) and Poland (Bialystok).

Region
Case A Case B

Heat (MWh)

South of Spain 528,388 406,383
Poland (Bialystok) 132,536 52,269

In the case of variant B (Figure 12b), the estimated amount of heat generated by
solar collectors in Bialystok is eight times lower than the amount of heat produced by
solar collectors in the south of Spain (Table 4). The greatest differences between the heat
produced in Spain and Bialystok are in the fall and winter months, and the smallest in the
summer. As in variant A, these differences are mainly caused by a small share of direct solar
radiation and low outdoor temperature in Poland compared to southern Spain (Figure 11c).
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Higher temperature of the medium in the absorber and lower temperature outside causes
greater heat losses in the absorber and the solar pipes. In December, the expected heat
production by parabolic solar collectors in Bialystok is close to zero for variant B.

Many publications [18–20,51–54] describe studies of the use of parabolic collectors
for thermoelectric power plants in countries such as Greece, Spain, China and Nigeria,
which are located in the subtropical and tropical climatic zone, i.e., in the area where direct
solar radiation is significant. The territory of Poland is located in a temperate climate zone,
which is not recommended by producers of parabolic solar collectors used to produce heat
for the operation of typical steam turbines.

According to the SCHOTT PTR®70 Receiver brochure [49], the worldwide uses are
divided into four categories: “Excellent”, “Good”, “Satisfactory”, “Unsuitable”. The map
of the use of solar collectors [49] is consistent with the map of annual solar radiation in the
world [55]. Cordoba is in the area marked “Good”, while Bialystok is labelled “Unsuitable”.
The above calculation results using the simplified model confirm this fact. Comparing
the map in SCHOTT PTR®70 Receiver [49] with the map of the distribution of climatic
zones [53], it can be noticed that the best location of parabolic solar collectors is the climate
of the tropical and subtropical zones, excluding parts of South America and Africa with
tropical rainforest.

One solution to increase the heat production of parabolic solar collectors in temperate
climates is to use more collectors in a single loop, which allows for higher heat production
with a lower DNI value. The disadvantages of this solution are additional investment costs,
higher hydraulic losses in the loops and significant fluctuations in the medium flow in
the absorber.

It should be noted that the simplified algorithm based on the forced convection
presented in this paper may be useful for estimating the heat production by solar collectors
in a solar thermal power station under various climatic conditions.

5. Conclusions

A simplified model for evaluation of solar energy gains from PTSTPP was developed
and verified on based on data measurements data. The relative error of the presented
algorithm based on the forced convection for the selected months did not exceed 7.1%, thus
it should be noted that the model can be used to estimate the heat production by parabolic
solar collectors, considering metrological conditions and temperature at the outlet from
the solar installation for different climatic zones. The simplified method of estimating heat
production by parabolic solar collectors presented in this paper may be an alternative to
the most commonly used computer programs, such as SAM, in which simulations are
performed for ready-made diagrams of thermal power plants. The presented method
makes it possible to estimate the heat generated by parabolic solar collectors, regardless
of the typical schemes of a thermal power plant with a part of heat accumulation in
storage tanks and a part related to the production of electricity. The main advantage of the
presented method is the possibility of quick implementation of the presented equations
in spreadsheets.

Thermoelectric plants equipped with parabolic solar collectors are dynamically de-
veloped as alternative energy sources in the area of tropical and subtropical climate. The
results of calculations using a simplified calculation model, which were verified on the
existing thermoelectric plant, indicate that the thermal efficiency of parabolic solar col-
lectors working with standard steam turbines is eight times lower than in the case of the
existing thermoelectric plant in the south of Spain. Therefore, it can be concluded that in the
climatic conditions of Poland, the use of solar plant based on concentrated solar collectors
is not justified. In the opinion of the authors the solution to the problem is the use of
low-temperature technologies, which will be the subject of further research on the viability
of using Parabolic Trough Solar Thermal Power Plants in moderate climate conditions.
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Nomenclature

Am mirror surface area(m2)
Cl mean cleanliness factor
cp specific heat capacity of the HTF (J/kg/◦C)
d number of the day of the year (from 1 for January 1 to 365 for December 31)
di diameters of the pipes (m)
Da absorber diameter (m)
Di diameters of the thermal insulation of the pipelines (m)
DNI direct normal irradiance for hourly values (Wh/m2)
ha external convective heat transfer coefficient from the outside of the pipe (W/m2/K)
hf local convective heat transfer coefficient (W/m2/K)
K Incident Angle Modifier (-)
Lf focal length of the parabolic trough collector (m)
Lloop absorber length in a single loop (m)
LPTC length of the parabolic trough collector (m)
LS distance from the center of the two PTCs (m)
m mass flow rate through the absorber (kg/s)
nloop number of loops (-)
NuD Nusselt number (-)
Pr Prandtl number (-)
qCPS heat obtained from all solar collectors during one hour (kWh)
qloop hourly heat produced by a single loop (kWh)
qnum hourly heat supplied by the solar collector system (kWh)
qP heat losses from heating pipes (kWh)
qR heat loss from the absorber (kWh)
Re Reynolds number (-)
tsol solar time angle (h)
Ta average-hour outside temperature (◦C)
Tin single loop inlet fluid temperature (◦C)
Tm medium temperature (◦C)
Tout single loop outlet fluid temperature (◦C)

Greek symbols
α solar altitude angle (degree)
αs solar azimuth angle (degree)
δS declination angle (degree)
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ηendloss coefficient for the calculation of the relative end loss (-)
ηopt optical collector efficiency for perpendicular sun position (-)
ηshadow coefficient for solar shading (-)
θi angle of incidence on the collector surface (degree)
λ thermal conductivity of the thermal insulation (W/m/K)
λm thermal conductivity of the medium (W/m/K)
µ dynamic viscosity of the HTF in the solar installation (kg/m/s)
ρ sun tracking angle (degree)
φ Latitude (degree)
ω hourly angle (degree)
Abbreviations
CSC Concentrated Solar Collector
HTF Heat Transfer Fluid
PTC Parabolic Trough Collector
PTR Parabolic trough reflector
PTSTPP Parabolic trough solar thermal power plant
PTSF Parabolic trough solar field
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