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Abstract: This paper discusses the use of a stochastic metaheuristic population-based optimization
algorithm known as the sine cosine algorithm (SCA) to design the parameters of a power system
stabilizer (PSS) for damping electromechanical oscillations in a single machine connected to a large
power system. The design of the PSS parameters was formulated as an optimization problem to
minimize the objective function value. The SCA was used to obtain the best values of the PSS
parameters under the objective function. Simulation was carried out by a linearized power system
model. The lead lag controller was used as the PSS structure and the results from that were compared
with those obtained by moth flame optimization and evolutionary programming. The results showed
that the SCA is more effective than are the other techniques in exploration and exploitation to tune
the PSS parameters and enhance the power system stability by damping oscillations in a range of
loading conditions.

Keywords: power system stability; sine cosine algorithm; eigenvalues; objective function; power
system stabilizer parameters; single machine infinite bus

1. Introduction

The main source of electrical power is a synchronous generator. The electric power sys-
tem is complex, and a stable power system operates in equilibrium. In large-interconnected
power systems, the variation in load and generation initiates rotors of synchronous ma-
chines to swing, causing changes in machine rotor angles, terminal voltages, and frequen-
cies that affect the power system equilibrium. Furthermore, the efficiency of alternators,
long transmission lines, distribution lines, and all appliances connected to the power
system are affected by these changing characteristics. After a perturbation, synchronous
machines attempt to regain equilibrium but at different rotor angles. Therefore, oscillations
that are not damped completely may lead to an increase in low frequency oscillations in
power networks, causing problems in system stability and reducing the power transfer
capacity of transmission lines [1–3]. The power system’s low frequency oscillations are
classified into two types, one with local area modes of oscillation that have a frequency
range from 0.8 to 3 Hz and the other with inter-area modes of oscillations that range from
0.2 to 0.7 Hz [4].

The power system stability can be mainly divided into three types, namely, voltage,
angle, and frequency. Voltage stability is the power system’s ability to maintain the
required acceptable voltages at all nodes after perturbation, such as a change in active and
reactive load demands under normal operating conditions. The change in node voltages
due to active and reactive power demands are associated with the rotor angles, and is
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a local phenomenon, but it has widespread effects on a significant portion of the power
system and can lead to voltage collapse. Angle stability is the ability of a power system’s
synchronous machines to remain in a synchronized state or regain synchronism after being
subjected to a physical disturbance. Any variations in load cause changes in rotor speed
of the synchronous generator that further affect the generated output and rotor angle at
different synchronous rotor speeds. Under equilibrium conditions, the rotor speed has
synchronous speed and machines have a balance between electromagnetic and mechanical
torques. Changes in rotor speed, rotor angle, and generated output cause synchronous
machines to have oscillations in power networks due to an imbalance in the mechanical and
electromagnetic torques [1]. Frequency stability is the ability of a power system to maintain
the required, acceptable frequency against large variations in load or generation. These
variations include large loads suddenly being connected to or disconnected from a power
system and large generating units being disconnected by a protection system, creating a
power imbalance between what is delivered by the turbines and what is consumed by the
load [2].

In effectively dampening the electromechanical oscillations, the formulation of the
objective function plays a key role by using a combination of indicators of the power
system. In angle stability analysis, creating an objective function that efficiently locates the
eigenvalues in a more stable region in the complex s-plane is important. The indicators that
assess the angle stability are the damping ratio and a factor of the eigenvalues, determined
from imaginary and real eigenvalues of complex power systems. The angle stability can be
assessed using a damping factor that improves results by shifting eigenvalues towards the
left of the imaginary axis of the complex s-plane using formulations of the maximized real
parts of each eigenvalue as an objective function of minimization. The damping ratio shifts
the eigenvalues towards the real axis of the complex s-plane using formulations of the
minimum damping ratio of each eigenvalue as an objective function of maximization [5].

Proper implementation of damping devices is required to dampen oscillations and
thus maintain or improve the power system’s stability. Different schemes and modelling
approaches have been used for damping, such as power system stabilizers (PSSs), flexible
alternating current transmission systems (FACTS), and coordination control. The PSS
controller, with the excitation system of synchronous machine controls, outputs power by
providing the additional synchronizing torque in phase with speed deviations to dampen
the required oscillations and improve the power angle stability [1,4].

The stability of a system is a primary concern because synchronous machines should
remain in a synchronous state while working with other machines in a group or with
generators of other regions to form large-interconnected power systems. Perturbation in
the system produces low frequency oscillations and affects electrical generation that could
lead to unstable machines that trip other units and collapse the system. Application of a
PSS is a first measure to enhance the small signal stability. A PSS is the preferred method to
improve the power system damping effect [6,7]; its installation is economical and effective
for stabilizing low frequency oscillations within a system [6,8,9].

Different types of FACTS devices—series, shunt, series shunt, and series-series—have
been used to dampen oscillations in power systems through proper design of controllers by
injecting or absorbing reactive power. Two FACTS shunt devices, static VAR compensators
(SVC) and static synchronous compensators (STATCOM), have been used for damping to
enhance small signal stability [10]. A damping performance analysis [11], dynamic control
strategy to improve the power flow capabilities [12], and enhancement of the low voltage
ride through capability in power systems [13] have also been described in the literature. In
coordination control, PSS and FACTS devices with efficient coordination among controllers
have been combined to dampen both types of oscillations in power systems, namely,
local and inter-mode. The coordination control design for the thyristor-controlled series
capacitor (TCSC), SVC, and PSS [14,15] and of the PSS and series capacitive reactance
compensator (SCRC) were used to enhance damping [16]. Furthermore, STATCOM has
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been coordinated with PSS-STATCOM and a unified power flow controller (UPFC), and
UPFC has been coordinated with a PSS [17–20].

Optimization techniques have been widely used to calculate the suitable parameters
of PSS and FACTS-based controllers. The controller parameters are tuned by optimization
techniques, such as conventional, deterministic, heuristic, and hybrid. The heuristic
technique solves the optimization problems using stochastic methods, and its improved
techniques are known as metaheuristic algorithms. Various metaheuristic optimization
techniques have been used to tune parameters of controllers of PSS and FACTS devices [4].
The genetic algorithm (GA) was used to design a robust PSS and a coordinated PSS with
UPFC [21–23]. The particle swarm optimization (PSO) algorithm was used to design a
damping controller [5,24,25], as were cuckoo and BAT optimization algorithms [26,27].
The firefly optimization algorithm was used to design an SVC damping controller [28,29].
Various heuristic algorithms for optimization have used stochastic methods that have
deficiencies in solution convergence. GA and PSO have deficiencies in convergence, that is,
a local minimum stagnation problem. Several proposed methods provide good exploration
in a search space but are limited in exploitation, or vice versa. The main advantage of the
sine cosine algorithm (SCA) is in allowing both exploration and exploitation in a search
space, that is, for the first and second halves of the iterations, respectively.

This research aimed to develop a model of a machine connected to large system and
formulate the objective function based on a maximum damping factor to improve the angle
stability of the power system. The PSS was chosen as the proposed device to improve the
damping capability of the power system. For an efficient control capability of the PSS, the
lead lag controller parameters were optimized. For comparison purposes, the performance
of the PSS lead lag controller was tuned with the SCA and the resulting parameters were
compared with those optimized with moth flame optimization (MFO) and evolutionary
programming (EP) to accurately and effectively predict and assess the angle stability before
a power system collapse.

This study presents the application of metaheuristic optimization algorithms and
the objective function and then proposes a design for a robust controller of the excitation
of a machine-connected infinite bus system. The objective function was formulated as a
maximum value of the real part as an indicator, and the SCA was developed to tune the
lead lag controller parameters. T1, T2, and TW are time constants for phase compensation
and washout of the PSS under different loading conditions to improve damping efficiency
in angle stability for a single machine infinite bus (SMIB) system. For comparison of
optimization techniques, the PSS controller optimized with the SCA method was compared
with the PSS parameters tuned with the MFO and EP algorithms.

In this paper, the small signal stability of a power system was improved by mathemat-
ical modelling of a SMIB and formulation of an objective function based on a maximum
damping factor. The key highlights of the paper are as follows:

• Novel machine parameters utilizing flux in the amortisseur windings are considered
in the proposed model of the SMIB system.

• The proposed SMIB model linearizes the state space model matrix and a 9 × 9 dimen-
sion is obtained that is applied in the eigenvalue analysis.

• The SCA optimization technique shows improvement in exploration and exploitation
processes and finds maxima or minima in the eigenvalue analysis.

• The proposed SCA is validated with the MFO and EP techniques.

The rest of this paper is organized as follows: In Section 2, a mathematical modelling
of the SMIB system and the PSS damping controller parameters for improving damping
capabilities of the controller are described. The formulation of the objection function for
eigenvalue analysis is illustrated in Section 3. An overview of the optimization techniques
is given in Section 4. The results under three loading conditions are presented in Section 5.
Conclusions are presented in Section 6.
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2. Mathematical Model of SMIB System with PSS

Figure 1 shows a simple representation of the SMIB power system, which is used
for stability purposes, in operation. Figure 2 shows a synchronous generator G, with
excitation system, amortisseurs, terminal voltage Et, and a PSS connected to an infinite
bus with voltage EB through transmission lines of impedance Zeq, with RE and XE as
real and imaginary parts, respectively, that is used to design excitation and PSS damping
controllers [1].
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Figure 2. Excitation system with a PSS and AVR.

Then, by using a PSS with a basic structure model including AVR, KA is the exciter
system gain constant and TR is the exciter system constant. KSTAB, T1, T2, and TW are the
gain, time constants for phase compensation, and washout of the PSS, respectively.

Figure 3 shows the block diagram of the SMIB with a PSS, AVR, and exciter. H is the
constant of inertia and KD is the damping torque coefficient. K1, K2, and K4 are machine
constants and K3, K5, and K6 are the SMIB and excitation systems with PSS and AVR
constants.
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Referring to Figure 3, the equations representing the SMIB can be derived as follows:

∆
.

ωr = −
KD
2H

∆ωr −
K1

2H
∆δ− K2

2H
∆ψ f d −

K21

2H
∆ψ1d −

K22

2H
∆ψ1q −

K23

2H
∆ψ2q+

1
2H

∆Tm (1)
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∆
.
δ= 2π fo∆ωr (2)

∆
.
ψ f d= A32∆δ + A33∆ψ f d+A34∆ψ1d+A35∆ψ1q+A36∆ψ2q+b32∆ψ f d (3)

∆
.
ψ1d= A42∆δ + A43∆ψ f d+A44∆ψ1d+A45∆ψ1q+A46∆ψ2q (4)

∆
.
ψ1q= A52∆δ + A53∆ψ f d+A54∆ψ1d+A55∆ψ1q+A56∆ψ2q (5)

∆
.
ψ2q= A62∆δ + A63∆ψ f d+A64∆ψ1d+A65∆ψ1q+A66∆ψ2q (6)

where δ is the rotor angle;ω is the rotor speed; ψ f d is the field flux; ψ1d is the flux due to
the d-axis amortisseur; ψ1q is the flux due to the q-axis first amortisseur; and ψ2q is the flux
due to the q-axis second amortisseur. Referring to Figure 2, the equations representing the
excitor with the AVR and PSS are as follows:

∆
.
v1=

K5

TR
∆δ+

K6

TR
∆ψ f d +

K61

TR
∆ψ1d +

K62

TR
∆ψ1q +

K63

TR
∆ψ2q −

1
TR

∆v1 (7)

∆
.
v2= KSTAB

(
∆

.
ωr )−

1
TW

∆v2 (8)

∆
.
vs =

T1

T2

(
∆

.
v2
)
+

1
T2

∆v2 −
1
T2

∆vs (9)

The system in Figure 3 linearized with state space model is given by:

.
x = Ax + Bu (10)

.
x=

[
∆

.
ωr ∆

.
δ ∆

.
ψ f d ∆

.
ψ1d ∆

.
ψ1q ∆

.
ψ2q ∆

.
v1 ∆

.
v2 ∆

.
vs
]

(11)

x= [∆ωr ∆δ ∆ψ f d ∆ψ1d ∆ψ1q ∆v1 ∆v2 ∆vs] (12)

u =

[
∆Tm
∆E f d

]
(13)

A =



−KD
2H − K1

2H − K2
2H −K21

2H −K22
2H −K23

2H 0 0 0
2π fo 0 0 0 0 0 0 0 0

0 A32 A33 A34 A35 A36 0 0 0
0 A42 A43 A44 A45 A46 0 0 0
0 A52 A53 A54 A55 A56 0 0 0
0 A62 A63 A64 A65 A66 0 0 0
0 K5

TR

K6
TR

K61
TR

K62
TR

K63
TR

− 1
TR

0 0
−KD

2H KSTAB − K1
2H KSTAB − K2

2H KSTAB −K21
2H KSTAB −K22

2H KSTAB −K23
2H KSTAB 0 − 1

TW
0

− T1
T2

KD
2H KSTAB − T1

T2

K1
2H KSTAB − T1

T2

K2
2H KSTAB − T1

T2

K21
2H KSTAB − T1

T2

K22
2H KSTAB − T1

T2

K23
2H KSTAB 0 − T1

T2
1

TW
− 1

T2


(14)

B =



1
2H 0
0 0
0 ωo

ladu
R f d

0 0
0 0
0 0
0 0

KSTAB
2H 0

T1
T2

KSTAB
2H 0


(15)

A32 = −
ωoR f dm1 ĺads

l f d
(16)
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A33 = −
ωoR f d

l f d

(
1− ĺads

l f d
+ m2

..
lads

)
(17)

A34 = −
ωoR f d

l f d

(
− ĺads

l f d
+ m3

..
lads

)
(18)

A35 = −
ωoR f dm4

..
lads

l f d
(19)

A36 = −
ωoR f dm5

..
lads

l f d
(20)

A42 = −ωoR1dm1
..
lads

l1d
(21)

A43 = −ωoR1d
..
lads

l1d

(
m2 −

1
l f d

)
(22)

A44 = −ωoR1d
l1d

(
..
ladsm3 −

..
lads
l1d

+ 1

)
(23)

A45 = −ωoR1dm4
..
lads

l1d
(24)

A46 = −ωoR1dm5
..
lads

l1d
(25)

A52 = −
ωoR1qn1

..
laqs

l1q
(26)

A53 = −
ωoR1qn2

..
laqs

l1q
(27)

A54 = −
ωoR1qn3

..
laqs

l1q
(28)

A55 = −
ωoR1q

l1q
(1−

..
laqs

l1d
+n4) (29)

A56 = −
ωoR1q

..
laqs

l1q
(n5−

1
l2q

) (30)

A62 = −
ωoR2qn1

..
laqs

l2q
(31)

A63 = −
ωoR2qn2

..
laqs

l2q
(32)

A64 = −
ωoR2qn3

..
laqs

l2q
(33)

A65 = −
ωoR2q

..
laqs

l2q

(
n4 −

1
l1q

)
(34)

A66 = −
ωoR2q

l2q

(
..
laqsn5 −

..
laqs

l2q
+ 1

)
(35)
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K21, K22, and K23 are machine constants and K61, K62, and K63 are the SMIB and
excitation system with PSS and AVR constants. The SMIB equations can be expressed in a
d-q refence frame of the machine. The currents in the d-axis and q-axis of the machine in
terms of state variables ψ f d and δ and their perturbed values can be written as follows:

∆id= m1∆δ + m2∆ψ f d (36)

∆iq= n1∆δ + n2∆ψ f d (37)

where m1 = EB(XTqsinδo−RTcosδo)/D, n1 = EB(RTsinδo − XTdcosδo)/D, m2 =
XTq Lads

D(Lads+L f d)
,

n2 = RT Lads
D(Lads+L f d)

, RT = Ra + RE, XTq = XE + Xqs, XTd = XE + X́ds, and D = R2
T + XTqXTd.

The perturbed values of electrical torque and field current are obtained from the
perturbed values currents ∆id and ∆iq. Lads and Laqs are saturated values of mutual
inductances. The change in mechanical torque is zero with constant mechanical input
torque.

∆Te= K1∆δ + K2∆ψ f d (38)

where K1 = n1(ψado + Laqsido) − m1(ψaqo + ĺadsiqo) and K2 = n2(ψado + Laqsido) − m2(ψaqo +

ĺadsiqo) + ĺads
L f d

iqo.
In the small signal performance analysis, a difference is noted between saturation

and incremental saturation for perturbed values of currents and flux linkages. The term
saturation is related to total flux linkages and current and incremental saturation is related
to the perturbed values of currents and flux linkages. The expressions for K3 and K4 are as
follows:

K3
Lads + L f d

Ladu

(
1 +

(
Xd − X́d

)XTq
D

) (39)

K4
m1Lads

Lads + L f d
(40)

The effect of field flux on the system stability with a constant field voltage and a
perturbed ∆ψ f d is zero, so the field flux changes due to feedback of ∆δ through K4, showing
a demagnetizing effect of the armature reaction. The rotor angle variations with changes in
air gap torque due to field flux changes are given as follows:

∆Te

∆δ
= −K2K3K4

1 + sT3
(41)

The perturbed linkage field flux, ∆ψ f d, affects the damping torque and synchronizing
torque components and depends on the oscillating frequency as follows:

• Operating in a steady state and having very low oscillating frequencies. The armature
reaction introduces a negative synchronizing torque, and when its value exceeds
K1∆δ, the system become monotonically unstable and the steady state stability limit is
reached at K1 = K2K3K4.

• Operating at much higher oscillating frequencies than 1
T3

. The component of the air
gap torque due to ∆ψ f d is in phase with ∆ω and leads by 90

◦
from ∆δ. ∆ψ f d introduces

a positive damping torque component.
• Operating at a 1 Hz oscillating frequency. ∆ψ f d introduces a negative synchronizing

torque component and positive damping torque component. The collective effect is to
increase the damping torque and reduce the synchronizing torque. When K4 remains
positive, ∆ψ f d introduces a positive damping torque component due to the armature
reaction. K4 is negative on two conditions: (1) when the hydraulic generator without
damper windings is operating at a light load and connected with high resistance to
the reactance ratio line of a large system or (2) when the hydraulic generator is partly
supplied by a large, local, connected load and partly supplied by a remote generator
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set. In this condition, induced torques are out of phase with ∆ω and yield a negative
damping.

Next, we outline the effect of an excitation system on the damping torque and syn-
chronizing components. Referring to the block diagram in Figure 3, the equations of ∆ψ f d
with the AVR and change in air gap torque due to ∆ψ f d are as follows:

∆ψ f d= −
K3{(1 + sTR) + K5KA}

s2T3TR + s(T3 + TR) + 1 + K3K6KA
∆δ (42)

∆Te = K2∆ψ f d (43)

With the AVR action, the effects of the perturbed linkage field flux ∆ψ f d, the damping
torque, and synchronizing torque components depend on constant K5 (negative) and
oscillating frequency.

• Steady state synchronizing torque coefficient.

∆Te= −
K2K3(K4 + K5KA)

1 + K3K6KA
∆δ (44)

The effect of the AVR is to increase the synchronizing torque components at a steady
state by compensating for the effect of the armature reaction. When K5 is positive, the AVR
reduces the steady state synchronizing torque component.

• The damping torque and synchronizing torque components at oscillating frequency.
When K5 is negative for high values of the external system reactance and high genera-
tor outputs, the AVR increases the synchronizing torque component and reduces the
damping torque component. The net synchronizing torque and damping torque are
given as follows:

KS= K1+Ks(∆ψ f d)
(45)

KD = KD(∆ψ f d)
(46)

With KA equal to zero, the only source of ∆ψ f d is the armature reaction. KD reduces
the increase of KA. The net damping is zero and ∆ψ f d is in phase with ∆δ when KA is
infinite. When K5 is positive for low generator output and low values of external system
reactance, the effect of the excitation system is to introduce a positive damping torque
and negative synchronizing component torque. When K1 has a high value, the net KS is
greater than zero. However, the exciter introduces negative damping. The design of the
exciter controller with a high response is meant to provide a compromise that results in
sufficient damping and synchronizing torque components in the expected range of system
operating conditions. An effective method to meet the incompatible exciter performance
requirements regarding system stability is the use of a power system stabilizer (PSS).

The PSS produces a component air gap torque in phase with the rotor speed deviation;
see the block diagram machine with excitation and a PSS shown in Figures 2 and 3. The
PSS provides pure damping torque at all oscillating frequencies in a system by phase
compensation for the phase lag between the air gap torque and exciter input. The ∆ψ f d
due to the PSS, by neglecting TR, is given as follows:

∆ψ f d

∆vs
=

K3KA
sT3 + 1 + K3K6KA

(47)

The PSS phase compensation introduces damping torque at any rotor oscillating
frequency, KSTAB determines the amount of damping required, and the washout block
decides the PSS responses only to the change in rotor speed. The PSS ensures the overall
system stability.

The effect of amortisseurs is to increase the damping ratio with a slight increase in
frequency. This increase in frequency indicates an increment in synchronizing torque.
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The effect of AVR is to introduce negative damping. The system is unstable for all
higher values of KA (above 14). The damping of the rotor angle mode increases by increas-
ing the PSS gain and slightly decreasing in synchronizing torque [1,30]. Comprehensive
calculation of the system in Figure 3 and values of perturbed terminal voltage, air gap
torque, transfer function of exciter with the AVR, field and mutual flux linkages neglecting
stator transients, current variations in d-axis and q-axis, internal rotor angle, and saturation
factor values for a synchronous generator can found in references [1,30].

3. Analysis of Eigenvalues

This research assesses the angle stability using eigenvalue analysis. Eigenvalues
with more negative than positive signs represent a more stable system. An eigenvalue
consists of real and imaginary parts, which have both oscillatory and exponential decay
modes if the system is stable. Exponential decay corresponds to a negative real value of
an eigenvalue and an imaginary value of the eigenvalue corresponds to an oscillatory
nature. The conjugate complex pair of eigenvalues represents the oscillatory mode. The
imaginary part of the conjugate complex eigenvalue represents the frequency of oscillation
in the power system. The damping ratio is the ratio between the negative real value of a
complex eigenvalue to the square root of the sum of the square of the real and imaginary
values of the complex eigenvalues. Any change in damping ratio affects the power system
stability. Specifically, the power system stability increases as the damping ratio increases
and shifts towards larger negative real eigenvalues in the left half of the complex s-plane.
The eigenvalues can be derived from the linearized state space model matrix (A) of the
system by using Equation (36):

λj = eig(A) (48)

where j = 1,2, 3 . . . n, n is equal to state variables in the system and eig is a built-in
function in MATLAB. The objective function formulated to minimize the damping factor is
Minimize;

f = max
{

real
(
λj
)}

(49)

Three parameters of the PSS lead lag, T1, T2, and TW , need optimization subject to the
following power system stabilizer parameters:

T1,pass,min ≤ T1,pass ≤ T1,pass,max
T2,pass,min ≤ T2,pass ≤ T2,pass,max
TW ,pass,min ≤ TW ,pass ≤ TW ,pass,max

4. Metaheuristic Optimization Techniques

Heuristic optimization algorithms are nature inspired and find the solution through
trial and error by using stochastic methods. Metaheuristic algorithms are the improved
version of heuristic algorithms; they are developed on the basis nature-inspired events.
These optimization techniques are more flexible, robust, and do not need to predict the
initial solution. The optimization techniques implemented in this paper are outlined in this
section [4]:

4.1. Overview of the SCA Algorithm

This SCA is a nature-inspired stochastic population-based optimization metaheuristic
technique developed by Mirjalili; sine and cosine functions in mathematics find applications
in nature [31]. SCA initializes a search randomly and each candidate solution is updated
using Equation (38):

Xt+1
i,j =

 Xi,t + rt
1 sin r2,j

∣∣∣r3,jXt
d,j − Xt

i,j

∣∣∣, i f r4,j < 0.5

Xj,t + rt
1 cos r2,j

∣∣∣r3,jXt
d,j − Xt

i,j

∣∣∣, i f r4,j ≥ 0.5
(50)
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where Xi,t and Xi,t+1 represent the ith solution vector at tth and (t + 1)th solution at the
(t + 1) iteration, respectively; Xt

d,j is the best solution in each iteration; r4,j is a random
number in the range 0–1; r2,j is a random number between 0 and 2π, deciding the direction
of the solution either towards or away from the current one; rt

1 is the random number
that defines control of the exploration and exploitation in the search using the equation
rt

1 = 2 − 2 × ( t
tmax.

), where tmax is the maximum number of iterations that a user needs; t is
the current generation number; rt

1 provides exploration for the first half of the iterations
and exploitations for the second half; r3,j is the random number that provides the weight
to Xt

d,j to find the best solution by needful exploration and exploitation in a random search
space. Figure 4 shows the flowchart of the SCA.

Energies 2021, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. Flow chart of the SCA. 

4.2. Overview of the MFO Algorithm 
Moths are insects similar to butterflies and have special navigation methods while 

moving at night using moonlight. Moths move towards the destination by adapting a 
mechanism called transverse orientation for navigation, maintaining a fixed angle with 
the light source and taking a spiral path around and towards the light source. Moths’ 
flight behavior was modelled mathematically to propose the MFO algorithm. MFO is me-
taheuristic; it starts by defining parameters and then generates moths randomly, calcu-
lates the position of each moth, and tags the best solution with respect to the light source 
(flame). The next positions of the moths are updated depending on the spiral path func-
tion to obtain better positions with respect to the light source. This process, updating next 
positions and tagging the best solutions with respect to flame, is repeated and terminated 
when the criteria are satisfied (after obtaining the best solution). Figure 5 shows the 
flowchart of the MFO algorithm [32]. 

MFO has three main steps. First, the initial population of moths is generated. Second, 
the moth positions are updated. Third, the number of flames is updated. 

In the first step, generating the initial population of moths assumes that each moth 
can move in multidimensional space. The set of moths in matrix form is: 

M = ൦ܯଵଵ ଵଶܯ ⋯ ଶଵܯଵௗܯ ଶଶܯ ⋯ ⋮ଶௗܯ ⋮ ⋮ ௡ଵܯ⋮ ௡ଶܯ ⋯ ௡ௗ൪ (51)ܯ

Figure 4. Flow chart of the SCA.

4.2. Overview of the MFO Algorithm

Moths are insects similar to butterflies and have special navigation methods while
moving at night using moonlight. Moths move towards the destination by adapting a
mechanism called transverse orientation for navigation, maintaining a fixed angle with the
light source and taking a spiral path around and towards the light source. Moths’ flight be-
havior was modelled mathematically to propose the MFO algorithm. MFO is metaheuristic;
it starts by defining parameters and then generates moths randomly, calculates the position
of each moth, and tags the best solution with respect to the light source (flame). The next
positions of the moths are updated depending on the spiral path function to obtain better
positions with respect to the light source. This process, updating next positions and tagging
the best solutions with respect to flame, is repeated and terminated when the criteria are
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satisfied (after obtaining the best solution). Figure 5 shows the flowchart of the MFO
algorithm [32].
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MFO has three main steps. First, the initial population of moths is generated. Second,
the moth positions are updated. Third, the number of flames is updated.

In the first step, generating the initial population of moths assumes that each moth
can move in multidimensional space. The set of moths in matrix form is:

M =


M11 M12 · · · M1d
M21 M22 · · · M2d

...
...

...
...

Mn1 Mn2 · · · Mnd

 (51)

where n represents the number of moths and d represents the dimension in space. For all
moths, the fitness values are stored in an array.

OM =


OM1
OM2

...
OMn

 (52)
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The matrix for flames in d-dimensional space is:

F =


F11 F12 · · · F1d
F21 F22 · · · F2d
...

...
...

...
Fn1 Fn2 · · · Fnd

 (53)

For all flames, the fitness values are stored in an array.

OF =


OF1
OF2

...
OFn

 (54)

Second, the moth positions are updated using three functions to converge the global
optimal,

MFO = (I, P, T) (55)

where I is the initial location of the moth in the search space, P is the motion of the moth
in the space, and T is the termination of the search. The following equation represents
function I.

M (i, j) = (ub(i) − lb(j)) *rand () + lb(i) (56)

where ub and lb are the upper and lower bounds of the variable, respectively. The MFO
algorithm logarithmic spiral equation guarantees the exploration and exploitation of the
moth near the flame in the search space, as:

S(Mi , Fj) = Di·ebt·cos(2πt)+ Fj (57)

where Di is the distance between the i-th moth and j-th flame, b is the spiral shape, and t
is a number between −1 and 1. Third, the number of flames is updated, highlighting the
exploitation of the MFO algorithm by decreasing the number of flames to overcome the
issue.

Flame no = round
(

N − l
N − l

T

)
(58)

where N is the maximum number of flames, l is the current iteration number, and T is the
maximum number of iterations.

4.3. Evolutionary Programming Algorithm

The EP technique is based on biological evolution to find an optimal solution in a
search space for complex engineering problems. The EP algorithm has six main steps:
initialization by generation of a random solution; mutation using a Gaussian random
variable; calculation of the maximum, minimum, and average fitness; determination of the
best solution and combinations; selection of a higher candidate for the next generation; and
termination of the process after the criteria are satisfied. Figure 6 shows the flow chart of
the EP algorithm [30].
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5. Results and Discussion

In this study, simulations of a SMIB power system using SCA, MFO and EP techniques
were carried out in MATLAB. Table 1 shows the three PSS parameters T1, T2, and TW under
three different loading conditions, optimized until the minimum value of objective function
was obtained.

Table 1. Cases with the loading conditions.

Cases
Loading Condition (P, Q)

Active Load, P (p. u) Reactive Load, Q (p. u)

case 1 P = 0.9 Q = 0.3
case 2 P = 0.5 Q = 0.5
case 3 P = 0.2 Q = 0.7

Four different approaches are discussed as follows:

1. SMIB system with an unoptimized PSS (PSSU)
2. SMIB system with a PSS optimized by the sine cosine algorithm (PSS-SCA)
3. SMIB system with a PSS optimized by the moth flame optimization (PSS-MFO)
4. SMIB system with a PSS optimized by evolutionary programming (PSS-EP)

Table 2 shows the generator, transmission line, exciter, and PSS parameters, where
H is the constant of inertia; Et is the terminal voltage; Xd’, Ra, Xd, Xq, and Td0’ are,
respectively, the transient reactance, armature resistance, d-axis reactance, q-axis reactance,
and the circuit field time constant of the generator; Ksd and Ksq are synchronizing torque
coefficients in the d-axis and q-axis of the generator field, respectively; Re and Xe are
resistance and reactance of the transmission line, respectively; XL is load reactance; KA
and TR are exciter gain and time constants, respectively; and KSTAB is a gain constant of
the PSS.
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Table 2. Parameters for the SMIB and the PSS.

Components List of Parameters

Generator
H = 3.5, Et = 1 < 36

◦
, Xd’ = 0.3, Ra = 0.003,

Xd = 1.81, Xq = 1.76, Td0’ = 8, Ksd = 0.8491,
Ksq = 0.8491.

Transmission line Re = 0, Xe = 0.65, XL = 0.16
Exciter and PSS KA = 200, TR = 0.02, KSTAB

Figure 7 shows the responses of the rotor angle deviation in the phase plane comparing
PSS-SCA, PSS-MFO, PSS-EP, and PSS-U for case 1. The PSS-SCA system had the shortest
damping time, approximately 1.8 s, and the smallest oscillation rate and damping perfor-
mance of the SMIB system compared with those of the other approaches. PSS-MFO and
PSS-EP followed with damping before 1.9 s and then PSS-U with damping before 5 s. The
PSS-EP system required the fewest iterations (20–30) to converge on the minimum value
objective function compared with those needed by the other approaches. The PSS-SCA and
PSS-MFO systems required 75–150 iterations to converge on the solutions. The proposed
method provided the maximum value of the objective function with only a little constraint
to computational efficiency.
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All eigenvalues are on the negative side of the complex s-plane, showing the stable
condition of all systems for case 1, as shown in Figure 8. The eigenvalues of PSS-SCA are
on the left-most of the imaginary axis of the s-plane and are shifted towards the real axis of
the s-plane compared with those of the other techniques.

Table 3 shows the PSS parameters, T1, T2 and TW, of the lead lag controller tuned
by the three optimization techniques with a minimum objective function for case 1. This
shows that the proposed PSS-SCA technique can tune the PSS parameters with a minimum
objective function and stabilize the signal in a small system.
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Table 3. Comparison of PSS-SCA, PSS-MFO, PSS-EP, and PSS-U for case 1.

Type Tw T1 T2 Objective Function

PSS-SCA 0.4884 0.4327 0.2087 −2.0298
PSS-MFO 0.4886 0.4330 0.2122 −2.0294

PSS-EP 0.4886 0.4351 0.2167 −2.0292
PSS-U 1.5 0.2 0.05 −0.6881

Figure 9 shows the responses of rotor angle deviation in the phase plane comparing
PSS-SCA, PSS-MFO, PSS-EP, and PSS-U for case 2. The PSS-SCA had the shortest damping
time, approximately 2.6 s and the smallest oscillation rate and damping performance of
the SMIB system compared with those of the other approaches. PSS-MFO and PSS-EP
showed damping before 2.7 s and PSS-U before 6 s. The PSS-EP system required the fewest
iterations (18–24) to converge on the minimum value objective function compared with
those needed by the other approaches. The PSS-SCA and PSS-MFO systems required
52–130 iterations to converge on the solutions. The proposed method provided a maximum
value of the objective function with only a little constraint to computational efficiency.

All eigenvalues are on the negative side of the complex s-plane, showing the stable
condition of all systems for case 2, as shown in Figure 10. The eigenvalue of PSS-SCA is
on the left-most of the imaginary axis and is shifted towards the real axis of the s-plane as
compared with those of other techniques such as PSS-MFO, PSS-EP, and PSS-U.

Table 4 shows the PSS parameters, T1, T2 and TW , of the lead lag controller tuned by
the three optimization techniques with the minimum objective function for case 2.

Figure 11 shows the responses of the rotor angle deviation in phase plane comparing
PSS-SCA, PSS-MFO, PSS-EP, and PSS-U for case 3. The PSS-SCA system had the shortest
damping time, approximately 2.9 s, and the smallest oscillation rate and damping per-
formance of the SMIB system compared with those of the other approaches. PSS-MFO
and PSS-EP followed with damping before 3 s and then PSS-U with damping before 10 s.
The PSS-EP system required the fewest iterations (16–25) to converge on the minimum
value objective function compared with those of the other approaches. The PSS-SCA and
PSS-MFO systems required 60–130 iterations to converge on the solutions. The proposed
method provided the maximum value of objective function with only a little constraint to
computational efficiency.
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Table 4. Comparison of PSS-SCA, PSS-MFO, PSS-EP, and PSS-U for case 2.

Type Tw T1 T2 Objective Function

PSS-SCA 0.4324 1.1595 0.3583 −1.7267
PSS-MFO 0.4472 1.1022 0.3513 −1.7262

PSS-EP 0.5868 0.7875 0.2826 −1.6269
PSS-U 1.5 0.2 0.05 −0.6812
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All eigenvalues are on the negative side of the complex s-plane that show the stable
condition of all systems for case 3, as shown in Figure 12. The eigenvalue of PSS-SCA is
on the left-most of the imaginary axis and is shifted towards the real axis of the s-plane as
compared with those of the other techniques PSS-MFO, PSS-EP, and PSS-U.

Table 5 shows the PSS parameters, T1, T2 and TW, of the lead lag controller tuned by
the three optimization techniques with the minimum objective function for case 3.

Table 5. Comparison of PSS-SCA, PSS-MFO, PSS-EP and PSS-U for Case 3.

Type Tw T1 T2 Objective Function

PSS-SCA 0.4858 3.8352 0.4601 −1.4738
PSS-MFO 0.4783 3.9594 0.4618 −1.4737

PSS-EP 0.6201 2.6964 0.3870 −1.4012
PSS-U 1.5 0.2 0.05 −0.4298
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6. Conclusions

This study discussed modelling and optimization techniques for solving the problem
related to small signal stability of an SMIB system and the effectiveness of the objective
function in tuning the PSS lead lag controller parameters to improve the angle stability of
an SMIB system. The power system stability efficiency improved by increasing the safety
margin through the application of a maximum eigenvalue as the objective function. A
linearized state space model was developed to determine the eigenvalues mode associated
with low frequency oscillations. The application of optimization techniques moved the
eigenvalues further towards the left side of the imaginary axis and towards the real
axis line of the complex s-plane. Comparison of the optimization techniques based on
three cases for the PSS lead lag controller using maximum eigenvalues as the objective
functions revealed the PSS-SCA could enhance the safety margin and improve the stability
performance. Compared with the MFO and EP techniques, the SCA optimization technique
obtained better calculations of the optimal parameters to enhance the capability of the
damping controller. From the perspective of iterations, EP converged with the fewest
iterations, i.e., 16–30 iterations, followed by the SCA and MFO techniques that converged
at 52–150 iterations. Despite the large iteration number, the number of iterations using
the SCA approach was still minimal and acceptable. In conclusion, the SCA optimization
technique obtained better calculations of the optimal parameters to enhance the capability
of the damping controller compared to those achieved with the MFO and EP techniques.
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