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Abstract: The paper presents the results of laboratory studies on the strength–strain properties of
shales representing four siltstone-claystone lithostratigraphic units occurring in the Baltic Basin.
Laboratory studies in a triaxial stress state were conducted as single failure tests on cylindrical
samples oriented parallel and perpendicular to lamination within the rocks. Mutually perpendicular
samples were cut out from the same drill core sections in order to determine mechanical anisotropy.
Samples oriented parallel to lamination were characterised by values of the static Young’s modu-
lus twice as high as from samples oriented perpendicular to lamination. Similar variability was
observed in the case of maximum differential stress values and Poisson’s ratio. Samples parallel
to lamination registered notably lower axial strains, which influenced increased values of Young’s
modulus and Poisson’s ratio. The rocks studied are characterised by VTI type (vertical transverse
isotropy) internal anisotropy of the rock matrix, which significantly influences the anisotropy of their
geomechanical properties.
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1. Introduction

In the last twenty years, the dynamic development of geomechanics has made a
significant contribution to the research field of prospecting and exploitation of unconven-
tional hydrocarbons [1]. Technological development, most notably 3D seismic horizontal
drilling and multi-stage hydraulic fracturing, is crucial for successful unconventional gas
extraction [2,3]. Geomechanical properties of gas shales have emerged as being critical
factors in drilling and production [4,5]. Economic factors are also important during the
exploitation of unconventional hydrocarbons. The creation of financial models and the
assessment of prices are crucial for the cost-effective exploitation of gas [6]. Challenges
related to this development have led to a significant increase in attention to geomechanical
models of rock massif [7–10], with these models used more frequently during planning,
drilling, and exploration of reservoirs [11].

In shale gas reservoir development, a key step toward optimizing both stimulation
and production stages is to evaluate elastic-plastic and visco-elastic-plastic properties,
including the detailed treatment of anisotropy and rock strength [12–16], as these influence
the success of hydraulic fracturing and fracture response during the stimulation and
production stages, respectively [17–20]. Hydraulic fracturing treatments significantly affect
the cost of oil and gas extraction from unconventional reservoirs and their global prices.
Thus, making decisions on the execution of hydraulic fracturing projects requires a higher
level of integration of technical, commercial, and uncertainty analyses [21].

One of the critical aspects of the primary activities in drilling design includes ge-
omechanical studies of rock material in the reservoir and the surrounding rocks. Results
obtained during geomechanical studies allow for defining crucial parameters (strength,
elastic moduli) for determining the optimal orientation of the horizontal section of the
drilling [22–24], design of the hydraulic fracturing process [25,26], and assessment of
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borehole stability [27–30]. All these elements contribute to a better assessment of the
effectiveness of making the deposit available and allow for more economically viable
exploitation of natural gas accumulated in shale complexes.

A distinctive feature of shales is a heterogeneity [27], which causes significant
anisotropy. Strong mechanical anisotropy is affected by the lamination of clay miner-
als [31–33], the content of organic matter [34–37], and thermal maturity [38,39]. Moreover,
anisotropy is caused by stress-induced preferential closure of fractures and microcracks as
well as fractures created in paleo-stress environments [22,40].

Anisotropy is usually determined through a series of triaxial compression tests on
rock specimens cored in different directions i.e., 0◦, 45◦, 60◦, and 90◦ [27]. Another useful
method for determining textural anisotropy and stress-induced anisotropy is the ultrasonic
investigation of shale samples [41–44]. Ultrasonic methodology was used by Hornby [45] to
analyse of influence of porosity and confining pressure on quantity of anisotropy. Ultrasonic
velocity anisotropy in the rock provides information of variability of the dynamic elastic
moduli in modern geomechanics. For example, Moska et al. [46] calculated the Young’s
modulus and Poisson’s ratio from wave velocities and used these dynamic elastic moduli
to determine the brittleness index, which is typically used to predict rock susceptibility for
hydraulic fracturing.

Sone and Zoback [12,13] analysed the anisotropy from the difference in how the far-
field stress is distributed (stress partitioning) to the constituent minerals, depending on the
loading direction of treated shales as a mixture of soft (clay and organic matter) and stiff
(quartz, feldspars, carbonates) components distributed in fine horizontal layers. Sone and
Zoback [13] quantified the stress-partitioning to analyse the shale elastic anisotropy and to
determine the one-dimensional creep behaviour under uniaxial loading. Trzeciak et al. [47]
extended parameters, describing creeping to three dimensions in order to construct shale
creep constitutive relations that are more directly applicable to geomechanical field prob-
lems. Furthermore, Rybacki et al. [48] consider that long-term creep experiments are
required to estimate in situ stress anisotropy and the “healing behavior” of hydraulically
induced fractures.

This paper presents the strength–strain parameters of shales from the Baltic Basin. The
study was focused on determining the mechanical properties of siltstones and claystones,
which are significant for gas exploitation from unconventional resources in Poland. It is the
first time that the detailed mechanical properties of Baltic shales have been published for
that scale. Available papers, so far, describe investigations performed on limited numbers
of samples for selected formations only. Baltic shales are extremely variable, so calculating
strength–strain parameters and determining anisotropy based only on two samples is not
representative for all Baltic shale formations [47]. This work presents the results of 44
strength–strain tests. Each formation is represented by a few samples. Cutting out the
samples with a diameter of 1.5 in, perpendicular and parallel to lamination from the same
section of the drill core, is also novel. Laboratory geomechanical analyses include also
the analysis of mechanical anisotropy based on an assessment of elastic parameters of the
studied rocks. Understanding anisotropy and its causes is very important for the correct
interpretation of seismic studies and microseismic monitoring [49–53].

2. Materials and Methods

Laboratory analyses were performed on siltstone-claystones (shales), whose sedi-
mentation took place in the early Palaeozoic Baltic Basin (Figure 1). These rocks are
characterised by a high content of clay minerals [54], a significant contribution of organic
matter [55,56], and low permeability [57,58]. Due to low permeability of the shales, hy-
draulic fracturing is performed within them [59–64]. Hydraulic fracturing causes the
development of a dense network of fractures and fissures in the fractured rock layer, allow-
ing for the exploitation of shale gas [16–19,65]. Hydraulic fracturing is the most common
fracture stimulation technique. However, this procedure causes significant environmental
problems, such as groundwater contamination [66], wastewater treatment [66], air pollu-
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tion [67], and clay expansion. In contrast, liquid nitrogen (LN2) fracking is considered
as one of the best alternatives compared to hydraulic fracturing due to its eco-friendly
nature [68]. The contact of LN2 with rock samples sharply decreases the temperature of
the rock, thereby resulting in a large number of microcracks and causing an improvement
in the pore structure and connectivity. The most striking characteristic of liquid nitrogen
fracturing is the supercryogenic characteristic of the fluid, which poses greater damage to
the shale in comparison to other conventional fracturing technologies [69].
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Figure 1. Location of the analysed shale gas boreholes (green dots) with regard to (A) lower Paleozoic
Baltic Basin (CDF—Caledonian Deformation Front, TTZ—Teisseyre-Tornquist Zone [70]), modified,
and (B) lower Paleozoic sedimentary basins and area covered by Upper Ordovician and lower
Silurian shales (PWZ—Płock-Warsaw Zone, BNZ—Biłgoraj-Narol Zone, EEC—East European Craton,
TESZ—Trans-European Suture Zone [71]), modified.

Drill cores, from which the samples were cut out for the analyses, came from three
boreholes in northern Poland: B-1, M-1, and W-1. The samples were cut out from drill cores
collected from various depths in the range of 3600–4000 m. The samples were collected from
lithostratigraphic units representing the Upper Ordovician (Sasino Claystones Formation)
and lower Silurian (Pelplin Claystones Formation, Pasłęk Claystones Formation, Jantar
Bituminous Claystones Member). These units span a stratigraphic interval from the
Caradocian Stage to the Wenlock Series [72]. The position of the claystone formations, from
which the samples were collected for the studies, is presented on the lower Palaeozoic
stratigraphic log for the western slope of the East European Craton (Figure 2).
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Figure 2. Position of claystone formations, from which the samples were collected for the studies
(red) on the lower Palaeozoic stratigraphic log for the western slope of the East European Craton [71],
modified.

2.1. Specimen Characteristics

The mineral composition of particular samples was determined using X-ray diffraction
(XRD), based on Rietveld’s [73] method, using SIROQUANT software [74]. The organic
matter content was determined using Rock-Eval pyrolytic analysis [75]. The results are
presented in Table 1.
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Table 1. Value ranges and average values (in parentheses) of mineral composition, TOC content, bulk density, porosity, and
open porosity in particular rock formations.

Sample
Group

QFP
[%]

Carbonate
[%] Clay [%] TOC

[%Weight]
Bulk Density

[kg/m3]
Open Porosity

[%]

Pelplin 36.8–46.5
[42.0]

6.2–15.6
[11.5]

43.4–49.4
[46.4]

1.1–1.8
[1.4]

2450–2600
[2540]

1.03–4.14
[2.5]

Pasłęk 31.4–37.9
[35.2]

4.9–8.8
[7.3]

53.5–61.5
[57.5]

0.1–1.7
[1.0]

2530–2620
[2560]

1.78–5.36
[3.2]

Jantar 1 27.2–45.9
[34.5]

20.7–34.4
[26.5]

32.8–49.5
[38.8]

2.6–3.9
[3.3]

2340–2490
[2410]

1.43–6.93
[3.5]

Jantar 2 37.7–43.5
[41.0]

2.3–10.5
[4.1]

48.8–59.3
[54.9]

1.8–6.1
[3.8]

2280–2640
[2420]

2.52–8.12
[4.2]

Sasino 1 51.4–58.0
[54.3]

0.9–3.2
[2.5]

38.8–46.3
[43.2]

2.5–6.9
[4.7]

2250–2530
[2380]

2.33–4.82
[3.7]

Sasino 2 37.4–43.5
[40.4]

1.4–4.4
[2.6]

53.9–58.3
[57.0]

2.7–4.3
[3.3]

2290–2510
[2410]

3.38–8.12
[8.4]

Samples from the Pelplin Formation are characterised by a similar mineral composition
(Figure 3). They contain about 46.4% clay minerals, 42.0% quartz, feldspars and pyrite
(QFP), and 11.5% carbonates, and the average content of organic matter (TOC) is about
1.4 wt.%. Samples from the Pasłęk Formation are characterised by an elevated content of
clay minerals (57.5%), a lower content of QFP minerals (35%), and a low carbonate content
(7.3%). The average TOC content in this formation does not exceed 1 wt.%. Samples
from the Jantar Member and Sasino Formation were subdivided into two groups based
on the mineral composition. Samples from subgroup 2 have a higher contribution of clay
minerals compared to samples from subgroup 1. Samples from Jantar Member 1 have a
high content of carbonates (average of 26.5%) compared to samples from Jantar Member 2,
which contain much lower levels of carbonates (average of 4.1%). Samples from Sasino
Formation may be distinguished by the QFP (quartz, feldspar, pyrite) minerals. Samples
from Sasino Formation 1 contain more QFP minerals (average of 54.3%) than samples from
Sasino Formation 2 (average of 40.4%).
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2.2. Sample Preparation

Triaxial tests required preparation of cylinder samples, 1.5 inch in diameter and
~3 inches high. A vertical sample and a horizontal sample were cut out from each section
of the drill core in a direction perpendicular and parallel to shale lamination, respectively
(Figure 4). Horizontal and vertical samples were cut out from the same sections of drill
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cores in order to determine mechanical anisotropy. Polishing and grinding of the cylinder
ends ensured that the two surfaces were parallel to one other, according to the ASTM
(D 4543-01) standard [76].
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core section.

2.3. Experimental Equipment

Triaxial tests were performed with the application of a servo-hydraulic Material Test
System (MTS 815). The increase in temperature in the triaxial cell was obtained by three
electrical heaters, 2000 W each. The temperature in the cell was monitored by a thermo-
couple installed in its centre. Confining pressure in the triaxial cell was achieved using
compressed oil. The application of a liquid medium required the surface of the samples
to be protected against oil immersion into pore space and microfractures; therefore, prior
to the analysis, each sample was protected with a heat-shrink jacket against surrounding
liquids. Two axial transducers measured axial strain, and a chain type transducer measured
lateral strain (Figure 5). Volumetric strain (1) was determined using the following formula:

εv = εz + 2εx,y (1)

where

εv—volumetric strain,
εz—axial strain,
εx,y—lateral strain.
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Figure 5. Sample prepared for analysis with extensometers attached.

Prior to analysis, the samples were kept at room temperature. Saturation was consid-
ered low enough for the poroelastic effects to be considered negligible. The samples were
not subject to additional saturation prior to the analyses.

2.4. Experimental Procedure

Triaxial analyses were performed as single failure tests (Figure 6), according to the
suggestions of ISRM [77] and guidelines of American standards (ASTM) [78] and European
standards (Eurocode) [79]. The tests were conducted at a constant temperature of T = 85 ◦C
and stable confining pressure pc = 50 MPa in order to reflect the temperature and effective
stresses under in situ conditions. Confining pressure was applied on the rock sample at a
rate of 10 MPa/min. Temperature and confining pressure were achieved in the cell prior to
axial compression and maintained at a stable level during the whole test.
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Triaxial tests were performed at a constant strain rate of 10–5 s−1, up to complete
destruction of the sample along the shear surface. Due to direct measurements, it was
possible to obtain the following deformation curves: differential stress (σ1–σ3)—axial strain
(εz), lateral strain (εx,y) and volumetric strain (εv). Based on these, static elastic parameters
were determined, including Young’s modulus (E) and Poisson’s ratio (ν).

3. Results and Discussion
3.1. Estimation of Strength and Static Moduli

All strength analyses were performed under the same temperature (T) and pressure
(pc) conditions. Therefore, the parameter dataset obtained from the performed analyses in
a triaxial cell did not depend on temperature and confining pressure. Consequently, param-
eter values depended on factors related to the lithology of the rock formations, structural
features of single samples, and orientation of rock samples with regard to lamination.

Young’s modulus and Poisson’s ratio are elastic parameters. These parameters were
determined using an individual interpretation procedure based on the phenomenological
description of rock deformation under loading [80] and were also based on guidelines
of American standards (ASTM) [81] and the recommendations of ISRM [77]. In this case,
deformation curves obtained from strength analyses were applied for estimating these
parameters (Figure 7). Average Young’s modulus (Eav) was determined on a straight
section of the differential strain (σ1–σ3)–axial strain (εz) curve. Average Poisson’s ratio
(νav) was defined as the ratio (quotient) between the value of axial strain (εz) and lateral
strain (εx,y) for a straight section of all three stresses—axial, lateral and volumetric strain
characteristics. The ideogram of determining maximal differential stress, Young’s modulus,
and Poisson’s ratio is presented in Figure 7. The results obtained from strength analyses in
a triaxial stress state are presented in Table 2.

Energies 2021, 14, x FOR PEER REVIEW 8 of 17 
 

 

Triaxial tests were performed at a constant strain rate of 10–5 s−1, up to complete de-

struction of the sample along the shear surface. Due to direct measurements, it was possi-

ble to obtain the following deformation curves: differential stress (σ1–σ3)—axial strain (εz), 

lateral strain (εx,y) and volumetric strain (εv). Based on these, static elastic parameters were 

determined, including Young’s modulus (E) and Poisson’s ratio (ν). 

3. Results and Discussion 

3.1. Estimation of Strength and Static Moduli 

All strength analyses were performed under the same temperature (T) and pressure 

(pc) conditions. Therefore, the parameter dataset obtained from the performed analyses in 

a triaxial cell did not depend on temperature and confining pressure. Consequently, pa-

rameter values depended on factors related to the lithology of the rock formations, struc-

tural features of single samples, and orientation of rock samples with regard to lamina-

tion. 

Young’s modulus and Poisson’s ratio are elastic parameters. These parameters were 

determined using an individual interpretation procedure based on the phenomenological 

description of rock deformation under loading [80] and were also based on guidelines of 

American standards (ASTM) [81] and the recommendations of ISRM [77]. In this case, 

deformation curves obtained from strength analyses were applied for estimating these 

parameters (Figure 7). Average Young’s modulus (Eav) was determined on a straight sec-

tion of the differential strain (σ1–σ3)–axial strain (εz) curve. Average Poisson’s ratio (νav) 

was defined as the ratio (quotient) between the value of axial strain (εz) and lateral strain 

(εx,y) for a straight section of all three stresses—axial, lateral and volumetric strain charac-

teristics. The ideogram of determining maximal differential stress, Young’s modulus, and 

Poisson’s ratio is presented in Figure 7. The results obtained from strength analyses in a 

triaxial stress state are presented in Table 2. 

 

 

Figure 7. The scheme of determining the analyzing parameters from single failure tests. 

  

Figure 7. The scheme of determining the analyzing parameters from single failure tests.



Energies 2021, 14, 2995 9 of 17

Table 2. Value ranges of maximal value of differential stress (σ1–σ3)max, average Young’s modulus (Eav), and average
Poisson’s ratio (νav) in particular rock formations.

Sample Group Orientation

Maximal
Differential Stress

(σ1–σ3)max

Young’s Static
Modulus

(Eav)

Poisson’s Static Ratio
(νav)

[MPa] [GPa] [-]

Pelplin Vertical 188–223 18.5–27.3 0.14–0.23
Horizontal 213–258 38.4–47.8 0.18–0.30

Pasłęk
Vertical 173–206 20.5–30.2 0.18–0.28

Horizontal 174–219 41.9–48.7 0.23–0.28

Jantar 1
Vertical 191–241 22.6–24.9 0.23–0.24

Horizontal 206–263 39.7–50.4 0.30–0.32

Jantar 2
Vertical 104–123 15.3–16.2 0.19–0.23

Horizontal 123–176 33.7–47.5 0.22–0.30

Sasino 1
Vertical 178–194 18.6–22.1 0.19–0.25

Horizontal 220–240 34.5–57.2 0.22–0.32

Sasino 2
Vertical 180 16.1–20.0 0.16–0.17

Horizontal 179 37.4–45.1 0.22–0.26

Examples of deformation curves for samples cut out parallel and perpendicular to
lamination from the same drill core section are presented in Figure 8.
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lines) and vertical (dashed lines) samples.

Comparison of the obtained sets of deformation curves (Figure 8) for samples cut
out parallel and perpendicular to lamination shows a strong strength anisotropy of the
siltstone-claystone rocks. This is reflected in the larger values of maximal differential stress
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and a more vertical (steep) curve of differential stress of axial strain for the samples cut out
parallel to lamination compared to the samples cut out perpendicular to lamination.

The Ordovician and Silurian rocks studied are characterised by strength anisotropy
(Figure 9). This is confirmed by the results of maximal differential stress. Horizontal
samples from all formations reached higher strength values than vertical samples (Table 2).
Disintegration of the structure of vertical samples took place due to application of smaller
loading in comparison to horizontal samples. Horizontal samples were destroyed after
application of a much larger strength. Strength anisotropy for vertical and horizontal
samples cut out from the same drill core section is well reflected on deformation curves
obtained on the basis of measurements of strain and deformation as presented in Figure 8.
These curves show that destruction of a horizontal sample requires application of much
larger strength; therefore, this sample attained a higher value of maximal differential stress
than the vertical sample, which was destroyed at a stress 20% lower than applied on the
horizontal sample.
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In current research, the values of Young’s modulus were practically twice as high
for horizontal samples as for vertical samples. Horizontal samples, parallel to lamination,
obtained values of Young’s modulus in the range of 33 GPa to 57 GPa, whereas verti-
cal samples, perpendicular to lamination, had values in the range of 15 GPa to 30 GPa
(Figure 10). According to Trzeciak et al. [47], the horizontal Young’s modulus of the shale
layers (Pasłęk, Jantar, and Sasino formations) ranges from 37 GPa to 60 GPa, while the
range for the vertical Young’s modulus ranges from 21 GPa to 27 GPa.
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rock units.

The sizable difference in the values of Young’s modulus depending on the measure-
ment direction is caused by the much lower susceptibility of horizontal samples to axial
strain than the vertical samples. Axial strains registered during compression of vertical
samples were much larger, thus influencing the lower values of the elastic modulus.

Comparison of the obtained results of Young’s modulus (Table 2) with the mineral
composition of particular rock units (Table 1) shows that samples with a higher content
of carbonates and QFP minerals attained higher values of Young’s modulus than samples
dominated by clay minerals and organic matter (e.g., Jantar 1 vs. Jantar 2 and Sasino 1 vs.
Sasino 2). These results confirm the studies of Dohnalik et al. [82], performed on the same
rock formations from different boreholes in the Baltic Basin. These studies have shown
that the values of Young’s modulus and Poisson’s ratio strongly depend on the mineral
composition of the rocks. Values of Young’s modulus are higher for samples with a higher
content of carbonates, and Poisson’s ratio correlates well with the clay mineral content in
the rock sample.

The presented studies also show a anisotropy in the values of Poisson’s ratio depend-
ing on the sample orientation (Figure 11). Vertical samples are characterised by much
lower values of Poisson’s ratio than the horizontal samples. Poisson’s ratio for vertical
values is from 0.14 to 0.28, and for horizontal samples, it is from 0.18 to 0.32. There was no
positive correlation between Poisson’s ratio and the content of clay minerals in the sample.
Higher values of Poisson’s ratio for horizontal samples are the result of smaller axial strain
in horizontal samples during their compression in a triaxial cell.
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The obtained data show that horizontal samples (parallel to lamination) are stiffer
than vertical samples (perpendicular to lamination) and that samples with a higher content
of stiffer minerals (QFP and carbonates) reach higher values of Young’s modulus compared
to more plastic samples with a higher content of clay minerals. Based on the analysis
of triaxial tests, it was established that the elastic parameters of shales depend on the
orientation of the mineral and organic components in the rock. Horizontal samples are less
susceptible to axial strain compared to vertical samples; therefore, shales are characterised
by large elastic anisotropy.

3.2. Anisotropy

The occurrence of mechanical anisotropy in shale formations was also tested based
on three anisotropy ratios, determined on the basis of values of (σ1–σ3)max, Eav, and νav
obtained for samples cut out parallel and perpendicular to lamination from the same drill
core section. It should be emphasized that values of the anisotropy ratio above one indicate
to the presence of anisotropy.

According to Niandou et al. [83], the degree of strength anisotropy for transversely
isotropic rocks is determined by the ratio of failure strength in parallel and perpendicular
bedding orientation A(σ1–σ3)max (Equation (2)). Additionally the quantitative assessment
of anisotropy of the rocks studied was performed based on anisotropy ratios: Young’s
modulus (AEav) (Equation (3)) and Poisson’s ratio (deformation) (Aνav) (Equation (4)).
They were determined based on the values of particular parameters, according to the
following formulas:

A(σ1−σ3)max
=

(σ1 − σ3)maxII

(σ1 − σ3)max⊥
(2)
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AEav =
EavI I
Eav⊥

(3)

Avav =
vavII

vav⊥
(4)

The assessment of strength anisotropy in the analysed rocks was conducted based on
the anisotropy ratio of the maximal differential stress. For most clay units (except Sasino
2), the obtained values of the strain anisotropy ratio only slightly exceeded one (Table 3).
For each drill core section from the studied units, samples cut out parallel to lamination
had a higher strength than samples cut out perpendicular to lamination, which points to
the presence of strength anisotropy. Distinct strength anisotropy was not observed only
for Sasino Formation 2. In this case, only one anisotropy ratio was observed, equal to one,
for two samples cut out vertically and horizontally from one drill core section.

Table 3. Values of anisotropy ratios of maximal differential strain (A(σ1–σ3)max), Young’s modulus
(AEav), and Poisson’s ratio (Aνav) in particular rock formations.

Formation Pelplin Pasłęk Jantar 1 Jantar 2 Sasino 1 Sasino 2

A(σ1–σ3)max 1.10–1.47 1.05–1.19 1.08–1.09 1.12–1.55 1.17–1.34 1.00
AEav 1.60–2.22 1.76–2.11 1.75–2.02 2.20–2.31 1.68–3.06 1.86–2.41
Aνav 0.78–1.64 1.30–1.40 1.30–1.33 0.96–1.42 0.96–1.68 1.29–1.63

The obtained values of the anisotropy ratio of Young’s modulus (AEav) (Table 3)
confirm the presence of strong anisotropy of Young’s modulus in all shale formations.
The lowest values of the anisotropy ratio of Young’s modulus, in the range of 1.60, were
obtained for the Pelplin Formation. This shows that the value of Young’s modulus for a
sample cut out parallel to lamination is 60% larger than the value obtained for a sample cut
out from the same part of the drill core but perpendicular to lamination. In turn, the largest
value of the anisotropy ratio of Young’s modulus, in the range of 3.06, was obtained for
Sasino Formation 1, for which, in the case of a horizontal sample (cut out parallel to
lamination), the value of Young’s modulus was over three times larger than the value for a
vertical sample (cut out perpendicular to lamination).

Generally, similar trends were observed when analysing the strain anisotropy ratio
(Poisson’s ratio–Aνav) (Table 3), but in this case, the differences were observed in both
measurement directions, and thus the values of anisotropy ratio Aνav were much lower.
The highest values of the strain anisotropy ratio, above 1.6, noted in the Pelplin, Sasino 1,
and Sasino 2 formations, were twice as small as the maximal values of the anisotropy ratio
of Young’s modulus. The value ranges of the strain anisotropy ratio (Aνav) exceeding one
indicate the presence of distinct anisotropy of Poisson’s ratio in claystones from the Pasłęk
and Sasino 2 formations and in Jantar Member 1. In the remaining units (Pelplin, Jantar 2,
and Sasino 1), despite the fact that the value of the strain anisotropy ratio (Aνav) attained
values below one for samples cut out from the same section of the drill core, the average
value of this ratio, above one, also indicates the presence of distinct anisotropy in these
rocks.

4. Conclusions

The growing demand for hydrocarbons has caused significant intensification of geome-
chanical studies. These investigations are focused on determining the strength and strain
parameters of the rocks building the reservoirs of unconventional gas and oil deposits. The
results of geomechanical studies are used mainly for design of the most optimal process
of hydraulic fracturing, indispensable for economically viable exploitation of gas from
deposits characterised by very low permeability. The results of the mechanical properties
obtained herein should enhance gas production from shale gas deposits in Poland. The
presented analysis of mechanical anisotropy may be of crucial significance for successful
exploitation of gas from unconventional resources.
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Triaxial tests were performed on cylindrical samples cut out perpendicular and parallel
to lamination characteristic of the shales studied. Based on the performed analyses, it may
be assumed that the shales are characterised by strong mechanical anisotropy. The analysed
claystone units are characterised by strength anisotropy. This is confirmed by the obtained
values of maximal differential stress required for destruction of the sample. Horizontal
samples from all units had a higher strength than vertical samples. These conclusions can
also be confirmed by anisotropy ratios determined on the basis of the values ((σ1–σ3)max,
Eav, and νav) obtained for samples cut out parallel and perpendicular to lamination from
the same drill core sections. These ratios also confirm the presence of anisotropy in most
rock units studied.

The performed strength and strain tests allowed for the determination of the elastic
and strain properties of the studied shales. Horizontal samples (cut out parallel to lamina-
tion) attained much higher values of Young’s modulus, in the range of 33 GPa to 57 GPa,
than vertical samples (cut out perpendicular to lamination), characterised by values of
Young’s modulus in the range of 15 GPa to 30 GPa. Elastic properties in the analysed shale
units depended on the direction of measurement, which is reflected in the obtained values
of Young’s modulus. A privileged direction is observed, in which the highest values of
Young’s modulus were noted. This direction is parallel to lamination, where smaller axial
strain was registered compared to the direction perpendicular to lamination. The Pelplin,
Pasłęk, Jantar 1, Jantar 2, Sasino 1, and Sasino 2 claystone units are thus characterised by a
strong elastic anisotropy (Young’s modulus).

Based on single failure triaxial tests, Poisson’s ratio (νav) was determined for the
analysed rock units. For horizontal samples, the range of Poisson’s ratio (νav) is from 0.18
to 0.32, and for vertical samples, the average Poisson’s ratio (νav) is in the range of 0.13 to
0.28. Analysis of the value of Poisson’s ratio for particular lithostratigraphic units shows
that in most cases it was much higher for horizontal samples than for vertical samples.

The structure of clay rocks results from sedimentation and later diagenesis of sheets
of clay minerals. The arrangement of clay minerals horizontally in the shale rock led to the
development of internal VTI anisotropy of the rock matrix. This anisotropy causes a privi-
leged direction in all clay units, along which the highest values of the analysed parameters
were observed. This direction is parallel to lamination, in which much smaller axial strains
were observed compared to the direction perpendicular to lamination. Lower Palaeozoic
claystone units are thus characterised by strong anisotropy of geomechanical properties.

Laboratory results indicate that mechanical properties of gas shales are variable. It was
also established that mineral composition has influence on the strength and strain properties.
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Przegląd Geol. 2016, 64, 995–999.
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