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Abstract: The paper presents the application of recurrent LSTM neural networks for short-time load
forecasting in the Polish Power System (PPS) and a small region of a power system in Central Poland.
The objective of the present work was to develop an efficient and accurate method of forecasting the
24-h pattern of power load with a 1-h and 24-h horizon. LSTM showed effectiveness in predicting
the irregular trends in time series. The final forecast is estimated using an ensemble consisted of
five independent predictions. Numerical experiments proved the superiority of the ensemble above
single predictor resulting in a reduction of the MAPE the RMSE error by more than 6% in both
forecasting tasks.

Keywords: recurrent LSTM network; load forecasting; prediction systems; power systems; demand-
side management

1. Introduction

Load forecasting in power systems plays a significant role in system operation, es-
pecially concerning economic impact. The management of market purchases/sales, day-
ahead outage planning, energy storage management, future energy contracts, power plants
maintenance schedule, and so on necessitates knowing about the upcoming demand and
needs of the load. The task of load forecasting is very difficult due to several reasons such
as daily, weekly, and annual cycle effects, as well as the random usage of appliances by
the consumers.

Many different approaches to load forecasting were tried in the past. A good review
of such methods is presented in [1]. The developed approaches start from linear ARMA,
SARIMA, and ARMAX [2,3] and end on much more advanced nonlinear models based
on neural networks [4–7]. Two types of neural models were exploited the most: the
feedforward neural networks, such as multilayer perceptron (MLP), radial basis function
network (RBF), support vector machine (SVM), self-organizing neural networks, and
recurrent networks, such as Elman structure or presently the long short-term memory
(LSTM) networks. Many different types of individual solutions can be combined to form
an ensemble of the improved performance [5]. The other aspect in load demand forecasting
is a conceptual study on a virtual power plant architecture for the optimal management
of distributed energy resources. The paper [8] proposed such an architecture based on a
service-oriented approach. However, the most important problem is still to improve the
performance of the individual predicting unit applied in forecasting.

Recently the great interest is in the application of deep learning in prediction prob-
lems [4,6,9–12]. An example of such work is the paper by Kuo and Huang [4], which
proposed a deep convolutional neural network model for the load forecasting in the coastal
area of the USA for the next three days. Another example is the paper [9], showing the
application of autoencoder in forecasting the power demand in the Polish Power System
(PPS). The very high interest of researchers is an application of the LSTM recurrent neural
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network in forecasting tasks [6,11–14]. This is due to the fact that the hourly needs of
power demand are closely related to the previous values, and this is naturally embedded
by the nature of the recurrent structure of LSTM [12,13]. Kong [10] et al. used the LSTM
to forecasting power load to individual residential households, which is very volatile
compared to the region of a power system. Jimenez [12] et al., designed a system for load
forecasting focusing on demand-side response events. They used the LSTM model for load
forecasting and the exponential moving average methods for peak extraction. Zheng [13]
et al. applied the LSTM to build a multi-step load prediction model, in which power levels
were detailed. Their research proved the effectiveness of spatial granularity for accurate
forecasting. The paper [15] analyzed the effect of different dataset cleaning approaches to
the Italian industry load for forecasting accuracy using LSTM. The paper [16] introduced
the ADAM algorithm which was chosen in the conducted research.

This paper is concerned with the application of the LSTM network to forecasting the
24-h load pattern with a 1-h and 24-h ahead horizon. Two types of power systems will be
considered: the small region of the system and the whole country system. The numerical
experiments proved a very high accuracy of the forecasting process. The mean absolute
percentage error (MAPE) for the whole year prediction is below 1.5% for Polish Power
System at very high correlation coefficients between target and predicted values (above
0.98). These results are much better than those obtained at the application of standard
feedforward neural network architectures.

2. Data Used in Experiments

The numerical experiments were performed for two types of data. One is the data of
the whole country Polish Power System (PPS) and the second database corresponds to a
small region of a power system in the country.

The most important difference is the range of power values as well as the range of
changes of powers from hour to hour. This is well illustrated for one chosen year in Figure 1
for both systems.

Figure 1. Cont.
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Figure 1. The hourly changes of the power demands within one year in: (a) entire Polish Power System, (b) small region of
a power system.

In the case of the entire PPS, the average demand (in 2019) was 19283.1 MW, and
the standard deviation was equal to 3143.1 MW. These values in a small power region
are much smaller: average power equal to 378.55 MW and standard deviation equal to
93.38 MW. The difficulty in the prediction task is proportional to the ratio of standard
deviation to mean value. The higher this value the more dispersed are the data samples
and therefore, more difficult to predict. The coefficient of variation in the case of the
considered entire PPS calculated for one year 2019 is equal to 0.1630, while in a small
power region this value grows to 0.2467. The earlier experiments on prediction using
different types of feedforward neural networks showed mean absolute percentage error
(MAPE) significantly higher for small regions. The results presented in this paper will show
that the application of recurrent LSTM network is less sensitive to the type of database,
achieving good accuracy comparable to both systems and much higher than at application
of feedforward predictive systems.

3. Forecasting System Based on Recurrent LSTM Network
3.1. Problem Statement

The general procedure used in forecasting the power demand using the LSTM can be
presented as the sequence of the following operations:

• Take the available time series P(t) of the database and split it into the learning part
(Pl(t)) and testing part (Pt(t)).

• Normalize both data sets using standardization procedure with the mean and stan-
dard deviation estimated for known learning data.

• Apply normalized learning data to the LSTM network and train the network.
• Freeze parameters of LSTM and test it using the testing data.
• De-normalize the predicted testing values using the mean and standard deviation

values estimated on the learning data. They form the final predicted values.
• Calculate the quality of the testing results; in the case of not satisfactory results repeat

the learning procedure at changed hyperparameters of LSTM.
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The standardization procedure is done on both learning and testing data. Each power
value corresponding to the hth hour P(h), both learning Pl and testing Pt, is scaled according
to the following formula.

p(h) =
P(h)−ml

sl
(1)

The mean value ml = mean(Pl) and standard deviation sl = std(Pl) are estimated only
for learning data Pl and then used directly for testing data Pt, which did not take part in the
learning stage. The de-normalization procedure performed on the predicted normalized
data pt(h) is just inverse of the normalization process, i.e.,

Pt(h) = pt(h) · sl + ml (2)

Such normalized time series are delivered to the LSTM recurrent predictor. The
predictor is learned on the learning samples and the parameters of the network are fixed.
Then, the learned LSTM structure is used in the prediction process using the testing data.

Two types of prediction problems were checked. The first one is the task of predicting
the 24-h load pattern for the next day. In such a case the learning data are organized in the
form of a time series of 24-dimensional vectors directly applied to the LSTM. The second
task is to predict the power demand for only one hour ahead. This problem is typical in
the very short-term forecasting, frequently used at present in the power market.

3.2. LSTM Time Series Predictor

The LSTM developed by Hochreiter and Schmidhuber in 1997 [17–19] belongs to the
recurrent neural networks. It is composed of an input signal layer, one hidden layer of
mutual feedback between neurons represented by so-called LSTM cells. The output layer
is fed by the output signals of cells in the hidden layer. The network is composed of many
LSTM cells of the general structure presented in Figure 2.

Figure 2. The general structure of the single memory LSTM cell. xt is the vector of input signals in
the time point t, Ct−1 and Ct represent cell states in the previous t − 1 and actual t time points, ht−1

and ht are output signals of the cell in t − 1 and t time points, respectively, 1 represents the bias. The
symbol × represents the multiplication and + summation of signals.
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The cell is operating in two succeeding time points: the actual t on its output and
the previous t − 1 representing the state of the cell in the previous point of time. The cell
performance, denoted by L represents the mathematical function that takes three inputs
and generates two outputs,

(ht, ct) = L(ht−1, ct−1, xt) (3)

where:

• xt—vector of input signals in the time points t, representing the actual value of the
time series;

• Ct−1—memory signal (cell state) of the cell from the previous time point t − 1;
• ht−1—output signal of the cell in the preceding time point t − 1.

At the same time, the cell generates two output signals:

• Ct—memory cell state in the actual time points t;
• ht—output signal of the cell in the actual time point t. This signal of the cell in the

hidden layer is delivered to all neurons in the output layer.

Both output signals leave the cell at time point t and are fed back to that same cell at a
time t + 1. At any time, the elements of the time sequence xt are also fed into the cell.

The multiplication gates, denoted by the symbol ×, perform a significant role in cell
operation. The upper gate from the left represents the controlled memory. It decides what
part of the memory from the previous state is transferred to the actual time. It passes the
previous information of the rate from 0 to 1 according to a level of signals y1. The second
gate controls the amount of information ct, which will form the state of a cell in the actual
time point t. The output signal ht of the cell is created in the right-side multiplicative gate.
It is the product of the actual memory signal ct (after hyperbolic tangential activation) and
the output signal y4 of the sigmoidal neuron supplied by ct, xt, ht−1, and bias. The signal
of this gate decides how much information from the past is transmitted to the cell in the
next time point.

The structure of the LSTM cell represents a few layers, each characterized by the
weight matrices and vectors. Let us assume the notation of them in the form of double
indexes: the first one represents the notation of layer signals yi (here i = 1, 2, 3, and 4) and
the second represents the symbol of the input (supply) signal. For example, w1h represents
the weight of the first gate processing the output signals ht−1 from the previous time
point. The sigmoidal function is denoted symbolically by sigm and hyperbolic tangent
function—by tanh. In such case, the signals y1, y2, y3, and y4 are described by:

y1 = sigm(w1cct−1 + w1hht−1 + w1xxt + w10) (4)

y2 = sigm(w2cct−1 + w2hht−1 + w2xxt + w20) (5)

y3 = tanh(w3cht−1 + w3xxt + w30) (6)

y4 = sigm(w4cct + w4hht−1 + w4xxt + w40) (7)

The actual memory state ct and the output signal ht of the cell are described by:

ct = y2y3 + ct−1y1 (8)

ht = y4 · tanh(ct) (9)

The recurrent operation of the LSTM can be represented as a deep feedforward
propagation of signals through time as presented in Figure 3.
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Figure 3. The scheme of the forward propagation through time representing feedback in the recurrent
network. It shows connections of only one hidden neuron (LSTM cell) in a feedforward form at the
application of time sequence xt of one input signal x. In backpropagation through time, the direction
of the flow of signals is simply reversed and the former output signals are replaced by the actual
errors at these points of time.

The calculation of gradient in the learning procedure is easily implemented in the
form of backpropagation through time realized within the assumed time window T, as
shown in Figure 3 for one input signal x in different time points: t, t + 1, t + 2,..., T.

The hidden states pass through time; therefore, the recurrent network can take a
learning input sequence of any length up to t→T and then can generate an output sequence
also of any length. The user decides what is the length of the learning input sequence and
what is the length of the output predicted values. The layer of n LSTM cells corresponds to
the concatenation of n cells, each with a different set of internal weight parameters. This
can be written in a vector form:

(ht, ct) = L(ht−1, ct−1, xt) (10)

The individual LSTM weight vectors and biases are stacked into matrices and the
elements of these matrices are subject to adaptation in a learning process.

LSTM units are trained in a supervised mode, on a set of training sequences, using
a typical gradient descent algorithm, usually with momentum, for example, stochastic
gradient descent (SGD) or adaptive moment estimation (ADAM) methods [16]. Tuning
the weights needs a set of input-output training pairs. The inputs are fed into the network,
pass through the hidden layer to an output and the error between the expected output and
the actual output is quantified as a loss function. This error is backpropagated through the
network allowing the calculation of the gradient, used in the gradient descent procedure
of optimization.

After the model is trained, the next out-of-sample multi-step time series can be pro-
duced by the network. At given time series [xt1, xt2,..., xT] we want to forecast the next k
time point into the future to achieve [xT+1, xT+2, . . . , xT+k]. The value k may be just one
step producing many-to-one function or many steps producing many-to-many function.
Both procedures will be exploited in this paper.
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4. Results of Numerical Experiments

Two types of forecasting problems were solved using the LSTM network. The first
was to predict the 24-h pattern of the load for the next day, and the second was a one-hour
advance prediction. Both types were applied on two different databases: one corresponding
to the entire PPS system of the country and the second—to the small region of this power
system. The difficulty level of both tasks is very different since the small power region is
characterized by much higher changes of load demand from hour to hour.

4.1. Prediction of Load in PPS

The input data delivered to the network is composed of series of 24-dimensional
vectors x representing the 24-h patterns of the daily load. Each input vector x(d) of day d is
associated in the learning stage with the predicted target vector x(d + 1) of the 24-h load
pattern of the next day. The network is trained using the pairs of vectors: input x(d) and
output x(d + 1). The training was done using Matlab [20]. After training, the testing data
were delivered to the system (none of them were used in the learning phase). In the testing
stage, the load pattern for the next day is predicted by the learned network based on the
supplied vector of the already known pattern of the previous day. The hyperparameters
of the system (number of LSTM cells, number of learning cycles, gradient threshold,
initial learning rate, learn rate drop period, and learn rate schedule) were adjusted in
the preliminary experiments performed for the 2016 year, which was not taking part in
the next experiments. Due to the nature of the recurrent LSTM network structure, in
which the predicted pattern is strictly connected with the previous one, the information
of the actual season is not significant. Its inclusion has not led to the improvement of the
forecasting results.

The structure of the LSTM network used in experiments is 24-nh-24, where nh rep-
resents the number of LSTM cells. The years subject to an assessment of experiments
were: 2017, 2018, and 2019 (2016 was used only in the selection of hyperparameters of the
network, fixed in the next experiments). The 24-h load patterns for the next seven days
(one week) were predicted at the same time. In the experiments, we assumed that the 24-h
loads of the day preceding the prediction, were known (the input pattern to the network
composed of the last known day).

The introductory experiments performed in 2016 (not taking part in the next exper-
iments) allowed selecting the best hyperparameters of the network. Different values of
hidden neurons (from 300 to 700), initial learning rate in ADAM (from 0.002 to 0.007),
learning rate drop factor (from 0.3 to 0.6) were tried in this stage of experiments. The
arrangement of the best parameter setting was selected in this way. As a result, the number
of hidden neurons was chosen as 600 (for 24-h predicted load pattern), initial learning rate
in ADAM 0.005, learning rate drop factor 0.5, and 300 learning cycles were found sufficient.

The analysis of the data showed a highly different pattern of the period of the last
10 days of the year, including the Christmas holiday and the New Year’s Eve. The load
pattern in this period is much more chaotic from the day to day and not repeatable. It
follows from the fact that most institutions and factories have holidays for some days or
work on half-scale on other days. Since the operation of LSTM is sensitive to the shape of
learning patterns, we decided to learn two different LSTM models. One was prepared for
the first 355 days and the second for the rest 10 days of the year. In the case of 355 days,
the first 90% of data were used in learning, and the remaining days (36) for testing in the
first experiments. In the case of a network designed for the prognosis of the Christmas
holiday period, the population of data are very small. Therefore, the experiments were
made including together the data of the last 10 days of the six years (from 2014 to 2019). Six
runs of learning and testing were organized in this case. Five-year data (the combinations
of five years of data in the period 2014–2019) were used in learning and the remaining year
for testing. The experiments were repeated six times for each organization of learning and
testing data, and the mean of all testing results is treated as the most representative forecast
for this holiday period.
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The problem in such organization of experiments is a very small amount of testing
data (36 days corresponding to 10% of the yearly data set) representing only one season.
Therefore, the next experiments were conducted to assess the performance of the algorithm
for the whole year under investigation. The series of experiments were organized in such a
way that one-year data (355 days of it) were used for learning and the whole next year’s
data were served for testing. In this way, three independent LSTM systems were learned
(all of the same architecture and hyperparameters). The first was trained on the data set of
2017 and predicted the daily load for 2018. The second was trained on the data of 2018 and
predicted the daily load of 2019. The third system for predicting the load in 2017 used the
data set of 2018 in training.

The quality of all results will be demonstrated in the form of MAPE and root mean
squared error (RMSE) as well as the correlation coefficient R between the predicted and
true values of the load [21]. Their mean values and standard deviations of five repetitions
of the learning and testing sessions are presented below. The results of these repetitions are
combined into the ensemble and averaged into a single verdict. The results of these exper-
iments for the entire PPS data and three considered years are depicted in Tables 1 and 2.
Table 1 presents the quality measures averaged over all runs of the algorithm for testing
data representing the remaining 10% of the yearly data. For example, the value of MAPE
was calculated as the average of all MAPE values in each run, i.e.,

MAPE =
1
5

5

∑
i=5

MAPE(i) (11)

Table 1. Statistical results of numerical experiments in 24-h load pattern prediction in PPS in the case
of individual predictors and five repetitions of experiments (testing data cover only 10% of the year).

Year MAPE (%) RMSE (MW) R

2019 1.15 ± 0.11 375 ± 107 0.9952
2018 1.49 ± 0.39 475 ± 69 0.9882
2017 1.13 ± 0.11 373 ± 107 0.9954

Christmas holiday 3.53 ± 0.70 708 ± 136 0.9505

Table 2. Statistical results of prediction of 24-h load pattern prediction in PPS of the ensemble
composed of five members (testing data cover only 10% of the year).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 1.10 299 0.9956
2018 1.43 416 0.9916
2017 1.08 293 0.9957

Christmas holiday 3.42 670 0.9552

In the case of an ensemble, the MAPE value of the ensemble is calculated differently,

MAPEensemble =
1
p

p

∑
i=1

|ym(i)− d(i)|
d(i)

·100% (12)

where p represents the number of hours for which the predictions were made, ym(i) is the
mean of values predicted for an ith hour by all members of the ensemble, and d(i) is the
true value of the load at the ith hour.

The analysis of the results of different runs of the algorithm showed that in each
run the errors (differences between the predicted and true values of load) are of different
signs. This opens the space for the compensation of errors in the ensemble composed of
the results of the runs. Thanks to the repetitions of the runs and their fusion the quality
parameters were improved. This is confirmed by the results shown in Table 2, presenting
the MAPE, RMSE, and the correlation coefficient R [21] corresponding to the results of an
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ensemble composed of five members. The relative ratio of improvement of the ensemble
over individual results is in the range of 5%.

The results of experiments covering the whole years in testing (355 days) are shown
in Tables 3 and 4. They are limited only to the non-Christmas period since the Christmas
period results were already presented in Tables 1 and 2.

Table 3. Results of numerical experiments in 24-h load pattern prediction in PPS in the case of
individual predictors at five repetitions of experiments (testing data cover the whole years, except
Christmas period).

Year MAPE (%) RMSE (MW) R

2019 1.37 ± 0.06 2078 ± 178 0.9937
2018 1.65 ± 0.06 2147 ± 136 0.9844
2017 1.56 ± 0.10 2138 ± 100 0.9876

Table 4. Numerical results of prediction of 24-h load pattern prediction in PPS of the ensemble
composed of five members (testing data cover the whole years, except Christmas period).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 1.29 305 0.9933
2018 1.59 371 0.9870
2017 1.49 336 0.9882

This time the results are slightly worse compared to 10% of testing data (for example
1.29% of MAPE compared to 1.10%); however, still of good and acceptable accuracy. Worse
results were only for 2017, for which the training data of 2018 were not fully representative.

According to our experience, the best predictive results are obtained when using
system learning data corresponding to a long period. Many simulations using data repre-
senting different lengths showed that one-year learning data seem to be optimal. However,
the important point is the application of the previous year’s period, which immediately
precedes the day of the forecast. Thus, in the case of forecasting the load profile for 15
May of the current year, the proposed period used for training should begin in May of the
previous year.

The statistical results presented in Table 4 were compared to results obtained for
the same PPS in a traditional ensemble composed of multilayer perceptron, radial basis
function, and support vector machine cooperating with the autoencoder [9]. The best
results of MAPE presented here were given only for 2019. They were at the level of 1.433%,
while the LSTM network allowed to reduce this level to 1.29% for the same year. This
means that thanks to the application of LSTM the relative improvement of MAPE error is
around 10%.

The significant difference in quality measures is visible between the typical days of
the year and the Christmas holiday. The Christmas and New Year’s Eve period is very
short, and a small amount of learning data is available. Concatenation of five years of data
for learning and using the remaining sixth year in testing is still not very representative for
the real changes of the load. Moreover, observe that the Christmas period load patterns
from different years also differ from each other. This is the reason the prediction errors for
this period are much higher.

Figure 4 depicts the results of load prediction for one week of the typical days of the
year (Figure 4a) and the week corresponding to the Christmas holiday (Figure 4b).
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Figure 4. The graphical presentation of the real and predicted load patterns for one chosen week:
(a) typical days of the year, (b) Christmas period. In the case of the Christmas holiday period higher
discrepancy between the true and predicted patterns are visible for the first three starting days of the
holiday.

In the case of the typical day, the prediction of the load is close to perfect and the
differences between the predicted and true values are negligible and fully acceptable in
practice. However, in the case of the not typical period (like the Christmas holiday), the
performance of the LSTM predictor is much worse. This is confirmed by the results shown
in Figure 4b. Observe that the load of the first 48 hours was predicted based on the last day
loads of the Christmas period from the previous year. These days correspond to a New
Year’s Eve, usually characterized by the lower consumption of power. Hence, the predicted
values for the first two days were underestimated. However, thanks to the available prior
information of the past values of load, the LSTM network was able to update these values
and performs quite well in the next hours.

The next experiments were performed for a 1-h ahead load pattern for the same time
series representing the years 2017–2019. This time the considered load pattern, observed
from hour to hour is significantly simpler than for the 24-h treated as one vector. The
changes of load from hour to hour are much lower and easier to predict. Moreover, special
days of the year (for example Christmas and New Year period) represent now a similar
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level of difficulty. Therefore, there is no need to build a special network devoted only to
them. Once again, we trained the LSTM network using the data of one whole year and
tested it on the other one. The years used in learning and testing were organized in the
same way as for the whole PPS system. The structure of the proposed network is now
1-nh-1, with the adjusted nh = 300. The results will be presented only for testing data of the
whole year (data not taking part in learning). Five repetitions of experiments generated the
average values of the quality parameters depicted in Table 5. The interesting conclusion
from these experiments is relatively high repeatability results for all days, including such
non-typical periods as the Christmas holiday. This is reflected by very small standard
deviation values observed in the repetitions of experiments.

Table 5. Statistical results of numerical experiments in 1-h ahead load prediction in PPS in the case of
individual predictors at five repetitions of experiments (the results of forecasting the load patterns
are shown for the whole tested years).

Year MAPE (%) RMSE (MW) R

2019 1.08 ± 0.03 286.99 ± 12.06 0.9959
2018 0.94 ± 0.04 251.82 ± 9.91 0.9969
2017 1.11 ± 0.02 289.69 ± 6.83 0.9957

Mean 1.04 ± 0.03 276.17 ± 9.60 0.9962

After organizing the results of runs in the form of an ensemble the quality factors were
improved. Their values obtained for the same testing data are shown in Table 6.

Table 6. Statistical results of prediction of 1-h ahead load in PPS of the ensemble composed of five
members (the results of forecasting the load patterns are shown for the whole tested years).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 1.03 275.61 0.9962
2018 0.89 239.81 0.9972
2017 1.07 282.85 0.9959

Mean 1.00 266.09 0.9964

The relative quality measures (MAPE and RMSE) following from the application of
ensemble were increased by almost 4%. The correlation coefficient in all cases was on a
very high level, of more than 0.9960. In general, the results show that the LSTM predictor
is a very good solution for 1-h ahead load forecasting in PPS.

4.2. Prediction of Load in a Small Power Region

Small power regions experience much larger changes of loads, both in 24-h and 1-h
patterns. It was shown in Section 2 in the example of the ratio: standard deviation to
mean value. This phenomenon follows from a much higher influence of the individual
consumers on the total load. Nevertheless, statistically, the load at a particular hour is more
connected with its preceding value. Therefore, the recurrent LSTM network is very well
prepared for this forecasting task, due to its nature of the operation.

However, the circuit structure and hyperparameters should be carefully adjusted to
the actual task. This was done experimentally using the data of 2016, separately for the
24-h load pattern and the 1-h ahead prediction. In the first case, 600 hidden LSTM units
were applied, while in the second case 450 were found the best.

Tables 7 and 8 present the results of load prediction for the next day (24-h load
pattern). The testing data were limited first to only 10% of the whole year. Table 7 shows
the average results of individual five predictors and Table 8—the corresponding results
after including these results in the form of ensemble integrated into the averaging mode.
At five repetitions of these runs, all quality parameters observed in an ensemble were
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improved. This is well seen in Table 8, presenting the MAPE, RMSE, and R corresponding
to the results of an ensemble.

Table 7. Statistical results of numerical experiments in 24-h load pattern prediction in a small power
region in the case of individual predictors at five repetitions of experiments (testing data cover only
10% of the year).

Year MAPE (%) RMSE (MW) R

2019 2.22 ± 0.54 17.83 ± 7.64 0.9890
2018 2.66 ± 1.17 19.82 ± 10.59 0.9831
2017 2.26 ± 0.49 11.75 ± 7.80 0.9884

Christmas holiday 4.68 ± 1.37 22.65 ± 7.18 0.9146

Table 8. Statistical results of prediction of 24-h load pattern in a small power region of the ensemble
composed of five members (testing data cover only 10% of the year).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 2.14 12.27 0.9896
2018 2.58 14.72 0.9842
2017 2.19 13.12 0.9887

Christmas holiday 4.47 21.68 0.9195

The next experiments were done for predicting the whole year’s daily patterns (exclud-
ing the Christmas period). They were organized for this small power region in the same
way as for the whole country. The statistical results of these experiments are presented in
Tables 9 and 10.

Table 9. Results of numerical experiments in 24-h load pattern prediction in a small power region
in the case of individual predictors at five repetitions of experiments (testing data cover the whole
years, except Christmas period).

Year MAPE (%) RMSE (MW) R

2019 2.35 ± 0.22 87.12 ± 8.77 0.9872
2018 2.01 ± 0.11 90.72 ± 20.79 0.9958
2017 2.20 ± 0.13 116.44 ± 19.65 0.9934

Table 10. Results of prediction of 24-h load pattern in a small power region of the ensemble composed
of five members (testing data cover the whole years, except Christmas period).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 2.12 9.53 0.9929
2018 1.84 7.62 0.9959
2017 2.05 8.29 0.9947

The testing results covering the whole years seem to be of better quality. The longer
period of testing resulted in improving all measures of quality (smaller MAPE and RMSE
and higher value of R). This is well seen by comparing the corresponding values in
Tables 8 and 10.

The next set of experiments was conducted for the prediction of a 1-h ahead load
pattern for the time series representing the years 2017–2019. This time the structure of the
network is 1-nh-1, with the adjusted nh = 450. The experiments were organized in the same
way as for the whole PPS system. The results will be given only for testing data of the
whole year (they did not take part in learning processes). Five repetitions of experiments
showed the average values of the quality measures depicted in Table 11.
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Table 11. Statistical results of numerical experiments in 1-h ahead load prediction in the small power
region in the case of individual predictors at five repetitions of experiments (the results of forecasting
the load patterns are shown for the whole tested years).

Year MAPE (%) RMSE (MW) R

2019 2.10 ± 0.11 9.91 ± 0.50 0.9943
2018 2.04 ± 0.09 9.77 ± 0.41 0.9947
2017 2.07 ± 0.04 9.36 ± 0.24 0.9949

Mean 2.07 ± 0.08 9.68 ± 0.38 0.9946

After applying the ensemble composed of the results of all runs, the quality factors
were improved. Their particular values after integrating the results of five runs are shown
in Table 12.

Table 12. Statistical results of prediction of 1-h ahead load in the small power region of the ensemble
composed of five members (the results of forecasting the load patterns are shown for the whole
tested years).

Year MAPEensemble (%) RMSEensemble (MW) Rensemble

2019 2.01 9.61 0.9946
2018 1.90 9.07 0.9954
2017 1.99 9.12 0.9952

Mean 1.97 9.27 0.9951

They correspond well to the results presented in Table 11. With five members of the
ensemble, the relative improvement over the mean of the individual members was around
5% for MAPE and RMSE.

5. Conclusions

The results of the experiments show the high applicability of the LSTM approach
to load forecasting problems in electrical power systems. The recurrent structure of the
network allows reproducing very well the trends of changing character of power consump-
tion. However, the accuracy of the prediction depends on the scale of signal variation.
This is well illustrated by comparing the MAPE errors in the entire power system of the
country (PPS) and the small region of it. The changes and their predictability of power
consumption from hour to hour are much higher in a small region, therefore, its forecasting
is more difficult. This is well illustrated on the example of MAPE measure in Figure 5. It
presents such a comparison in a graphical way for two forecasting problems: prediction
of 24-h load pattern (Figure 5a) and 1-h ahead prediction (Figure 5b). Irrespective of the
considered year and type of prediction the accuracy obtained in PPS is much higher.

Despite a very simple forecasting model the accuracy of prediction obtained using
the LSTM is much better compared to the application of standard feedforward neural
predictors. For example, the complex forecasting system based on ensemble applying
multilayer perceptron, self-organizing networks, and blind source separation allowed
obtaining the MAPE = 1.73% for the PPS. The application of LSTM allowed reducing the
mean of errors in three investigated years to the value of MAPE = 1.45% (the days excluding
the Christmas period) and 3.42% for 10 days the Christmas period.

The interesting observation from the performed experiments is the high insensitivity
of the proposed structure of the LSTM forecasting system to such elements as a type of
the season, weather, temperature, etc. The system is based on the strict association of the
previous (known) vector and the predicted one. Such relations are well visible in the case
of power demand in electrical power systems. Therefore, the proposed solution, despite its
simplicity, is very efficient in this task.
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Figure 5. The comparison of MAPE of load prediction in the entire country (PPS) and in the
small power region for the years 2019, 2018, 2017 organized in the mode of (a) 24-h load pattern
forecasting, (b) 1-h ahead load prediction. The results confirm the more difficult prediction problem
corresponding to a small region.
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